算法的基本结构及设计
C语言算法表示及结构化程序设计基本结构

C语言算法表示及结构化程序设计基本结构为了表示一个算法,可以用不同的方法。
常用的方法有:自然语言、传统流程图、结构化流程图和伪代码等。
1用自然语言表示算法自然语言就是人们日常使用的语言,可以是汉语、英语或其他语言。
用自然语言表示通俗易懂,但文字冗长,容易出现歧义,往往要根据上下文才能判断正确含义。
用自然语言来描述包含分支选择和循环算法不方便,花开两朵,各表一枝,同时只表达一个意思,这是自然语言表示的不足。
2用流程图表示算法流程图就是用一些图框来表示算法,直观形象,易于理解。
如:菱形框的作用是对一个给定的条件进行判断,根据给定的条件是否成立来判定如何执行其后的操作。
它有一个入口,两个或多个出口。
优于自然语言表示。
连接点小圆圈用于将画在不同地方的流程线连接起来,实际上表示一个对象,只是画不下オ分开来画或为了清晰表示而单独绘制,用连接点可以避免流程线出现交叉或过长,不利于阅读。
用流程图表示算法直观形象,比较清楚地显示出各个框之间的逻辑关系。
这种流程图占用篇幅较多,一条路走到头,与复杂的实际情况表示有差距有不足,尤其当算法比较复杂时就费时费力。
3.传统流程图的弊端与结构化设计的基本结构传统的流程图用流程线指出各框的执行顺序,对流程线的使用没有严格限制,不受限制地使流程随意地转来转去,使流程图变得毫无规律,阅读时要花很大精力去追踪流程,使人难以理解算法的逻辑。
为了提高算法的质量,使算法的设计和阅读方便,不允许无规律地使流程随意转向,只能顺序地进行下去。
但是,算法上难免会包含一些分支和循环,而不可能全部由一个个顺序框组成。
为了解决这个问题,人们规定出几种基本结构,然后由这些基本结构按一定规律组成一个算法结构。
4.用3种基本结构作为表示一个结构化算法的基本单元。
(1)顺序结构。
比如A 和B 两个框是顺序执行的,在执行完A 框所指定的操作后,接着执行B 他所指定操作。
(2)选择结构。
又称选取结构或分支结构,此结构中必包含一个判断框。
程序框图及算法的基本逻辑结构

程序框图与算法的根本逻辑构造教学目标能够正确说出各种程序框图及流程线的功能与作用能够画出顺序构造、条件构造、循环构造的流程图能够设计简单问题的流程图教学重点程序框图的画法.教学难点程序框图的画法.课时安排4课时教学过程 第1课时 程序框图及顺序构造图形符号名称 功能终端框〔起止框〕 表示一个算法的起始和完毕输入、输出框 表示一个算法输入和输出的信息处理框〔执行框〕 赋值、计算 判断框 判断*一条件是否成立,成立时在出口处标明“是〞或“Y 〞;不成立时标明“否〞或“N 〞流程线连接程序框 连接点 连接程序框图的两局部三种逻辑构造可以用如下程序框图表示:顺序构造 条件构造 循环构造应用例如例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数〞的算法.解:程序框图如下:变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯ 的值.例2 一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.〔三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---〕,其中p=2c b a ++.这个公式被称为海伦—秦九韶公式〕 算法步骤如下:第一步,输入三角形三条边的边长a,b,c.第二步,计算p=2c b a ++.第三步,计算S=))()((c p b p a p p ---.第四步,输出S.程序框图如下:点评:很明显,顺序构造是由假设干个依次执行的步骤组成的,它是最简单的逻辑构造,它是任何一个算法都离不开的根本构造.顺序构造可以用程序框图表示为变式训练 下列图所示的是一个算法的流程图,a 1=3,输出的b=7,求a 2的值.解:根据题意221a a +=7, ∵a 1=3,∴a 2=11.即a 2的值为11.