过程控制-第2章-过程对象数学模型2-xu
合集下载
过程控制第二讲控制对象建模(lyz)

06.06.2019
过程控制与仪表
6
二、解析法建模
概念:根据过程的内在机理,通过静态 与动态物料(能量)平衡关系,用数学 推导法建立过程的数学模型,称为解析 法建模。
单容过程建模������
单容过程/多容过程 自衡过程/无自衡过程
例:试建立数学模型。
06.06.2019
过程控制与仪表
,
解:
,
T0、 τ :在曲线上选取四个点
,
06.06.2019
过程控制与仪表
20
四、阶跃响应辨识建模
二阶过程——解析法
对象 参数K0、T1、T2 解:
时域: Ko: T1、T2:
取两个点的数据,
06.06.2019
响应曲线要求������ 1)试验测定前,被控过程应处于相对稳定的工作状态。否则,就容 易将被控过程的其它动态变化与试验时的阶跃响应混淆在一起,影 响辨识结果。 2)输入阶跃信号的幅值不能过大,也不能过小,若过大,可能会对 正常生产造成影响;若过小,过程中的其它扰动的影响比重相对较 大。一般取阶跃信号的幅值在正常输入信号的最大幅值的5%~15% 之间,常用10%。 3)分别输入正负阶跃信号,并测取其响应曲线作对比,以便反映过 程的非线性的影响。 4)在相同条件下重复测试几次,从几次测试结果中选择两次以上比 较接近的响应曲线作为分析数据,以减小干扰的影响。 5)完成一次试验测试后,必须使过程稳定在原来的工况一段时间, 再作第二次试验测试。
例:若经过L长度延时 。
则得:
经拉氏变换后,得单容液位过程得传递函数为
06.06.2019
过程控制与仪表
9
二、解析法建模
过程控制技术-第二章过程控制系统的数学模型精品PPT课件

式(2-7)中q s0是常数项,因此式(2-7)
成为只有输出变量(被控变量)Tout与输入变 量Tin的微分方程式,该式称为蒸汽直接加热器
扰动通道的微分方程式。
2 过程控制系统的数学模型
(5 输出变量和输入变量用增量形式表示的方程式 称为增量方程式。变量进行增量化处理后,使 方程不必考虑初始条件;能使非线性特性化成 线性特性;而且符合线性自动控制系统的情况。 因为在过程控制系统中,主要是考虑被控变量 偏离设定值的过渡过程,而不考虑在t=0时刻 的被控变量。现以蒸汽直接加热器为例,说明 增量方程式的列写方法。
今后在习惯上为书写的便利,可以将一阶微分 方程式中的增量“Δ”省略,但要理解为是相 应变量的增量。因此,一阶被控对象的数学模 型便可写成:
T dy y Kx dt
2 过程控制系统的数学模型
于是上述所讨论的温度对象的阻力系数是:
T 1
热阻R=温差/热量流量=
=
q FinC
热容C=被储存的热量的变化/温度的变化=
U Tout
Mc
2 过程控制系统的数学模型
二阶被控对象的数学模型
• 二阶被控对象数学模型的建立与一阶类似。由于二 阶被控对象实际是复杂的,下面仅以简单的实例作 一介绍。
• 【例2-2】 两个串联的液体储罐如图2-2所示。为便 于分析,假设液体储罐1和储罐2近似为线性对象, 阻力系数R1、R2
2 过程控制系统的数学模型
2 过程控制系统的数学模型
(1) 建立原始方程式:
A1
dL1 dt
F1
F2
A2
dL2 dt
F2
F3
F2
L1 R1
F3
L2 R2
2 过程控制系统的数学模型
成为只有输出变量(被控变量)Tout与输入变 量Tin的微分方程式,该式称为蒸汽直接加热器
扰动通道的微分方程式。
2 过程控制系统的数学模型
