8年级数学培优竞赛试题1-25题(含详解)
初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
初二竞赛数学试题及答案

初二竞赛数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或1答案:D3. 一个直角三角形的两个直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数列的前三项为2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差也不是等比D. 无法确定答案:A5. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______。
答案:非负数7. 如果一个数的相反数是-3,那么这个数是______。
答案:38. 一个数的平方根是4,那么这个数是______。
答案:169. 一个数的立方根是2,那么这个数是______。
答案:810. 如果一个数的1/4等于5,那么这个数是______。
答案:20三、计算题(每题5分,共15分)11. 计算下列表达式的值:(2x - 3) / (x + 1),当x = 5时。
答案:(2*5 - 3) / (5 + 1) = 7 / 612. 计算下列多项式的乘积:(3x^2 - 2x + 1) * (x + 2)答案:3x^3 + 4x^2 + x - 2x^2 - 4x + 2 = 3x^3 + 2x^2 - 3x + 213. 求解方程:2x + 5 = 3x - 1答案:2x - 3x = -1 - 5 => -x = -6 => x = 6四、解答题(每题10分,共20分)14. 一个长方形的长是宽的两倍,且面积为24平方厘米。
求长方形的长和宽。
答案:设宽为x厘米,则长为2x厘米。
面积为x * 2x = 24平方厘米,解得x^2 = 12,x = √12 = 2√3,所以宽为2√3厘米,长为4√3厘米。
全国初二数学竞赛试题及答案解析

全国初二数学竞赛试题及答案解析一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不规则三角形答案:A解析:根据勾股定理的逆定理,如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
2. 已知x^2 - 5x + 6 = 0,求x的值。
A. 1B. 2C. 3D. 6答案:C解析:这是一个二次方程,可以通过因式分解法求解。
x^2 - 5x + 6 = (x - 2)(x - 3) = 0,解得x = 2 或 x = 3。
...30. 已知一个数列的前三项为2, 3, 5,且每一项都是前两项的和,求第10项的值。
答案:55解析:这是一个斐波那契数列,每一项都是前两项的和。
根据数列的规律,可以依次计算出第10项的值为55。
二、填空题(每题4分,共20分)31. 如果一个圆的半径是r,那么它的面积是______。
答案:πr^232. 一个长方体的长、宽、高分别是a、b、c,它的体积是______。
答案:abc...三、解答题(每题10分,共50分)36. 已知一个等腰三角形的底边长为10厘米,两腰的长度相等,且底角为45度。
求这个等腰三角形的面积。
答案:25√2解析:首先,根据底角为45度,我们可以知道这是一个等腰直角三角形。
根据勾股定理,两腰的长度为底边的√2倍,即10√2厘米。
然后,根据三角形面积公式(底×高÷2),面积为10×(10√2)÷2=50√2平方厘米。
37. 一个数的平方减去这个数等于36,求这个数。
答案:9 或 -4解析:设这个数为x,根据题意,我们有x^2 - x - 36 = 0。
这是一个二次方程,可以通过因式分解法求解:(x - 9)(x + 4) = 0。
解得x = 9 或 x = -4。
...结束语:本次全国初二数学竞赛试题涵盖了代数、几何、数列等多个领域,旨在考察学生的数学基础知识和解题能力。
八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
八年级数学培优竞赛试卷

一、选择题(每题5分,共20分)1. 若一个数的平方等于它本身,则这个数是()A. 0,1B. 0,1,-1C. 0,1,2D. 0,1,-22. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)3. 下列方程中,解为正数的是()A. x - 2 = 0B. x^2 + 1 = 0C. x^2 - 4 = 0D. x^2 - 1 = 04. 一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长为()A. 26B. 28C. 30D. 325. 若a、b、c为等差数列,且a + b + c = 12,a^2 + b^2 + c^2 = 36,则b的值为()A. 4B. 6C. 8D. 10二、填空题(每题5分,共20分)6. 若x^2 - 5x + 6 = 0,则x的值为______。
7. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数为______。