随堂练习 如下给出的是计算201614121++++ 的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10.第2课时 条件构造 教学目标1、认识条件构造2、能独立画出两种条件构造图示教学重点: 直到型构造、当型构造教学难点: 直到型构造、当型构造互化学习对象条件构造:先根据条件作出判断,再决定执行哪一种操作的构造就称为条件构造〔或分支构造〕,如图1所示.执行过程如下:条件成立,则执行A 框;不成立,则执行B 框.图1 图2应用例如例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法步骤如下:第一步,输入3个正实数a ,b ,c.第二步,判断a+b>c ,b+c>a ,c+a>b 是否同时成立.假设是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:例2 设计一个求解一元二次方程a*2+b*+c=0的算法,并画出程序框图表示.解决这一问题的算法步骤如下:第一步,输入3个系数a ,b ,c.第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.假设是,则计算p=ab 2-,q=a 2∆;否则,输出“方程没有实数根〞,完毕算法.第四步,判断Δ=0是否成立.假设是,则输出*1=*2=p;否则,计算*1=p+q,*2=p-q,并输出*1,*2.程序框图如下:随堂练习1、设计算法判断一元二次方程a*2+b*+c=0是否有实数根,并画出相应的程序框图.相应的程序框图如右:2、〔1〕设计算法,求a*+b=0的解,并画出流程图.程序框图如下:作业:设计算法,找出输入的三个不相等实数a、b、c中的最大值,并画出流程图.解:算法步骤:第一步,输入a,b,c的值.第二步,判断a>b是否成立,假设成立,则执行第三步;否则执行第四步.第三步,判断a>c是否成立,假设成立,则输出a,并完毕;否则输出c,并完毕.第四步,判断b>c是否成立,假设成立,则输出b,并完毕;否则输出c,并完毕.程序框图如下:第3课时循环构造教学目标1、认识循环构造2、能独立画出两种循环构造图示3、能把直到型循环改写成当型构造,反之亦然教学重点: 直到型构造、当型构造教学难点: 直到型构造、当型构造互化学习对象在一些算法中,经常会出现从*处开场,按照一定的条件反复执行*些步骤的情况,这就是循环构造.反复执行的步骤称为循环体.循环构造有两种形式:当型循环构造和直到型循环构造.当型循环构造直到型循环构造直到型循环构造是程序先进入循环体,然后对条件进展判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环构造是在每次执行循环体前,先对条件进展判断,当条件满足时,执行循环体,否则终止循环.应用例如例1 设计一个计算1+2+……+100的值的算法,并画出程序框图.第一步,令i=1,S=0.第二步,假设i≤100成立,则执行第三步;否则,输出S,完毕算法.第三步,S=S+i.第四步,i=i+1,返回第二步.当型循环直到型循环变式训练例1 设计框图实现1+3+5+7+…+131的算法.第一步,赋初值i=1,sum=0.第二步,sum=sum+i ,i=i+2.第三步,如果i ≤131,则反复执第二步;否则,执行下一步.第四步,输出sum.第五步,完毕.程序框图如右图知能训练设计一个算法,求1+2+4+…+249的值,并画出程序框图.第4课时 程序框图的画法应用例如例1 结合前面学过的算法步骤,利用三种根本逻辑构造画出程序框图,表示用“二分法〞求方程*2-2=0〔*>0〕的近似解的算法.算法分析:〔1〕算法步骤中的“第一步〞“第二步〞和“第三步〞可以用顺序构造来表示〔如下列图〕:〔2〕算法步骤中的“第四步〞可以用条件构造来表示〔如下列图〕.在这个条件构造中,“否〞分支用“a=m 〞表示含零点的区间为[m ,b ],并把这个区间仍记成[a ,b ];“是〞分支用“b=m 〞表示含零点的区间为[a,m ],同样把这个区间仍记成[a ,b ].