(5 输出变量和输入变量用增量形式表示的方程式 称为增量方程式。变量进行增量化处理后,使 方程不必考虑初始条件;能使非线性特性化成 线性特性;而且符合线性自动控制系统的情况。 因为在过程控制系统中,主要是考虑被控变量 偏离设定值的过渡过程,而不考虑在t=0时刻 的被控变量。现以蒸汽直接加热器为例,说明 增量方程式的列写方法。
今后在习惯上为书写的便利,可以将一阶微分 方程式中的增量“Δ”省略,但要理解为是相 应变量的增量。因此,一阶被控对象的数学模 型便可写成:
T dy y Kx dt
2 过程控制系统的数学模型
于是上述所讨论的温度对象的阻力系数是:
T 1
热阻R=温差/热量流量=
=
q FinC
热容C=被储存的热量的变化/温度的变化=
U Tout
Mc
2 过程控制系统的数学模型
二阶被控对象的数学模型
• 二阶被控对象数学模型的建立与一阶类似。由于二 阶被控对象实际是复杂的,下面仅以简单的实例作 一介绍。
• 【例2-2】 两个串联的液体储罐如图2-2所示。为便 于分析,假设液体储罐1和储罐2近似为线性对象, 阻力系数R1、R2
2 过程控制系统的数学模型
2 过程控制系统的数学模型
(1) 建立原始方程式:
A1
dL1 dt
F1
F2
A2
dL2 dt
F2
F3
F2
L1 R1
F3
L2 R2
2 过程控制系统的数学模型
2被控过程的数学模型

第2章 被控过程的数学模型
2.1 过程建模的基本概念
2. 工业过程动态特性的特点
系统相对较为复杂 时间常数及时延大 具有非线性、分布参数 具有时变特性 被控对象大多属慢变过程
在过程控制中,被控对象复杂多样,其中所进 行的过程几乎都离不开物质和能量的流动,只有流 入量与流出量保持平衡时,对象才会处于稳定平衡 的工况。 在过程控制系统中大多采用调节阀控制流入量 或流出量,以保持工况平衡。
被控过程的数学模型在过程控制中的作用 控制系统设计的基础 调节器参数整定的重要依据 仿真或研究、开发新型控制策略的必要条件 指导生产工艺及其设备的设计与操作 指导工业过程故障检测与诊断系统的设计
第2章 被控过程的数学模型
2.1 过程建模的基本概念
在过程控制中实际应用的动态数学模型,其传 递函数的阶次一般不高于三阶。有时可用具有时滞 的二阶形式,最常用的是具有时滞的一阶形式。
2.2 机理法建模
机理法建模的基本步骤:
(1)根据建模过程和模型使用目的进行合理假设;
(2)明确过程的输出变量、输入变量和其他中间变量; (3)依据过程的内在机理和有关定理、定律以及公式列写 静态方程或动态方程; (4)消去中间变量,求取输入、输出变量的微分方程或传递函数;
(5)在满足控制工程要求的前提下,对数学模型进行必要的简化。
第2章 被控过程的数学模型
2.2 机理法建模
2.2.2 单容过程的数学模型
1.一阶对象(一阶系统) 微分方程
dy T y Ku dt
Y ( s) K G(s) U ( s) Ts 1
—— 一阶惯性环节
传递函数
很多实际的物理对象,其数学模型是一阶系统或可 以近似地用一阶系统来描述。R-C电路和单容水槽等 是最常见的一阶系统。
过程控制第二章 过程建模

y(t)
设 y p (t ) 为矩形脉冲响应
y(t) 为阶跃响应
u(t ) 为阶跃输入
y p (t)
u(t t0) 为 t 0
时刻的阶跃输入
o Fi.g218
t
0
2t0
3t0
4t0
5t0
t
曲线合成的数学描述:
up(t) u(t)u(t t0) yp(t) y(t) y(t t0) y(t) yp(t) y(t t0)
