第6章 粒子群优化算法
第6章粒子群优化算法

第6章粒子群优化算法PSO算法的基本原理是通过模拟粒子在空间中的移动,从而找到最优解。
每个粒子代表一个可能的解,并根据自身的经验和群体的经验进行。
粒子的速度和位置的更新使用以下公式:v(t+1) = w * v(t) + c1 * rand( * (pbest - x(t)) + c2 *rand( * (gbest - x(t))x(t+1)=x(t)+v(t+1)其中,v(t)代表粒子的当前速度,x(t)代表粒子的当前位置,w是惯性权重,c1和c2是学习因子,rand(是一个0到1之间的随机数,pbest 是粒子自身的最佳位置,gbest是整个群体的最佳位置。
PSO算法的过程如下:1.初始化粒子的位置和速度。
2.计算每个粒子的适应度值。
3. 更新每个粒子的pbest和gbest。
4.根据公式更新每个粒子的速度和位置。
5.重复步骤2到4,直到达到终止条件。
PSO算法有几个重要的参数需要设置:-群体大小:确定PSO算法中粒子的数量。
较大的群体大小可以增加整个空间的探索能力,但也增加了计算复杂度。
-惯性权重:控制粒子速度变化的因素。
较大的惯性权重可以增加粒子的飞行距离,但可能导致过程陷入局部最优解。
-学习因子:用于调节个体经验和群体经验的权重。
c1用于调节个体经验的权重,c2用于调节群体经验的权重。
较大的学习因子可以增加粒子的探索能力,但也可能增加时间。
PSO算法的优点是简单、易实现,收敛速度较快,对于多维、非线性、离散等问题具有良好的适应性。
然而,PSO算法也存在一些缺点,如易陷入局部最优解、对参数的敏感性等。
总之,粒子群优化算法是一种基于群体智能的优化算法,在求解复杂问题方面具有出色的性能。
它的基本原理是通过模拟粒子的移动来最优解,利用个体经验和群体经验进行自适应。
PSO算法在多个领域都有成功的应用,可以帮助解决实际问题。
粒子群优化算法 程序

粒子群优化算法程序粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等生物群体的行为,用于解决各种优化问题。
下面我将从程序实现的角度来介绍粒子群优化算法。
首先,粒子群优化算法的程序实现需要考虑以下几个关键步骤:1. 初始化粒子群,定义粒子的数量、搜索空间的范围、每个粒子的初始位置和速度等参数。
2. 计算适应度,根据问题的特定适应度函数,计算每个粒子的适应度值,以确定其在搜索空间中的位置。
3. 更新粒子的速度和位置,根据粒子的当前位置和速度,以及粒子群的最优位置,更新每个粒子的速度和位置。
4. 更新全局最优位置,根据所有粒子的适应度值,更新全局最优位置。
5. 终止条件,设置终止条件,如最大迭代次数或达到特定的适应度阈值。
基于以上步骤,可以编写粒子群优化算法的程序。
下面是一个简单的伪代码示例:python.# 初始化粒子群。
def initialize_particles(num_particles, search_space):particles = []for _ in range(num_particles):particle = {。
'position':generate_random_position(search_space),。
'velocity':generate_random_velocity(search_space),。
'best_position': None,。
'fitness': None.}。
particles.append(particle)。
return particles.# 计算适应度。
def calculate_fitness(particle):# 根据特定问题的适应度函数计算适应度值。
particle['fitness'] =evaluate_fitness(particle['position'])。
粒子群优化算法

粒子群优化算法算法介绍 v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数.c1, c2 是学习因子. 通常 c1 = c2 = 2. 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。
遗传算法和PSO的比较人工神经网络和PSO 这里用一个简单的例子说明PSO训练神经网络的过程。
这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。
优化算法-粒子群优化算法

步骤四:对于粒子的每一维,根据式(1)计算得到一个随机点 的位置。
步骤五:根据式(2)计算粒子的新的位置。
步骤六:判断是否满足终止条件。
粒子群优化算法