8. 若一个等边三角形的边长为a,则它的面积为______。
9. 若a、b、c是等差数列,且a + b + c = 12,a^2 + b^2 + c^2 = 36,则公差d为______。
10. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1,-4),则a的值为______。
三、解答题(每题20分,共80分)11. 解方程:2x^2 - 4x - 6 = 0。
12. 已知函数y = kx - 2,其中k为常数。
当x=1时,y的值为-1,求k的值。
13. 在△ABC中,∠A = 30°,∠B = 45°,AB = 6cm,求AC和BC的长度。
14. 已知数列{an}是等比数列,且a1 = 2,公比为q。
若数列的前三项和为14,求q的值。
15. 已知二次函数y = -2x^2 + 4x + 3的图象与x轴交于A、B两点,且AB = 2。
初二下数学培优试卷答案

一、选择题(每题3分,共15分)1. 下列各数中,有理数是()A. √2B. πC. -1/2D. 无理数答案:C解析:有理数是可以表示为两个整数比的数,因此选项C正确。
2. 若a、b、c是等差数列,且a+b+c=0,则下列等式中正确的是()A. a+c=2bB. a+b=2cC. a-b=2cD. b-c=2a答案:A解析:等差数列的性质是相邻两项之差相等,所以a+c=2b。
3. 已知函数f(x)=2x-1,则函数g(x)=f(x+1)的解析式是()A. g(x)=2x+1B. g(x)=2x-3C. g(x)=2x+3D. g(x)=2x-1答案:B解析:将f(x)中的x替换为x+1,得到g(x)=2(x+1)-1=2x+2-1=2x+1。
4. 在直角坐标系中,点A(2,3)、B(4,5)、C(6,7)构成的三角形是()A. 等腰直角三角形B. 等边三角形C. 直角三角形D. 不等边三角形答案:C解析:计算AB、BC、AC的长度,发现它们分别是√5、√5、√5,因此三角形ABC是直角三角形。
5. 已知等腰三角形ABC的底边AB=8,腰AC=BC=6,则底角B的度数是()A. 30°B. 45°C. 60°D. 90°答案:B解析:等腰三角形的底角相等,因此底角B的度数为45°。
二、填空题(每题5分,共25分)1. 若x^2-5x+6=0,则x的值为__________。
答案:2,3解析:因式分解x^2-5x+6=(x-2)(x-3),所以x的值为2或3。
2. 若sinα=√2/2,则cosα的值为__________。
答案:√2/2解析:在单位圆上,sinα=√2/2对应的角度是45°,所以cosα的值也是√2/2。
3. 若一个正方形的边长为a,则它的面积是__________。
答案:a^2解析:正方形的面积是边长的平方,所以面积为a^2。
人教版八年级数学培优题精选18例(含答案)

A、1.5B、2C、2.25D、2.5爬到点 B ,如果它运动的路径是最短,则 AC 的长度是多少?少?车是否超速?例题6、对实数 a , b ,定义新运算☆如下: a ☆ b =八年级数学培优题精选18例(含答案)例题7、计算八年级数学培优题精选18例(含答案)例题9、点 A(3x + 2y , -2)关于 y 轴的对称点为 B(-1 ,2x + 4y), 则点 M (x , y)关于 x 轴的对称点的坐标为多少?答案:(1,1)。
例题10、如图所示,在平面直角坐标系中有 A , B 两点:八年级数学培优题精选18例(含答案)(1)写出 A , B 两点的坐标;(2)若线段 AB 各顶点的横坐标不变,纵坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A1 ,B1 ,并连接 A1B1 ,所得的线段 A1B1 与线段 AB 有怎样的位置关系?(3)在(2)的基础上,纵坐标不变,横坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A2,B2 ,并连接这两个点,所得的线段 A2B2 与线段 AB 有怎样的位置关系?解:(1)点 A 的坐标为(1,2),点 B 的坐标为(3,1);(2)如图所示,线段 A1B1 与线段 AB 关于 x 轴对称;(3)如图所示,线段 A2B2 与线段 AB 关于原点对称。
例题11、甲乙两人赛跑,所跑路程与时间的关系如图所示。
根据图像得到如下四个信息,其中错误的是(C )八年级数学培优题精选18例(含答案)A、这是一次 1500 m 赛跑B、甲、乙两人中先到达终点的是乙C、甲、乙同时起跑D、甲在这次赛跑中的速度为 5 m/s例题12、如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点 G ,∠BDC = 140°,∠BGC = 110°,则∠A 的度数为(C)八年级数学培优题精选18例(含答案)A、70°B、75°C、80°D、85°例题13、如图所示,已知 AB∥DE ,一个弯形管道 ABCDE 的拐角∠EDC = 140°,∠CBA = 150°,则∠C = ?八年级数学培优题精选18例(含答案)答案:∠C = 70°。
八年级数学培优考试题