四、自衡对象与无自衡对象
四、自衡对象与无自衡对象
自衡对象: 在扰动作用下,过程平衡状态被破坏后, 不需人工或仪表干预,自身能建立新的 平衡状态。
无自衡对象:在扰动作用下,过程平衡状 态被破坏后,自身不能建立新的平衡状 态。
五、建模途径
1 机理建模 2 实验建模 3 其它方法
六、建模目的
1 控制系统设计与参数整定; 2 2 控制系统仿真研究。
令 t n 0,tn 0 ,1 ,2 ,,则:
y (n 0 )typ (n 0 ) ty (n 0 tt0 )
在输出坐标图上描出多个点,将这些点光滑连接, 得阶跃响应曲线。
二. 切线法
下面分类求模型参数:
u (t )
1. 一阶自衡模型
u
根据 Fig.220所示曲线:
O
t
1) 过原点作切线与y() 相交于
时间变化的特性。
时间常数用T表示,T表征对象物理量变
化的速率。
y
T1 T2
O
T1 T2
t
三、物料平衡与能量平衡
在静态情况下,单位时间流出过程的 物 料 (能量)等于流入过程的 物料 (能量)
在动态情况下,单位时间流入过程的 物 料 (能量)与流出过程的 物料 (能量)之 差等于过程物料 (能量)儲存量的变化率。
设 y p (t ) 为矩形脉冲响应
y(t) 为阶跃响应
u(t ) 为阶跃输入
y p (t)
u(t t0) 为 t 0
时刻的阶跃输入
o Fi.g218
t
0
2t0
3t0
4t0
5t0
t
曲线合成的数学描述:
up(t) u(t)u(t t0) yp(t) y(t) y(t t0) y(t) yp(t) y(t t0)
四、自衡对象与无自衡对象
四、自衡对象与无自衡对象
自衡对象: 在扰动作用下,过程平衡状态被破坏后, 不需人工或仪表干预,自身能建立新的 平衡状态。
无自衡对象:在扰动作用下,过程平衡状 态被破坏后,自身不能建立新的平衡状 态。
五、建模途径
1 机理建模 2 实验建模 3 其它方法
六、建模目的
1 控制系统设计与参数整定; 2 2 控制系统仿真研究。
令 t n 0,tn 0 ,1 ,2 ,,则:
y (n 0 )typ (n 0 ) ty (n 0 tt0 )
在输出坐标图上描出多个点,将这些点光滑连接, 得阶跃响应曲线。
二. 切线法
下面分类求模型参数:
u (t )
1. 一阶自衡模型
u
根据 Fig.220所示曲线:
O
t
1) 过原点作切线与y() 相交于
时间变化的特性。
时间常数用T表示,T表征对象物理量变
化的速率。
y
T1 T2
O
T1 T2
t
三、物料平衡与能量平衡
在静态情况下,单位时间流出过程的 物 料 (能量)等于流入过程的 物料 (能量)
在动态情况下,单位时间流入过程的 物 料 (能量)与流出过程的 物料 (能量)之 差等于过程物料 (能量)儲存量的变化率。
过程控制 第二章数学模型

2.3 解析法建立过程数学模型—步骤
建模步骤 明确过程的输入变量、输出变量和中间变量 根据建模对象和建模使用目的作合理假设 根据过程的内在机理,建立静态和动态平衡 关系方程 消去中间变量,求取过程的数学模型 模型简化(模型降阶处理;线性化)
2.3 解析法建立过程数学模型—单容过程
单容过程-------只有一个贮蓄容量的过程。
无时延自衡
Q1 Q0
有纯时延自衡
O t h
O
t
h
O O t
τ0
t
2.3 解析法建立过程数学模型—单容过程
推广2:考虑输出液体体积流量为Q2通不变。 液位高度变化时,出口处静压力不会对泵产生影响,Q2不变。 解 根据动态物料平衡关系 ∆q1 − ∆q 2 = A d∆h 根据动态物料平衡关系: 动态物料平衡关系 定量泵导致: ∆q 2 = 0 定量泵导致