〔3〕算法步骤中的“第五步〞包含一个条件构造,这个条件构造与“第三步〞“第四步〞构成一个循环构造,循环体由“第三步〞和“第四步〞组成,终止循环的条件是“|a-b|<d 或f(m)=0”.在“第五步〞中,还包含由循环构造与“输出m 〞组成的顺序构造〔如下列图〕. 〔4〕将各步骤的程序框图连接起来,并画出“开场〞与“完毕〞两个终端框,就得到了表示整个算法的程序框图〔如下列图〕.解:将实际问题转化为数学模型,该问题就是要求1+2+4+……+263的和.程序框图如下:点评:对于开放式探究问题,我们可以建立数学模型〔上面的题目可以与等比数列的定义、性质和公式联系起来〕和过程模型来分析算法,通过设计算法以及语言的描述选择一些成熟的方法进展处理.例3 乘坐火车时,可以托运货物.从甲地到乙地,规定每*火车客票托运费计算方法是:行李质量不超过50 kg 时按0.25元/kg ;超过50 kg 而不超过100 kg 时,其超过局部按0.35元/kg ;超过100 kg 时,其超过局部按0.45元/kg .编写程序,输入行李质量,计算出托运的费用.分析:此题主要考察条件语句及其应用.先解决数学问题,列出托运的费用关于行李质量的函数关系式.设行李质量为* kg ,应付运费为y 元,则运费公式为: y=⎪⎩⎪⎨⎧>-+⨯+⨯≤<-+⨯≤<,100),100(45.05035.05025.0,10050),50(35.05025.0,500,25.0x x x x x x整理得y=⎪⎩⎪⎨⎧>-≤<-≤<.100,1545.0,10050,535.0,500,25.0x x x x x x要计算托运的费用必须对行李质量分类讨论,因此要用条件语句来实现.解:算法分析:第一步,输入行李质量*.第二步,当*≤50时,计算y=0.25*,否则,执行下一步.第三步,当*≤100,计算y=0.35*-5,否则,计算y=0.45*-15.第四步,输出y.程序框图如下:课堂小节〔1〕进一步熟悉三种逻辑构造的应用,理解算法与程序框图的关系.〔2〕根据算法步骤画出程序框图.作业习题1.1B组1、2.设计感想本节是前面内容的概括和总结,在回忆前面内容的根底上,选择经典的例题,进展了详尽的剖析,这样降低了学生学习的难度.另外,本节的练习难度适中,并且多为学生感兴趣的问题,这样为学生学好本节内容作好充分准备,希望大家喜欢这一节课.。
算法框图的基本结构及设计

03
算法框图的设计原则
清晰性
总结词
确保算法框图的逻辑清晰,易于理解。
VS
详细描述
算法框图的设计应遵循清晰的原则,使得 读者能够快速理解算法的逻辑流程。每个 节点和线条都应具有明确的含义,避免使 用模糊或含糊不清的符号。同时,应尽量 减少不必要的细节,突出关键信息,使整 个框图简洁明了。
完整性
总结词
基于算法框图的流程分析,可以制定出更有效的优化 方案。
06
算法框图的设计实例
排序算法的框图设计
01 02 03
冒泡排序
通过重复地遍历待排序的数列,一次比较两个元素,如果 他们的顺序错误就把他们交换过来,遍历数列的工作是重 复地进行直到没有再需要交换,也就是说该数列已经排序 完成。
选择排序
在未排序的序列中找到最小(或最大)的元素,存放到排 序序列的起始位置,然后再从剩余未排序的元素中继续寻 找最小(或最大)元素,然后放到已排序序列的末尾。以 此类推,直到所有元素均排序完毕。
插入排序
将待排序的元素插入到已经排好序的有序序列中,从而得 到一个新的、个数加一的有序序列,算法适用于少量数据 的排序,时间复杂度为O(n^2)。
分治算法的框图设计
归并排序
采用分治法的思想,将待排序的序列分成两个子序列,分别对子序列进行排序,然后将有序的子序列合并成一个 有序的序列。
二分查找
将待查找的序列分成已排序和未排序两部分,每次从未排序部分取中间元素与已排序部分进行比较,如果中间元 素大于已排序部分的最大值,则未排序部分中大于中间元素的部分不需要再考虑;如果中间元素小于已排序部分 的最大值,则未排序部分中小于中间元素的部分不需要再考虑。
算法框图的基本结构及设计
1.1.2算法的基本结构之顺序结构

输出框
结束框
结束
画出:已知三角形的三 边长a,b,c,求它的面积 的程序框图.