PSO算法在组合优化问题中的应用
典型的组合优化问题:TSP
粒子群优化算法
量子行为粒子群优化算法的基本模型
群智能中个体的差异是有限的,不是趋向于无穷大的。群体的聚 集性是由相互学习的特点决定的。
个体的学习有以下特点: 追随性:学习群体中最优的知识
记忆性:受自身经验知识的束缚
创造性:使个体远离现有知识
粒子群优化算法
聚集性在力学中,用粒子的束缚态来描述。产生束缚态的原因是 在粒子运动的中心存在某种吸引势场,为此可以建立一个量子化 的吸引势场来束缚粒子(个体)以使群体具有聚集态。
描述为: 给定n 个城市和两两城市之间的距离, 求一条访问各城市
一次且仅一次的最短路线. TSP 是著名的组合优化问题, 是NP难题, 常被用来验证智能启发式算法的有效性。
vid (t 1) wvid (t) c1r1 pid (t) xid (t) c2r2( pgd (t) xid (t))
xid (t 1) xid (t) vid (t 1)
粒子群优化算法
w 惯性权重 可以是正常数,也可以是以时间为变量的线性或非线性
正数。
粒子群优化算法
通常动态权重可以获得比固定值更好的寻优结果,动态权重可以在 pso搜索过程中呈线性变化,也可以根据pso性能的某个测度函数 而动态改变,目前采用的是shi建议的随时间线性递减权值策略。
粒子群优化算法
粒子群算法基本原理

粒子群算法基本原理粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,模拟了鸟群或鱼群等生物群体在自然界中求解问题的行为。
粒子群算法是一种无约束优化算法,可以用于求解各种优化问题。
粒子群算法的基本原理是通过模拟粒子在解空间中的过程来寻找最优解。
每个粒子表示了一个潜在的解,其位置和速度表示了解的状态和速度。
整个粒子群可以看作是一个多维解空间中的群体,每个粒子都具有一个解向量和速度向量,通过不断调整速度和位置来寻找最优解。
1.初始化粒子群:根据问题的维度和约束条件,随机初始化粒子的位置和速度。
其中位置表示解向量,速度表示方向和速度。
2.计算粒子适应度:根据问题的定义,计算每个粒子的适应度。
适应度函数根据问题的不同而变化,可以是目标函数的取值或其他综合评价指标。
3.更新粒子速度和位置:通过利用粒子当前的位置、速度和历史最优解来更新粒子的速度和位置。
速度的更新过程包括两部分,第一部分是加速度项,其大小与粒子所处位置与个体最优解、群体最优解的距离有关;第二部分是惯性项,保持原有的速度方向并控制的范围。
位置的更新通过当前位置和速度得到新的位置。
4.更新个体最优解和群体最优解:将每个粒子的适应度与其历史最优解进行比较并更新。
个体最优解是粒子自身到的最优解,群体最优解是所有粒子中的最优解。
5.判断停止条件:根据预定的停止条件判断是否终止算法。
停止条件可以是达到最大迭代次数、适应度值达到一定阈值或范围满足一定条件等。
6.返回最优解:将群体最优解或个体最优解作为最终结果返回。
粒子群算法通过不断地更新粒子的速度和位置,通过粒子之间的信息交流和协作来找到最优解。
在算法的早期阶段,粒子的范围较大,有较高的探索性;随着的进行,粒子逐渐聚集在最优解周围,并逐渐减小范围,增强了局部的能力。
这种全局和局部的结合使得粒子群算法能够更好地求解多峰优化问题。
粒子群算法的优点是简单易实现、全局能力强,对于非线性、非凸性、多峰性问题有很好的适应性。
多目标最优化的粒子群算法

多目标最优化的粒子群算法多目标最优化问题是指在一个问题中同时优化多个目标函数,这些目标函数通常是相互冲突的,无法通过改变一个目标而不影响其他目标。
粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,它受到鸟群觅食行为的启发,通过模拟鸟群中的个体在解空间中的和信息交流来寻找问题的最优解。
在多目标最优化问题中,粒子群优化算法也可以被扩展为多目标优化版本,即多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization, MOPSO)。
多目标粒子群优化算法的核心思想是利用非支配排序将种群中的个体划分为多个不同的前沿(Pareto Front),每个前沿上的解都是最优解的候选。
根据个体之间的支配关系和拥挤度,确定前沿上的个体,并通过粒子群算法进行和优化。
为了保持种群的多样性,采用了一个外部存档来存储过去迭代中的非支配解,以避免陷入局部最优。
多目标粒子群优化算法的步骤如下:1.初始化种群:设定种群规模、粒子的初始位置和速度,以及其他算法参数。
2.非支配排序:根据个体之间的支配关系对种群中的解进行排序。
3.拥挤度计算:计算种群中个体的拥挤度,通过衡量个体周围解的密度来保持前沿上的均匀分布。