2.3 解析法建立过程数学模型—单容过程
单容过程传递函数的结构方框图
水箱的输入量/输出量之 间的动态平衡关系 Q1 (s)
1 cs
Q2 (s)
H(s)
1 R2
阀2的静压力关系
2.3 解析法建立过程数学模型—单容过程
推广1:考虑输入液体体积流量为Q0 当进水阀1的开度产生变化后,需流经长度为 当进水阀1的开度产生变化后,需流经长度为l 的管道才能 进入水箱,使液位发生变化。 进入水箱,使液位发生变化。 假设流经长度为l的管道所需时间为 0,得出具有纯时延的 纯时延的 假设流经长度为 的管道所需时间为τ 得出具有纯时延 的管道所需时间为 单容过程的微分方程和传递函数分别为
冷水量对水位的直接影响 正向积分特性
反向特性 冷水量影响水中气泡量,使 水位发生变化 反向惯性特性
过程控制第2章被控过程的数学模型

第一段:t=0~a,
y1 t y t
第二段:t=a~2a,
y1 2a y 2a y1 a
2.3.3 由阶跃响应曲线确定过程的数学模型
1.一阶无时延过程 2.二阶无时延过程
K0 W0 ( s) T0s+1
K0 W 0 ( s) T1s 1T2 s 1
t
⑴合理选择阶跃信号值。 ⑵在输入信号前,被控对象必须处于相对稳定的运行 状态。 ⑶实验时应在相同试验条件重复做几次测试,需获得 两次以上比较接近的测试数据,以减少扰动的影响。 ⑷在实验时应在阶跃信号作正、反方向变化时分别测 取其响应曲线,以求取过程的真实特性。 特点:简单、易实现,测试精度不高,对生产有影响。
当对象受到阶跃输入作用 后,被控参数如果保持初 始速度变化,达到新的稳 定值所需的时间。
h
h′
h
t
t
K 0 Q1 d h dt t 0 T
K 0 Q1 h t t T
'
实验求取T:当t=T,
h t K 0 Q1 1 e 1 0.632 K 0 Q1 0.632h
0
t 浓度
0
t
2.容量时延C
H 2( s ) K0 W 0( s ) e cs Q1(s) T 0 s 1
由于物料或能量的传递需要通过一定的阻力而引起的。
K0 Y ( s) W0 ( s) e s X ( s) T0 s 1
意义: ①表示对象的惰性; ②大时控制困难。 ③是一动态特性参数。
K0 T1 ( s) R W0 ( s) Q1 (s) RCs 1 T0s+1
例2—3 自衡特性: 当输入量发生变化破坏了被控过程的平衡而引起输 出量变化时,在没有人为干预的情况下,被控过程 自身能重新恢复平衡的特性,叫做自衡特性。 具有自衡特性的被控过程称为自衡被控过程, 无自衡特性的被控过程称为无自衡被控过程。
y1 t y t
第二段:t=a~2a,
y1 2a y 2a y1 a
2.3.3 由阶跃响应曲线确定过程的数学模型
1.一阶无时延过程 2.二阶无时延过程
K0 W0 ( s) T0s+1
K0 W 0 ( s) T1s 1T2 s 1
t
⑴合理选择阶跃信号值。 ⑵在输入信号前,被控对象必须处于相对稳定的运行 状态。 ⑶实验时应在相同试验条件重复做几次测试,需获得 两次以上比较接近的测试数据,以减少扰动的影响。 ⑷在实验时应在阶跃信号作正、反方向变化时分别测 取其响应曲线,以求取过程的真实特性。 特点:简单、易实现,测试精度不高,对生产有影响。
当对象受到阶跃输入作用 后,被控参数如果保持初 始速度变化,达到新的稳 定值所需的时间。
h
h′
h
t
t