开始
输入a,b,c
abc p 2
S
p( p a)( p b)( p c)
输出S 结束
返回
已知三角形三边长分别为a,b,c,则三角 形的面积为
S
p( p a)( p b)( p c)
算法分析:
第一步:判断n是否等于2. 若n=2,则n是质数;
若n>2,则执行第二步. 第二步:依次检验2~(n-1)这些整数是不是n的 因素,即是不是整除n的数.若有这样的数,则n不是 质数;若没有这样的数,则n是质数. 为了使算法的程序或步骤表达得更为直观,我 们更经常地用图形方式来表示它.
开始 一般用i=i+1 表示. 输入n i=2
语句A
语句B
A
B
输入n
i=2
示意图
课本图1.1-3
顺序结构在程序框图中的体现就是用流 程线将程序框自上而下地连接起来,按顺 序执行算法步骤。如在示意图中,A框和B 框是依次执行的,只有在执行完A框指定的 操作后,才能接着执行B框所指定的操作。
3.画顺序结构程序框图时注意事项 (1)在程序框图中,开始框和结束框不可少; (2)在算法过程中,第一步输入语句是必不 可少的; (3)顺序结构在程序框图中的体现就是用流 程线将程序框自上而下地连接起来,按顺序 执行算法步骤.
开始
输入系数a,b,c
b 2 4ac 计算
计算
输出X1、X2
结束
b x1 2a b x2 2a
例、写出图1、图2中程序框图的运行结果:
开始
输入a,b a=2 b=4
算法(流程图)的三种基本结构

功能
表示一个算法的 开始和结束
表示一个算法的 输入和输出信息
赋值,执行计算语句, 结果的传送
表示判断某一个条件 是否成立
表示执行步骤的路径 流程进行的方向
程序的三种结构
程序的三种结构
顺序结构
选择结构
循环结构
顺序结构
各操作是按先后顺序执行的。是最简单的一种基本结构。
A
B
其中A和B两个框是顺序执行的。即在完成A框所指定 的操作后,必然接着执行B框所指定的操作,
没有判断框和回指的流程线。
选择结构
又称分支结构。根据是否满足给定条件而从两组操作中选择执行 一种操作。至少有一个判断框,没有回指的流程线。 入口
成立
不成立
P
A
B
出口
选择结构
某一部分的操作可以为空操作。 入口成立Fra bibliotek不成立
P
A
出口
选择结构
某一部分的操作可以为空操作。 入口
成立
不成立
P
B
出口
再来看一个“求较小数”的流程图和程序代码。
循环结构
又称重复结构。用来描述反复执行某一部分算法的操作。 循环结构又分为直到型结构和当型结构。 有回指的流程线
当型结构
条件成立时,反复执行某一部分的操作,当条件不成立时退出 环。 特点:A可能一次也没执行到。 入口
不成立
P
成立
A
出口
直到型结构
先执行某一部分的操作,再判断条件,当条件成立时,退出循 环;条件不成立时,继续循环。
2.用表格描述算法 表格是一种常用的事物关联结构描述方法,在程 序设计中,用来表现规律化算法的一种方式,适合表 达模块关系、数据传递关系、函数变量关系等内容。
算法框图的基本结构及设计-顺序结构与选择结构

19
写出流程图(如下图)的运行结果 120
开始 t=1 t=t×1 t=t×2 t=t×3 t=t×4 t=t×5 输出t 结束
.
20
五、课后巩固:
作业:课本P88 练习1, 2
出的位置。
(3)处理框用“ ”表示,用来表示计算,赋值等处理操作,
有一个入口和一个出口。
(4)判断框用“
”表示,用来判断给出的条件是否成立,根
据判断结果决定后面的操作。判断框有一个入口和两个出口,它是 惟一的具有两个出口的框图符号。在出口处要分别标明“是”与
“否”(也可用“Y”与“N”),表示条件的成立与否。
一个算法都离不开的最简单,最基本的结构。
5、选择结构也叫
根据 条件 做出
分支结构
判断
或 条件结构
,是先
,再决定执行哪一种操作的结构。
6、完成下面的表格;
图形符号 名称 终端框 (起止框) 功能
表示一个算法的起始和结束
表示输入和输出的信息 赋值和计算 用于判断某一个条件是否成立 连接流程框,指明程序方向
1, y 0 . 01 x , 50 , x 100 100 x 5000 x 5000
y=1
Y
输入x的 值
x 100
N
Y N
x 5000
ห้องสมุดไป่ตู้
y=0.01x
y=50
输 出
y
结束
三、课堂小结: 1、算法框图的概念 2、各种程序框的功能 3、顺序结构和选择结构的算法框图
输入、输出框
处理框 (执行框) 判断框 流程线
关于程序框的使用说明:
(1)起止框用“ ”表示,是任何流程图都不可缺少的,它表 明程序的开始和结束,表示开始时只有一个出口,表示结束时只有
算法的三种基本逻辑结构和框图表示-课件

例1.解一元二次方程ax2+bx+c=0.