一,单项选择题(本大题共8小题,每题5分,共40分)1.如果实数x,y满足(+x)(+y)=1,那么x+y值为()A.0B.﹣1C.1D.22.如图,在△ABC中,D,E分别是BC,AC的中点,若∠ACB=90°,BE=4,AD=7,则AB的长为()A.10B.5C.2D.23.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5C.2D.4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步200米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,若甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论中正确的是()A.乙的速度为5米/秒B.乙出发10秒钟将甲追上C.当乙到终点时,甲距离终点还有20米D.m=385.已知x为实数,化简的结果为()A.B.C.D.6.两条直角边长分别是整数a,b(其中b<100),斜边长是b+1的直角三角形的个数为()A.4个B.5个C.6个D.7个7.如图,在△ABC中,AB=17,BC=26,BD平分∠ABC,AD⊥BD,点E是AC的中点,则线段DE的长为()A.4.5B.9C.5.5D.118.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二、填空题(本大题共6小题,每题5分,共30分)9.在平行四边形ABCD中,AM⊥BC,AN⊥CD,M、N为垂足,若AB=13,BM=5,MC =9,则MN的长度为.10.已知三个非负实数a,b,c满足:3a+2b+c=6,a+b﹣3c=2,若m=a﹣b+c,则m的最小值为.11.四边形ABCD中,∠A=∠B=60°,BC=8,CD=,AD=10,求AB=.12.已知﹣=2,则+=.13.在某海防观测站的正东方向12海浬处有A、B两艘船相会之后,A船以每小时12海浬的速度往南航行,B船则以每小时3海浬的速度向北漂流.则经过小时后,观测站及A、B两船恰成一个直角三角形.14.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.三、解答题(本大题共4小题,15题,16题7分,17,18题8分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级第1题:下列命题:(1)全等三角形的对应边上的中线、高、角平分线对应相等;(2)两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;(3)两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;(4)两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等。
其中正确命题的个数有( )A.4个B.3个C.2个D.1个答案:B解析:(1)全等三角形的中线、高、角平分线对应相等,正确(2)可以先证明两边的夹角相等,再证明两三角形全等,正确(3)可以用AAS或ASA判定两个三角形全等,正确(4)参考等高模型,两三角形不一定全等,错误第2题:如图,在△ABC中,IB,IC分别平分∠ABC和∠ACB,过点I作DE ∥BC,分别交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC,其中正确的是()A.①②③ B.②③④ C.①③④ D.①②④答案:C解析:①因为IB 平分ABC ∠所以CBI DBI ∠=∠因为DE 平行BC所以CBI DIB ∠=∠所以DIB DBI ∠=∠所以BD=DI所以DBI ∆是等腰三角形②因为BAC ∠不一定等于ACB ∠所以IAC ∠不一定等于ICA ∠所以ACI ∆不一定是等腰三角形③因为三角形角平分线相交于一点,BI 、CI 分别是ABC ∠和ACB ∠的平分线 所以AI 平分BAC ∠④因为DI BD =,同理可得EC EI =所以ADE ∆的周长AE EC BD AD AE EI DI AD +++=+++第3题:已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A .6条 B.7条 C.8条 D.9条答案:B解析:根据当11AC BC =,2CC AC =,3BC AB =,44CC AC =,5AC AB =6AC AB =,77CC BC =时,都可以得到符合题意的等腰三角形所以共有7条第4题:如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( )A.25°B.30°C.35°D.40°答案:B解析:分别作P 点关于OA 、OB 的对称点D 、C ,连接CD ,分别交OA 、OB 与点M 、N 连接OC 、OD 、PM 、PN 、MN因为点P 关于OA 的对称点为D ,关于OB 的对称点为C所以PM=DM ,OP=OD ,POA DOA ∠=∠因为P 关于OB 对称点为C所以PN=CN ,OP=OC ,POB COB ∠=∠所以OC=OP=OD ,COD AOB ∠=∠21 因为三角形PMN 的周长最小值为5cm所以PM+PN+MN=5,DM+CN+MN=5即CD=5=OP所以OC=OD=CD即三角形OCD 