K 0 Q1 d h dt t 0 T
K 0 Q1 h t t T
'
实验求取T:当t=T,
h t K 0 Q1 1 e 1 0.632 K 0 Q1 0.632h
0
t 浓度
0
t
2.容量时延C
H 2( s ) K0 W 0( s ) e cs Q1(s) T 0 s 1
由于物料或能量的传递需要通过一定的阻力而引起的。
K0 Y ( s) W0 ( s) e s X ( s) T0 s 1
意义: ①表示对象的惰性; ②大时控制困难。 ③是一动态特性参数。
K0 T1 ( s) R W0 ( s) Q1 (s) RCs 1 T0s+1
例2—3 自衡特性: 当输入量发生变化破坏了被控过程的平衡而引起输 出量变化时,在没有人为干预的情况下,被控过程 自身能重新恢复平衡的特性,叫做自衡特性。 具有自衡特性的被控过程称为自衡被控过程, 无自衡特性的被控过程称为无自衡被控过程。
过程控制系统 第2章 工业过程数学模型

二是用于工艺设计以及操作条件的分析和确定。
被控过程数学模型的应用与要求
被控过程数学模型的类型 非参量形式 用曲线或数据表格表示,如阶跃响 应曲线、脉冲响应曲线和频率特性曲线 参量形式 用数学方程来表示,如:微分方程、 传递函数、差分方程、状态空间表达式 等。
2.2.2 动态数学模型的类型:有过程机 理推导得到的几种数学模型如表2-2
的方法; 二是依据外部输入输出数据来求取,这就是过程辨 识和参数估计的方法。 当然,也可以把两者结合起来。
解析法建模的一般步骤: 1. 明确过程的输出变量、输入变量和 其他中间变量。 2. 依据过程的内在机理和有关定理、 定律以及公式列写静态方程或动态方 程。 3. 消去中间变量,求取输入、输出变 量的关系方程。 4.将其简化成控制要求的某种形式。
机理建模也有两个弱点: 1)对于复杂的过程,人们对基本方程的某些参数不完全 掌握,例如,换热器的K值,由传热学书籍提供的公式可 能有±(10%-30%)的误差。又如,精馏塔这样已经研 究得比较透彻的设备,对塔板效率、塔板流体中的汽液 比值等参数,很难预先精确估计。 2)如不经过输入/输出数据的验证,则近乎之纸上谈兵, 难以判断其正确性。 经验模型的优点和弱点与机理模型正好相反,特别是现 场测试,实施中有一定难处。
2.1.1机理建模
从机理出发,也就是从过程内在的物理和 化学规律出发,建立稳态数学模型 最常用的是解析法和仿真方法 解析法适用于原始方程比较简单的场合。 这里又分两类:
一是求输入变量作小范围变化的影响,通常采
用增量化处理方法; 二是求输入变量作大范围变化时的影响,这通 常需要逐步求解,如采用数值方法或试差方法, 则与仿真求解无甚区别了。
被控过程数学模型的应用与要求
被控过程数学模型的类型 非参量形式 用曲线或数据表格表示,如阶跃响 应曲线、脉冲响应曲线和频率特性曲线 参量形式 用数学方程来表示,如:微分方程、 传递函数、差分方程、状态空间表达式 等。
2.2.2 动态数学模型的类型:有过程机 理推导得到的几种数学模型如表2-2
的方法; 二是依据外部输入输出数据来求取,这就是过程辨 识和参数估计的方法。 当然,也可以把两者结合起来。
解析法建模的一般步骤: 1. 明确过程的输出变量、输入变量和 其他中间变量。 2. 依据过程的内在机理和有关定理、 定律以及公式列写静态方程或动态方 程。 3. 消去中间变量,求取输入、输出变 量的关系方程。 4.将其简化成控制要求的某种形式。