S1 计算△=b2-4ac;
S2 如果△<0,则原方程无实数解;
否则(△≥0), x1=
b b2 4ac,
2a
x2= b b2 4ac ;
1.选择结构的概念: 先根据条件作出判断,再决定执行哪一 种操作的结构称为选择结构. 2.理解选择结构的逻辑以及框图的规范 画法,选择结构主要用在判断、分类或 分情况的问题解决中.
算法
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021
开始
输入x 1,y 1,x 2,y 2
是 输出 斜率不存在
判断x 1=x 2
否 y 2-y 1
k= x 2-x 1ቤተ መጻሕፍቲ ባይዱ
输出k
结束
例4、设计求一个数x的绝对值的算法, 并画出相应的程序框图。
解:算法如下: S1:输入x; S2:如果x≥0,则y=x,
否则, y =-x; S3:输出y 。
开始 输入x
开始 输入x
x<250
是
否
否
x<500
是 x=x*0.95 是
否
x<1000
x=x*0.9 x=x*0.85
输出x 结束
1.如果考生的成绩大于或等于60分,则输出“及
格”,否则输出“不及格”,用流程图表示这
一算法的过程。
开始
输入x
Y
x≥60
N
输出“及格”
3、三种基本逻辑结构和框图

P P
P P
(1)
(2) 图3
条件分支结构理解: (1)条件分支结构是根据判断结果进行不同的处理的一种算法结构. (2)条件分支结构中至少有一个判断框,判断框是条件分支结构中的一个主 要部件. (3)条件分支结构中根据对条件 P 的判断决定执行哪一分支,一定要执行 “是”或“否”中的一个分支,不能两个都执行,也不能两个都不执行. (4)一个判断框有两个出口,但是一个条件分支只有一个出口,注意区分. (5)条件分支结构的两个分支中,有一个可以是空的,如图 3(2) ,但是不 能两个都空. (6)当一个算法中有多个判断框时,称作“条件嵌套” ,可以画成如图 4.
否则执行 S3. S3 如果 b 0 , 则输出 “方 无实根” ; 否则输出 “方程的根 是全体实数”. (2)程序框图:如图 6
b0
输 出
x
输出“方程 无实根”
结束 图6 注:在本题中用到两个判断框,这就是“条件嵌套” ,根据实际情况也可以做更 多的嵌套. 循环结构: 根据指定条件决定是否重复执行一条或多条指令的控制结构称为 循环结构. 循环结构示意图:如图 7
i 10
是
S S i i i 1
i 11
是 输出 S 结束
S S i i i 1
(1)
(2) 图8
小结:
反 馈 练 习 教 学 后 记
课题
算法的三种基本逻辑结构和框图表示
课时 课型
1 新
教 学 目 标
知识与技能: 理解算法的程序框图的三种基本逻辑结构:顺序结构、条件分支结构、循环结 构,并能结合三种逻辑结构设计简单的程序框图。
过程方法与能力: 通过设计程序框图来体会解决问题的过程,培养学生的逻辑思维能力及语言表 达能力。 情感态度与价值观: 通过学生参与设计程序框图的过程,培养学生的合作意识,增进学生学习数学的 信心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 堂 小 结
课 堂 小 结
• 由若干个依次执行 的处理步骤组成的 逻辑结构。这是任 何一个程序都离不 开的基本结构。
• 在一个算法中,经常 会遇到一些条件的判 断,算法的流程根据 条件是否成立有不同 的流向,这种算法结 构称为条件结构。
A B
真 步骤甲
条件
假
步骤乙
Tornado_lwp设计
2.1 顺序结构与选择结构 2.2 变量与赋值
2.3 循环结构
程序框图
算法框图 流程图
顺序结构与选择结构
是一种用规定的图形、指向线
及文字说明来准确、直观地表
示算法的图形。
起、止框
顺序结构与选择结构
流 程 图 常 用 图 形
输入、输出框
处理框
判断框 流程线
顺序结构与选 择结构
开始
算法分析: 输入x
设计程序框图
第一步,判断x是否大于0, 若x>0,则x的绝对值等于x,令m=x; 否 x>0 若x≤0,则执行第二步. 是 第二步, x的绝对值等于-x, 令m=-x; m=x m=-x 第三步,输出m.