4.外部存档更新:根据非支配排序和拥挤度计算结果,更新外部存档中的非支配解。
5.速度和位置更新:根据粒子群算法的速度和位置更新规则,更新每个粒子的速度和位置。
6.达到停止条件:判断是否满足停止条件,如达到最大迭代次数或找到满意的近似解。
7.重复步骤2至6,直到满足停止条件。
多目标粒子群优化算法相比单目标版本有以下几个特点:1.非支配排序:非支配排序用于划分种群中的解为多个前沿。
支配关系的判断通常使用帕累托支配方法。
2.拥挤度计算:拥挤度计算用于保持前沿上的均匀分布,避免解集中在其中一区域。
3.外部存档更新:外部存档用于存储过去迭代中的非支配解,保证多样性。
粒子群优化算法论文

粒子群优化算法论文粒子群优化算法摘要近年来,智能优化算法—粒子群算法(particle swarm optimization,简称PSO)越来越受到学者的关注。
粒子群算法是美国社会心理学家JamesKennedy 和电气工程师Russell Eberhart在1995年共同提出的,它是受到鸟群社会行为的启发并利用了生物学家Frank Heppner的生物群体模型而提出的。
它用无质量无体积的粒子作为个体,并为每个粒子规定简单的社会行为规则,通过种群间个体协作来实现对问题最优解的搜索。
由于算法收敛速度快,设置参数少,容易实现,能有效地解决复杂优化问题,在函数优化、神经网络训练、图解处理、模式识别以及一些工程领域都得到了广泛的应用。
PSO是首先由基于不受约束的最小化问题所提出的基于最优化技术。
在一个PSO系统中,多元化解决方案共存且立即返回。
每种方案被称作“微粒”,寻找空间的问题的微粒运动着寻找目标位置。
一个微粒,在他寻找的时间里面,根据他自己的以及周围微粒的经验来调整他的位置。
追踪记忆最佳位置,遇到构建微粒的经验。
因为那个原因,PSO占有一个存储单元(例如,每个微粒记得在过去到达时的最佳位置)。
PSO系统通过全局搜索方法(通过)搜索局部搜索方法(经过自身的经验),试图平衡探索和开发。
粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性。
关键词:粒子群优化算法;粒子群;优化技术;最佳位置;全局搜索;搜索精度Particle swarm optimization (PSO) algorithm is a novel evolutionary algorithm. It is a kind of stochastic global optimization technique. PSO finds optimal regions of complex search spaces through the interaction of individualsin a population of particles. The advantages of PSO lie in simple and powerful function. In this paper , classical particle swarm optimization algorithm , thepresent condition and some applications of the algorithms are introduced , and the possible research contents in future are also discussed.PSO is a population-based optimization technique proposed firstly for the above unconstrained minimization problem. In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each solution called a ‘‘particle’’, flies in the problem sear ch space looking for the optimal position to land. A particle, as time passes through its quest, adjusts its position according to its own ‘‘experience’’ as well as the experience of neighboring particles. Tracking and memorizing the best position encountered build particle_s experience. For that reason, PSO