机理建模也有两个弱点: 1)对于复杂的过程,人们对基本方程的某些参数不完全 掌握,例如,换热器的K值,由传热学书籍提供的公式可 能有±(10%-30%)的误差。又如,精馏塔这样已经研 究得比较透彻的设备,对塔板效率、塔板流体中的汽液 比值等参数,很难预先精确估计。 2)如不经过输入/输出数据的验证,则近乎之纸上谈兵, 难以判断其正确性。 经验模型的优点和弱点与机理模型正好相反,特别是现 场测试,实施中有一定难处。
2.1.1机理建模
从机理出发,也就是从过程内在的物理和 化学规律出发,建立稳态数学模型 最常用的是解析法和仿真方法 解析法适用于原始方程比较简单的场合。 这里又分两类:
一是求输入变量作小范围变化的影响,通常采
用增量化处理方法; 二是求输入变量作大范围变化时的影响,这通 常需要逐步求解,如采用数值方法或试差方法, 则与仿真求解无甚区别了。
过程控制 第2章被控过程的数学模型

12
4. 建立数学模型的依据 要想建立一个好的数学模型,要掌握好以下三类 主要的信息源。 (1) 要确定明确的输入量与输出量 (2)要有先验知识 (3) 试验数据
13
5.被控对象数学模型的表达形式 被控对象的数学模型可以采取各种不同的表达形 式,主要可以从以下几个观点加以划分: (l ) 按系统的连续性划分为:连续系统模型和离散系统 模型。 (2) 按模型的结构划分为:输入输出模型和状态空间 模型。 (3) 输入输出模型又可按论域划分为:时域表达(阶 跃响应,脉冲响应)和频域表达(传递函数)。
9
1.建立数学模型的目的 在过程控制中,建立被控对象数学模型的目的主要 有以下几种: (l) 设计过程控制系统和整定控制器的参数 (2) 控制器参数的整定和系统的调试 (3) 利用数学模型进行仿真研究 (4) 进行工业过程优化 另外,设计工业过程的故障检测与诊断系统、制 订大型设备启动和停车的操作方案和设计工业过程运 行人员培训系统,等等都也需要被控过程的数学模型。
6
也有一些被控对象,例如图2-3中的单容积分水槽, 当进水调节阀开度改变致使物质或能量平衡关系破坏后, 不平衡量不因被控变量的变化而改变,因而被控变量将 以固定的速度一直变化下去而不会自动地在新的水平上 恢复平衡。这种对象不具有自平衡特性,具有这种特性 的被控过程称为非自平衡过程,其阶跃响应如图2-4所 示
第2章 被控过程的数学模型
目 录
2.1 过程模型概述 2.2 机理法建模 2.3 测试法建模 2.4 利用MATLAB建立过程模型 本章小结
1
2.1 过程模型概述
2.1.1 被控过程的动态特性
在过程控制中,被控过程(简称过程)乃是工业生 产过程中的各种装置和设备,例如换热器、工业窑炉、 蒸汽锅炉、精馏塔、反应器等等。被控变量通常是温 度、压力、液位、成分、转速等。被控对象内部所进 行的物理、化学过程可以是各式各样的,但是从控制 的观点看,它们在本质上有许多相似之处。 在生产过程中,控制作用能否有效地克服扰动对 被控变量的影响,关键在于选择一个可控性良好的操 作变量,这就要对被控对象的动态特性进行研究。因 此,研究被控对象动态特性的目的是据以配置合适的 控制系统,以满足生产过程的要求。
4. 建立数学模型的依据 要想建立一个好的数学模型,要掌握好以下三类 主要的信息源。 (1) 要确定明确的输入量与输出量 (2)要有先验知识 (3) 试验数据
13
5.被控对象数学模型的表达形式 被控对象的数学模型可以采取各种不同的表达形 式,主要可以从以下几个观点加以划分: (l ) 按系统的连续性划分为:连续系统模型和离散系统 模型。 (2) 按模型的结构划分为:输入输出模型和状态空间 模型。 (3) 输入输出模型又可按论域划分为:时域表达(阶 跃响应,脉冲响应)和频域表达(传递函数)。