是等边三角形所以︒=∠60COD所以︒=∠30AOB第5题:如图,E ,F ,分别是正方形ABCD 的边AD ,DC 上的点,BE ⊥AF ,若图中阴影部分的面积为8,则正方形的面积是( )A .12 B.16 C.20 D.24答案:B解析:因为BE ⊥AF所以︒=∠+∠90BAF ABE因为︒=∠=∠+∠90BAD BAF DAF所以ADF ABE ∠=∠在△ABE 和△DAF 中 ADF ABE ∠=∠AD AB =D B AE ∠=∠所以)(ASA DAF ABE ∆≅∆所以ABCD BCF ADF BCF ABE S S S S S 正方形21=+=+∆∆∆∆ 因为阴影部分面积为8所以正方形ABCD 的面积为16分解因式:10987654322345654321x x x x x x x x x x ++++++++++解析:原式28262422211213121)()()()()(+++++++++=x x x x x x x x x )()(8642223211x x x x x +++++=)()(24648222211x x x x x x ++++++=224211)()(+++=x x x2222211])[()(x x x -++=22222111)()()(x x x x x -++++=第6题:在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(-3,-3),点C 是y 轴上一动点,要使△ABC 为等腰三角形,则符合要求的点C 的位置共有( )A.2B.3C.4D.5答案:D解析)617,0(),7,0(),1,0(),62,0(),62,0(54321---C C C C C第7题:因式分解24+26+9+23x x x答案:2426923+++x x x)16269(2233++++=x x x)89)(2()42)(2(2++++-+=x x x x x)8942)(2(2+++-+=x x x x)127)(2(2+++=x x x)4)(3)(2(+++=x x x第8题:解方程式)(0≠1+1+13=++cb ac b a x b a c x a c b x ------ 答案:3=--+--+--cb a x b ac x a c b x 3=+-++-++-cb ac x b a c b x a c b a x cb a b ac a c b c x b x a x ++++++=++3 cb a b ac a c b c x b x a x ++++++++=++111 c c b a b c b a a c b a x c b a ++++++++=++)111()111)(()111(cb ac b a x c b a ++++=++ 则c b a x ++=第9题:如图所示,在△ABC 中,∠C=90°+B ∠21,AD 是角平分线,求证:AB=AC+BD答案:在AB 上取AC AE =因为AD 是角平分线所以CAD EAD ∠=∠在ACD ∆和AED ∆中AC AE = (已证)CAD EAD ∠=∠ (已证)AD AD = (公共边)所以AED ACD ∆≅∆ )(SAS所以CD ED =,B C AED ∠+︒=∠=∠2190 所以B B AED BED ∠∠-︒=∠∠+︒-︒=∠-︒=∠21902190180180)( 因为︒=∠+∠+∠180EDB BED B 所以B B B BED B BDE ∠-︒=∠-︒-∠-︒=∠-∠-︒=∠21902190180180)( 所以BDE BED ∠=∠所以BD BE =因为BE AE AB +=,AE AC =,BD BE =所以BD AC AB +=第10题:△ ABC 中,AC = BC ,∠C =20°,又点M 在BC 边上,且满足∠BAN =50°, ∠ABM =60°, 求∠NMB 。
答案:在AC 上取一点D ,使BA BD =因为︒=∠=20B BC AC ,所以︒=∠=∠80CBA CAB所以︒=︒-︒-︒=∠-∠-︒=∠505080180180BAN ABN ANB︒=︒-︒-︒=∠-∠-︒=∠406080180180ABM MAB AMB因为︒=∠=∠50BNA BAN所以BN AB =因为BN AB AB BD ==,所以BN BD =因为︒=∠-︒=∠202180CAB ABD所以︒=︒-︒=∠602080DBN所以BDN ∆是等边三角形所以DB DN DBN BDN =︒=∠=∠,60因为︒=︒-︒=∠-∠=∠206080ABM CBA CBM所以︒=∠+∠=∠40CBM C DMB因为︒=︒-︒=-∠=∠402060CBM DBN DBM所以DMB DBM ∠=∠所以DB DM =因为DB DN =,DB DM =D所以DN DM =因为︒=︒-︒-︒=∠-∠-︒=∠406080180180BDN ADB MDN 所以︒=︒=∠-︒=∠7021402180MDN DMN ︒=︒-︒=∠-∠=∠304070BMA NMA NMB如图所示,已知A,B 两点在直线L 的两旁,求作一点O,使直线L 平分∠AOB 。
答案:做A 关于直线l 的对称点A ’,连接A ’B 交直线l 于点O 。