possesses a memory (i.e. every particle remembers the best position it reached during the past). PSO system combines local search method(through self experience) with global search methods (through neighboring experience), attempting to balance explorationand exploitation.Abstract Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community.But the standard particle swarm optimization is used resulting in slow after convergence, low search precision and easily leading to local minimum. A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision. The obtained results showed the algorithm computation precision and the astringency are improved,and local minimum is avoided. The experimental results of classic functions show that the improved PSO is efficientand feasible.Key words :particle swarm optimization algorithms ; unconstrained minimization problem;the bestposition;global search methods; the search precision目录一.引言二.PSO算法的基本原理和描述(一)概述(二)粒子群优化算法(三)一种改进型PSO算法——基于遗传交叉因子的粒子群优化算法简介1 自适应变化惯性权重2 交叉因子法(四) PSO与GA算法的比较1 PSO算法与GA算法2 PSO算法与GA算法的相同点3 PSO算法与GA算法的不同点三.PSO算法的实现及实验结果和仿真(一)基本PSO算法(二)算法步骤(三)伪代码描述(四)算法流程图(五)六个测试函数的运行结果及与GA算法结果的比较四结论五. 致谢六.参考文献一、引言混沌是一种有特点的非线形系统,它是一种初始时存在于不稳定的动态状态而且包含着无限不稳定时期动作的被束缚的行为。
粒子群优化方法

粒子群优化方法(原创版3篇)目录(篇1)一、粒子群优化算法的概念和原理二、粒子群优化算法的参数设置三、粒子群优化算法的应用实例四、粒子群优化算法的优缺点正文(篇1)一、粒子群优化算法的概念和原理粒子群优化算法(Particle Swarm Optimization,简称 PSO)是一种基于群体搜索的优化算法,它建立在模拟鸟群社会的基础上。
在粒子群优化中,被称为粒子”(particle)的个体通过超维搜索空间流动。
粒子在搜索空间中的位置变化是以个体成功地超过其他个体的社会心理意向为基础的,因此,群中粒子的变化是受其邻近粒子(个体)的经验或知识影响。
二、粒子群优化算法的参数设置在应用粒子群优化算法时,需要设置以下几个关键参数:1.粒子群规模:粒子群规模是指优化过程中粒子的数量。
对种群规模要求不高,一般取 20-40 就可以达到很好的求解效果,不过对于比较难的问题或者特定类别的问题,粒子数可以取到 100 或 200。
2.粒子的长度:粒子的长度由优化问题本身决定,就是问题解的长度。
粒子的范围由优化问题本身决定,每一维可以设定不同的范围。
3.惯性权重:惯性权重是粒子群优化算法中的一个重要参数,它影响了粒子在搜索空间中的移动方式。
惯性权重的取值范围为 0-1,当惯性权重接近 1 时,粒子移动方式更接近于粒子群优化算法的原始模型,当惯性权重接近 0 时,粒子移动方式更接近于随机搜索。
4.学习因子:学习因子是粒子群优化算法中另一个重要参数,它影响了粒子在搜索空间中的搜索方式。
学习因子的取值范围为 0-1,当学习因子接近 1 时,粒子搜索方式更偏向于全局搜索,当学习因子接近 0 时,粒子搜索方式更偏向于局部搜索。
三、粒子群优化算法的应用实例粒子群优化算法广泛应用于各种优化问题中,如函数优化、机器学习、信号处理、控制系统等。
下面以函数优化为例,介绍粒子群优化算法的应用过程。