9
1.建立数学模型的目的 在过程控制中,建立被控对象数学模型的目的主要 有以下几种: (l) 设计过程控制系统和整定控制器的参数 (2) 控制器参数的整定和系统的调试 (3) 利用数学模型进行仿真研究 (4) 进行工业过程优化 另外,设计工业过程的故障检测与诊断系统、制 订大型设备启动和停车的操作方案和设计工业过程运 行人员培训系统,等等都也需要被控过程的数学模型。
6
也有一些被控对象,例如图2-3中的单容积分水槽, 当进水调节阀开度改变致使物质或能量平衡关系破坏后, 不平衡量不因被控变量的变化而改变,因而被控变量将 以固定的速度一直变化下去而不会自动地在新的水平上 恢复平衡。这种对象不具有自平衡特性,具有这种特性 的被控过程称为非自平衡过程,其阶跃响应如图2-4所 示
第2章 被控过程的数学模型
目 录
2.1 过程模型概述 2.2 机理法建模 2.3 测试法建模 2.4 利用MATLAB建立过程模型 本章小结
1
2.1 过程模型概述
2.1.1 被控过程的动态特性
在过程控制中,被控过程(简称过程)乃是工业生 产过程中的各种装置和设备,例如换热器、工业窑炉、 蒸汽锅炉、精馏塔、反应器等等。被控变量通常是温 度、压力、液位、成分、转速等。被控对象内部所进 行的物理、化学过程可以是各式各样的,但是从控制 的观点看,它们在本质上有许多相似之处。 在生产过程中,控制作用能否有效地克服扰动对 被控变量的影响,关键在于选择一个可控性良好的操 作变量,这就要对被控对象的动态特性进行研究。因 此,研究被控对象动态特性的目的是据以配置合适的 控制系统,以满足生产过程的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义:K为放大系数,则K 可表示为:
t
K b h
a q1
K的物理意义是把系统的输入变化量放大 K倍。
K越大,表明输入信号对输出的控制作 用越强。
若同时有几个输入变量作用于被控变量, 则应选择放大系数较大的作为控制变量。
对干扰通道,K越大,则扰动对输出变 量的影响越大。
时间常数T
以水槽为例,T=RC=RA。
由于系统中物料或能量的传递需要克服一 定的阻力而产生的滞后。表现为输入变化 后,输出的变化相当缓慢,在一段时间内 几乎观察不到,然后,才逐渐显著变化。
以二级水槽为例:
q1
h1
q2
h2
q3
q1(t)
阶跃响应曲线: a
h1(t)0
t
q2(t)0
t
0
t
h2(t)
0
t
h2(t)
t0 t1
t2
可用作图法求τc。
0
a
y(t) y*(t)
t -y(t-a)
若对象为线性,则: y* (t)y(t)y(t a )
y *(t) :矩形脉冲响应曲线; y (t ) :正阶跃响应曲线 y(t a) :负阶跃响应曲线
求阶跃响应曲线为:
y(t)y* (t)y(t a )
t0,y(0)y*(0) t a ,y (a ) y * (a ) y (0 )
q1
q2
q1(t) a
0 h(t)
b
0
A1
A2
若A2>A1,则需要更多时间 到达设定液位值。
t
t
T是标志系统动态过程快慢的参数。
对调节通道,T大,则系统响应平稳, 系统较稳定,但调节时间长;T过小, 则系统较难控制。
对干扰通道,时间常数越大,对控制越 有利。
q1(t) 1
0 h(t)
1
0.632%
过程特性参数K、T、
这三个参数有什么样的物理意义? 在系统中所起的作用如何?