第11题: 如图所示,在△ABC 中,AB =AC ,∠A =36︒,∠ABC 的平分线交AC 于点D ,∠ABD 的平分线交AC 于点E ,求证:AE =CD 。
(要求:不作辅助线)答案:证明:AC AB = ,︒=∠36A︒=∠=∠∴72C ABCBD 平分︒=∠∠72,ABC ABC︒=∠=∠∴36CBD ABDBE 平分︒=∠∠36,ABD ABD︒=∠=∠∴18DBE ABE︒=∠=∠36ABD ABD AD =∴︒=∠︒=∠72,36C DBC︒=∠=∠∴72BDC CBC BD =∴︒=∠︒=∠7254C EBC ,︒=∠=∠∴54BEC EBCBC EC =∴EC BC BD BD BD AD ===,,EC AD =∴ED EC ED AD -=-∴CD AE =∴第12题:如图,在锐角△ABC 的边上分别作等腰Rt △ABP 和等腰Rt △AQC ,其中∠APB 和∠AQC 都是直角,点M 是BC 中点,连PM 、QM 、PQ ,求证△PMQ为等腰直角三角形。
答案:证明:延长PM 至N ,使得MN=PM ,连接CN ,QN在MPB ∆和MNC ∆中 CM BM =CMN BMP ∠=∠MN MP =∴)(SAS MNC MPB ∆≅∆PA PB NC ==∴,CNM PM Β∠∠=°45=∠=∠=∠=∠=∠//∴ACQ CAQ PAB BAP PBA CN BP , °135==PAQ NCQ ∠∠∴ 在CNQ ∆和APQ ∆QA QC =PAQ NCQ ∠=∠PA NC =∴)(SAS APQ CNQ ∆≅∆PQ NQ =∴AQP CQN AQ CQ ∠=∠⊥,PQ NQ ⊥∴NPQ ∆∴是等腰直角三角形M 是PN 的中点PMQ ∆∴是等腰直角三角形第13题:如图,设△ABC 和△CDE 都是等边三角形,且∠EBD=62°,则∠AEB 的度数是_________.答案:122°解析:ABC ∆ 和CDE ∆都是等边三角形︒=∠=∠==∴60,,ECD ACB CD CE BC ACBCD BCE ECD BCE ACE ACB ∠+∠=∠∠+∠=∠,ACE BCD ∠=∠∴在ACE ∆和BCD ∆中BC AC =B C D A C E ∠=∠CD CE =BCD ACE ∆≅∆∴DBC CAE ∠=∠∴BAE EBC ∠-∠-∴°60=°62即BAE ABE ∠-︒=∠-︒-︒606062)( ︒=︒-︒+︒=∠+∠∴58626060BAE ABE︒=︒-︒=∠+∠-︒=∠∴12258180)(180BAE ABE AEB第14题:数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下回答:(1)特殊情况,探索结论当点E 为AB 的中点时,如图①,确定线段AE 与DB 的大小关系.请你直接写出结论:AE_________DB (填“˃”“<”或“=”)答案:DB AE =(2)特例启发,解答题目解:题目中.AE 与DB 的大小关系是:AE _______DB (填“>”“<”或“=”)理由如下:如图②,过点E 做EF ∥BC ,交AC 于点F (请你完成以下解答过程)答案:DB AE =解析:证明:ABC ∆ 为等边三角形,EF 平行BCAEF ∆∴是等边三角形,EF AF AE ==AF AE AC AB ==,FC BE =∴EF 平行BCECB FEC ∠=∠∴EC ED =ECB D ∠=∠∴FEC D ∠=∠∴在EDB ∆和ECF ∆中FC EB =CEF D ∠=∠CE DE =)(SAS ECF EDB ∆≅∆∴EF DB =∴EF DB =∴(3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,且ED=EC .若△ABC 边长为1,AE=2,求CD 的长(请你直接写出结果)答案:1或3第15题:①如图1,在正三角形ABC 中,M 、N 分别是AC 、AB 上的点,BM 与CN 相交于点O ,若∠BON =60︒,判断BM 和CN 的数量关系;答案:CN BM =解析:证明:ABC ∆ 是等边三角形︒=∠=∠=∴60,CAN BAM CA BC︒=∠60BON︒=∠+∠∴60BCN CBM︒=∠+∠60ACN BCNACN CBM ∠=∠∴ 在BCM ∆和CAN ∆中A B C M ∠=∠AC BC =A C N CB M ∠=∠)(ASA CAN BCM ∆≅∆∴CN BM =∴②如图2,在正方形ABCD 中,M 、N 分别是CD 、AD 上的点,BM 与CN 相交于O ,若∠BON =90︒判断BM 和CN 的数量关系;答案:CN BM =解析:易证CDN BCM ≅∆,则CN BM =③如图3,在正五边形ABCDE 中,M 、N 分别是CD 、DE 上的点,BM 与CN 相交于点O ,若∠BON =108︒,判断BM 和CN 的数量关系;答案:CN BM =易证CDN BCM ≅∆,则CN BM =④通过上述例子,对于正n (n ≥3)边形ABCDEF …(如图4所示),能否给出一个更一般的猜想?并证明其正确性;答案:CN BM =易证CDN BCM ≅∆,则CN BM =⑤如图5,在正五边形ABCDE 中,M 、N 分别是DE 、AE 上的点,BM 与CN 相交于点O ,∠BON =108︒时,试问结论BM =CN 是否还成立,若成立,请给予证明。