假设我们要求解函数 f(x)=x^2-6x+5 的最小值,可以通过粒子群优化算法来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运行步骤
步骤 31 :评估粒子的适应度函数值。 根据自身的历史最优位置和全局的最优 步骤 :初始化。 位置,更新每个粒子的速度和位置。 更新粒子的历史最优位置和全局的最优位置。 假设种群大小是N=3;在搜索空间中随机
步骤2:粒子的速度和位置更新。
初始化每个解的速度和位置,计算适应函 * 2 2 3 0 0 16 1.5 106.25 f1 89 f1 p9.5 90.25 0.5 (4) v (1.5,1) 数值,并且得到粒子的历史最优位置和群 0 . 5 2 0 0 1 x x v (8,5) (1.5,1) (9.5,4) f1 89 体的全局最优位置。 2 2 v v, c r f ( pBest x )5) c r64 ( gBest 89 x ) 8 ( 25 = (8, 5) v ( 3 2 ) 步骤 4 : 1 pBest 1 1 p1 0 2 0.3 (8 (5)) 6.1 0.5 (3) * p 2 28 v pBest x5 (8, 5) f(6.1,1.8) x ( , 5 ) 如果满足结束条件,则输出 1 f2 1.1 10 0 1.21 101.21 106 1 .5 (2) 100 0 2 0 .1 ((1 ) 9 ) 1.8 2
与PSO相关的重要学术期刊与国际会议
重要国际会议
步骤4:如果满足结束条件,则输出全局最优结果并结束程序,否则,转向步骤2继续执行。
6.3 粒子群优化算法的改进研究
PSO 研究热点与方向
算法理论 研究
算法参数 研究
拓扑结构 研究
混合算法 研究
算法应用 研究
与PSO相关的重要学术期刊与国际会议
重要学术期刊
IEEE Transactions on Evolutionary Computation IEEE Transactions on Systems, Man and Cybernetics IEEE Transactions on …… Machine Learning Evolutionary Computation ……
6.1.1 思想来源
生物界现象
群体行为 群体迁徙 生物觅食 ……
社会心理学
群体智慧 个体认知 社会影响 ……
粒子群 优化算法
人工生命
鸟群觅食
鱼群学习
群理论
6.1.2 基本原理
鸟群觅食现象
鸟群觅食现象
• • • • • •
粒子群优化算法
• • • •
鸟群 觅食空间 飞行速度 所在位置 个体认知与群体协作 找到食物
P1
x1
P3
速度与位置更新示意图
x2 PB 2 P1
P2x1 P3源自速度与位置更新示意图x2
经过若干次迭代之后
P2
P1 x1
P3
PSO算法流程图和伪代码
开始 随机初始化每个粒子 评估每个粒子并得到全局最优 是 //功能:粒子群优化算法伪代码 //说明:本例以求问题最小值为目标 //参数:N为群体规模 procedure PSO for each particle i Initialize velocity Vi and position Xi for particle i Evaluate particle i and set pBesti = Xi end for gBest = min {pBesti} while not stop for i=1 to N Update the velocity and position of particle i Evaluate particle i if fit (Xi) < fit (pBesti) pBesti = Xi; if fit(pBesti) < fit (gBest) gBest = pBesti; end for end while print gBest end procedure
2 2 v 2 (3,2) f2 (5) 9 25 81 106 p2 x 2 (5,9) pBest2 x2 (5,9)
2 2 f3 (7) (8) 4964 113 v3 (5,3) p3 pBest3 x3 (7, 8) x3 (7,8)
1 2
步骤1:初始化。 假设种群大小是N=3;在搜索空间中随机 初始化每个解的速度和位置,计算适应函 数值,并且得到粒子的历史最优位置和群 体的全局最优位置。 2 2 v1 (3,2) f1 8 (5) 64 25 89 p1 x1 (8,5) pBest1 x1 (8, 5)
步骤3:评估粒子的适应度函数值。 更新粒子的历史最优位置和全局的最优位置。
f1* 9.52 (4)2 90.25 16 106.25 f1 89
注意!