放大系数K
以水槽为例,在输入流量q1等于输出流量q2,液 位h处于某个稳态时,使q1有一个阶跃变化,幅 度为a。
q1
q2
q1(t) a
0 h(t)
b
0
a:输入流量变化量,即阶跃 扰动幅度。
t b:液位最终稳态值与原稳态 值之差。
滞后时间τ
纯滞后τ0 由于物料的传输需要一定时间而产生的滞 后。
q1(t) a
0
t
h(t)
b
0 τ0
t
带纯滞后的一阶系统可分解为一个独立 的一阶环节和一个独立的滞后环节。
带纯滞后的一阶系统的响应曲线与无纯 滞后的一阶系统的响应曲线,形状完全 一致,仅相差纯滞后时间τ0。
滞后时间τ
容量滞后τc
矩形脉冲响应曲线的测取
当阶跃信号的幅度较大时,可用矩形脉冲 输入代替阶跃输入,即大幅度的阶跃扰动 施加一小段时间后立即切除。
x(t) x0
0a
x1
t x2
矩形脉冲信号可视为两个阶跃信号的叠加。 x ( t) x 1 ( t) x 2 ( t) x 0 ( t) x 0 ( t a )
y(t)
W(s) K Tas(Ts1)
W(s) K es Tas(Ts1)
确定模型基本结构的原则:
(1)关于被控对象的验前知识。如:一级 水槽是一阶系统;n级水槽是n阶系统;电 加热炉是一阶惯性环节等。
(2)根据建模的目的对模型精确性取合理 要求。
模型的参数估计(1)
(1)作图法参数估计:
假设对象的模型可用一阶惯性加延时环节 来近似,则:
W(s) K Ts1
W(s) K es Ts1
W(s)
K
(T1s1)(T2s1)
W(s)
K
es
(T1s1)T (2s1)
数学模型的结构(2)
少数无自衡能力过程对象可用积分、一阶 惯性、二阶惯性、延时来近似描述。
W (s) K Ta s
W(s) K es Tas
0T
输入为单位阶跃信号时,
t
h(t) 1e T t 对h(t)求导数,得:
dh(t)1eTt (t0)1
dt T
T
t
当 t T 时,h(T)1e10.632, 当 t 3T 时,h(3T)1e30.95, 当 t 5T 时,h(5T)1e50.993 ,
作图法的优点是简单易行,缺点是易导致 不准确,拟和性差,且很多情况下曲线拐 点不易确定。此时可采用经验法估计参数。
经验法参数估计
在曲线上求出:
y(t)
y(∞) 0.63y(∞) 0.28y(∞)
W(s) K es Ts1
作图法参数估计
阶跃响应曲线为:
y(t)
y(∞)
d
y(0)
0 ab
c
t
作图法参数估计
y(t)
y(∞)
y(0)
0 ab
c
在曲线拐点作切 线,可得:
0a,cba
0 c
t Tcb K y()y(0) x0
模型的参数估计(2)
(2)经验法参数估计:
阶跃响应测试法建模
机理法建模需要一定的条件,但多数工业 过程机理复杂,数学模型难以建立。
响应曲线法主要取决于过程对象的响应曲 线,并通过数学处理将其拟和成近似的传 递函数数学模型。
阶跃响应测试法建模的步骤
在稳态工况时,改变输入,测取响应曲线。 响应曲线分阶跃响应曲线和矩形脉冲响应 曲线。
进行参数估计。由阶跃响应曲线,估计出 被控过程数学模型的特征参数。如一阶惯 性环节中的T、K、 τ 等。
在响应曲线的拐点作 切线,则:
t
c t1 t0
h2(t)
t0 t1
t2
可将类似系统分解为一 个纯滞后环节和一个一 阶环节近似表示:
令:0 c
t
则:Tt2 t1
滞后时间τ
时滞对控制是不利的。
测量仪表中的时滞,使得变量的变化不能 及时得到反应;
调节器中的时滞,使得控制作用不能及时 到位。
阶跃响应曲线的测取
系统的输入为阶跃信号,由响应曲线来拟 和系统的动态特性。理论上较简单。
x(t)
0
t
y(t)
0
t
阶跃响应曲线的测取
实际应用中应注意: (1)阶跃信号的幅度一般取正常工作信 号的5%~15%。 (2)稳定工况和抗干扰。 (3)在相同条件下多重复几次。 (4)在被控量的不同设定值下多次测试。
t k ,y ( k a ) y a * ( k ) y a ( k 1 ) a
参数估计
由阶跃响应曲线,估计出被控过程数学模 型的特征参数。如一阶惯性环节中的T、 K、 τ 等。
建模步骤为:ቤተ መጻሕፍቲ ባይዱ先确定数学模型的结构, 然后确定参数。
数学模型的结构(1)
大多数工业过程对象可用一阶、二阶、一 阶加延时、二阶加延时来近似描述。