输出m 结束
选 择 结 构
算法框图
• 由若干个依次执行 的处理步骤组成的 逻辑结构。这是任 何一个程序都离不 开的基本结构。
1, x 0 y 0, x 0 1, x 0
,
设计程序框图求对于任意给定x值,求y的值。
流程图
图形符号 名称
终端框(起止框) 输入、输出框 处理框(执行框) 判断框 流程线 连接点
功能
表示一个算法的起始和结束 表示输入和输出的信息 赋值和计算 用于判断,有两个出口 连接流程框,指明方向 连接程序框图的两个部分
练习2 关于框图的图形符号的理解,正确的有___
流程图的功能
①任何一个框图都必须有起止框;
②输入框只能放在开始框后,输出框只能放在结 束框之前;
③判断框是唯一具有超过一个退出点的图形符号;
算法框图
④对于一个程序来说,判断框内的条件是唯一的.
探 究
顺序结构与选 择结构
尺规作图,确定线段AB的一个5等分点
顺序结构 选择结构
• 在一个算法中,经常 会遇到一些条件的判 断,算法的流程根据 条件是否成立有不同 的流向,这种算法结 构称为条件结构。
A B
真 步骤甲
条件
假
步骤乙
1.写出下列程序的运行结果. (1)图(1)中,输出S=__ (2) 图(2)中,若R=8,则a=___
开始 顺序结构
开始 输入R
b R 2
2、已知梯形的两底和高分别是a、b、h 求梯形的面积。 开 始
输入x = 2 计算y =3x-1 输出 y
结 束
先 写 算 法 , 再 画 流 程 图
开 始
输入a,b,h
计算s ( a 2b ) h
输出s
结 束
顺序结构与选 择结构
例题2 任意给定一个实数x,设计一个算法, 求x的绝对值,并画出程序框图.
图形符号
名称
功能
终端框(起止框)
表示一个算法的起始和结束
输入、输出框
表示输入和输出的信息
流程图的功能
处理框(执行框)
赋值和计算
判断框
用于判断,有两个出口
流程线
连接流程框,指明方向
算法框图
连接点 连接程序框图的两个部分
顺序结构与选 择结构
练习1 下列功能中处理框没有的是( ) A.赋值 C.判断 B.计算 D.以上都不对
输入a,b
a=2
课堂练习:
b=4
选择结构
S b a a b
a=2b
输出a 结束 图(2)
输出S 结束 图(1)
2.下图的作用是判断输入数x的奇偶性,则②处应为 ____
开始
输入x 顺序结构 R=x除以2的余数 课堂练习:
选择结构
否
②
是
输出“x是奇数”
输出“x是偶数”
结束
补充作业:
已知函数
F C E
G
D
P
A
算法思想
M
B
算法框图
作法:如图 1、过A作射线AP 2、在射线AP上任取一点C,得线段AC 3、在射线AP上作线段AC=CE=EF=FG=GD 4、连接BD, 过C作 CM // BD ,交AB 于 M 5、M为所作的AB的一个 5 等分点
开始 顺序结构与选 择结构
算法流图
从A出发作一条射线
在射线上取点C得线段AC
流程图的画法
顺
在射线上作CE=EF=FG =GD=AC ,并连接BD
A
B
序 结 构
过C作BD的平行线交AB于 M , 即得AB的一个5等分点 算法框图 结束
画出下列问题的算法流程图 1、求当 x = 2 时 ,y = 3x – 1 的函数值。
顺 序 结 构