对于越界的位置,需要进行合法性调整
f1 89 pBest1=(8, 5)
f2* 1.12 102 1.21100 101.21 106 f2
步骤2:粒子的速度和位置更新。 根据自身的历史最优位置和全局的最优 位置,更新每个粒子的速度和位置。
v1 v1 c1 r1 ( pBest1 x1 ) c 2 r2 ( gBest x1 ) 0.5 3 0 0 1.5 p 1 v1 (1.5,1) 0.5 2 0 0 1 x x v (8,5) (1.5,1) (9.5,4) 1 1 1
搜索空间的一组有效解 问题的搜索空间 解的速度向量 解的位置向量
类比关系
•
•
速度与位置的更新
找到全局最优解
粒子群优化算法
6.1.2 基本原理
粒子群优化算法
鸟群觅食现象
6.2 粒子群优化算法的基本流程
基本流程
速度与位置更新公式 速度与位置更新示意图 算法流程图和伪代码
应用举例
函数最小化问题 算法的执行步骤示意图
满足结束条件 否
更新每个粒子的速度和位置 评估每个粒子的函数适应值 更新每个粒子历史最优位置 更新群体的全局最优位置
结束
6.2.2 应用举例
例6.1 其中 10 x1 , x2 10 ,用粒子群优化算法求解y的 最小值。
2 2 y f ( x , x ) x x 已知函数 1 2 1 2 ,
f3* (3.5)2 (1.7)2 12.252.89 15.14 113 f3 * f3 f3 15.14 pBest3 x3 (3.5, 1.7) gBest pBest3 (3.5, 1.7)
w是惯量权重,一般取[0,1]区间的数,这里假设为0.5 c1和c2为加速系数,通常取固定值2.0 r1和r2是[0,1]区间的随机数
粒子的个体速度与位置更新公式 d d d d d d d d vi vi c1 r1 ( pBesti xi ) c2 r2 ( gBest xi ) d d d xi xi vi
自身速度
更新速度
个体认知 社会引导
速度与位置更新示意图
x2
P2
gBest
1 1 1
3.5, 1.7) w是惯量权重,一般取 [0,1]区间的数,这里假设为0.5 3 x 3 ( pBest gBest pBest1 2.0 (8, 5) c1和c2为加速系数,通常取固定值 gBest pBest (3.5, 1.7) r 和r 是[0,1]区间的随机数 3
第6章 粒子群优化算法
Contents
1 2
算法简介
基本流程 改进研究 相关应用 参数设置
3
4
5
6.1 粒子群优化算法简介
粒子群优化算法是什么? 粒子群优化算法的思想来源是怎样的? 它由谁提出的?
粒子群优化算法 (Particle Swarm Optimization,PSO) 是进化计算的一个分支, 是一种模拟自然界的生物活动的随机搜索算法。 PSO模拟了自然界鸟群捕食和鱼群捕食的过程。 通过群体中的协作寻找到问题的全局最优解。 它是1995年由美国学者Eberhart和Kennedy提出的, 现在已经广泛应用于各种工程领域的优化问题之中。
f2 f2* 101.21 pBest2 X2 (1.1,10)
v3 v3 c1 r1 ( pBest3 x3 ) c 2 r2 ( gBest x3 ) 0.5 5 0 2 0.05 (8 (7)) 3.5 p 3 v3 (3.5,6.3) 0.5 3 0 2 0.8 ((5) (8)) 6.3 x x v (7,8) (3.5,6.3) (3.5,1.7) 1 1 1
1 1 1 1 1
v1 v1 c1 r1 ( pBest1 x1 ) c 2 r2 ( gBest x1 )
2
2
1
1
2
2
2
2
2
2
2
x3 ) c 2 r ( gBest x3 ) v3 v3 c1 r1 ( pBest3 2 22 2 2 7) 49 f 64 113 v3 ( (5 ,.3 f3 f (3.5) 1.7) 12.25 2.89 15.14 113 0 5) 5 0 2 0( .05 ( 8 ( ( 8) 7)) 3. 5 3 p3 v3 p3 2 0.8 ((5) (8)) 6.3 (3.5,6.3) 0 . 5 3 0 * x15.14 ( 7,8) pBest3 x3 (7, 8) f3 f3 x3 x v (7,8) (3.5,6.3) (3.5,1.7) 1 1 1