相似三角形2中考复习教案

合集下载

【教学设计】相似三角形中考复习精品教案

【教学设计】相似三角形中考复习精品教案

相似三角形中考复习教学设计
一.教学目标
1.掌握并能运用相似三角形判定与性质
2.能了解和解决相似三角形基本题型
3.用动态观解相似三角形题目
二.教学重点
培养学生对相似三角形基本图形的感觉,能正确找到对应角和对应边三.教学难点
找对应角和对应边,尤其是动态题.
四.学情分析
相似三角形在初中数学中属于知识较难掌握的一章,题目在中考中往往偏难,学生就算是会做,也容易想错或算错数.在广州市近几年的中考试题中,相似三角形多数是难题,分值不固定,一般是3到10分之间.预测20**年要重视复习基础图形,注意对知识的理解.在此基础上,适当加强对探索题,动态题的研究与训练,培养数学能力.所以本节课题目都来自于平时的学习资料中,学生平时起码看过想过,又或者是广州中考的原题即学生比较感兴趣的题目.在解题讲题的过程中尽量将基本的,典型的,容易的题目讲得的透彻一些,太容易的,或者太难的少讲.
五.教学过程。

九年级数学《相似三角形判定-复习课》教案

九年级数学《相似三角形判定-复习课》教案

22.1.2 相似三角形判定复习课一、学习目标1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

二、教学过程尝试教学六环模式教师活动学生活动设计意图备注复习导入复习引入:1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A 3对B 4对C 5对D 6对FEAB GDC2.要判定△ABC∽△A'B'C',已知条件AB BC=A B B C,,,,(1)还要添加条件____或____.(2)若∠A=∠A′,可添加条件____学生完成,回顾相似三角形判定方法。

帮助学生回忆相似三角形的几种判定方法。

以简单的选择、判断题复习相关知识点。

目标展示:1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

学生熟悉学习目标学生按照学习目标复习知识点。

帮助学生梳理知识要点。

学教新课自学指导:1 你能记得多少种判定三角形相似的方法?2 三角形相似的基本图形是有哪些?根据自学指导的思考题,回顾知识要点。

以相似三角形的基本图形为主线回顾知识点。

从形的角度帮助学生更好地理解知识点。

议探交流尝试练习:学生完成尝试练习1、2两题。

议探交流:组内相互交流,先对议,再互议。

教师适时巡堂,深入小组,进行个别指导。

学生独立自主完成学生相互交流,师徒互教,组内互教,小组展示小组展示:归纳总结:1D,E分别为△ABC的AB, AC上的点,且DE∥BC,∠DCB=∠A,把每两个相似的三角形称为一组,那么图中共有相似三角形_____组,(选择其中一组并加以证明。

)变式:D,E分别为△ABC的AB, AC上的点,若AB=10,AC=8,AD=5,当AE=_____△ADE与△ABC相似。

各组内定代表,师友共同抢答,展示各自的结论,其他同学适时补充纠正。

相似三角形的复习教案

相似三角形的复习教案

时间: 2013年 1 月 日 课题 相似三角形的复习 课型 复习课现代教育技术手段教学目标知识目标1、掌握相似三角形的性质和判定,相似三角形的应用 能力目标2、会灵活应用性质和判定解决问题育人目标3、事物间的相互联系,相互转化,周长比转化为相似比,面积比转化为相似比的平方Z 知识点 Z1 相似三角形的性质 Z2 相似三角形的判定N 能力点学科能力点 NX1 合情推理能力 NX2计算能力一般能力点NY1自然观察能力。

NY2抽象概括思维能力。

知识点与 能力点的 关系 Z1Z2 N X1 NX2 NY1 NY2 D 德育点D1 事物相互联系观点。

D2事物相互转化观点。

知识点与 德育点的 关系Z1 (渗透)D1 D2 Z2 L应遵循的 教学规律L1:演绎原理认知律—— Z2先感知原理结构形式,运用已学原理进行推理,最后形成原理本节课:通过对相似三角形性质的认识,逐步理解抽象出位似,在进行应用推广到平面直角坐标系中在环节上用▲表明重点;用※表明难点本课自评分:巩固作业适应学生检查方式拓展作业适应学生检查方式补偿作业适应学生检查方式板书知、能反思育人反思技术手段反思时间环节(体现课型)学习方式教学方式体现教学规律和教学策略2感知现象1、复习旧知1、提问2、引导评价5得出命题Z1Z21、观察、猜想NY22、探究分析3、自主推理5、交流思路。

验证猜想6、归纳性质8、记忆9、辨析1、提出问题、引导观察2、引导3、规范表达 ----探究式4、讲解、示范5、组织参与讨论L16、引导,规范语言8、检查、指导9、出示口答题,评价内化命题1、比较联系与区别2、记忆性质,互相检查3、辨析1、引导比较、补充2、指导检查3、出示判断、填空题,强化关键点L11112 直接应用⎩⎨⎧已知条件图形化已知、问题、审题12、独立思考3、交流思路4、归纳解决问题的方法NY25、独立解决NX36、总结易错点——关键点的确定7、体悟1、引导2、个别指导3、组织、点拨4、示范、讲解过程书写要求 ---启发式5、指导6、引导、强调7、评价7 灵活应用、审题12、独立思考,交流思路,3、判断所用知识类型:性质4、观察,得出结论5、体悟反思1、引导与指导2、引导与指导3、引导或补充4、尝试变化并演示5、评价3 知识梳理1、总结收获2、反思易错点及注意事项1、引导补充2、强化NX1、D1NX1D2、D3。

《相似三角形专题复习》教学设计

《相似三角形专题复习》教学设计

基于基本图形的问题导向式复习课例——以《相似三角形专题复习》为例【课题】九年级总复习第二轮专题复习《相似三角形专题复习》教学设计【所需课时】1课时【课标要求及分析】课标要求:了解相似三角形的定义、判定定理、性质定理,并会解决简单的实际问题.课标分析:《标准》的要求定位在“了解”和“简单”的层面,因此在复习过程中要注重对相似三角形相关基础知识和常见题型的把握.【教材及学情分析】北师大版九年级上册《图形的相似》是在研究“图形的全等”的基础上集中研究“图形的相似”.在前面的学习中,学生已经较为系统的学习了线段的比、成比例线段、平行线分对应线段成比例定理、相似图形、相似多边形、位似图形等,具备了一定的合情推理和演绎推理能力,为该章节中的重点内容《相似三角形专题复习》做好了知识和能力的准备.【学习目标】1.掌握相似三角形的定义、判定定理、性质定理;2.能根据相似三角形的判定定理和性质定理以及已经学习过的其他知识解决简单的实际问题,进一步体会类比、分类、归纳、数形结合的思想方法.【教学重、难点分析】教学重点为相似三角形的判定定理和性质定理,教学难点为相似三角形性质定理的灵活应用.【教学方式与方法的选择】设疑引导、讲练结合【教学设计思路】本课教学流程:设疑导入→合作探究→学以致用(找、选、造)→巩固提升→归纳总结。

首先通过小组合作把学生的个人课前作业进行讨论、完善和展示,总结出相似三角形的常见基本图形,为本节专题复习做好知识铺垫.接着以问题为导向,以“找”“选”“造”三道低起点、缓坡度的例题,引导学生自主探究相似三角形的相关问题,感受基本图形在相似三角形问题中的应用,并总结归纳出相关的解题方法.课后作业设计了两道有梯度的题目,既加深对知识本质的理解,又强化知识之间的联系,在巩固检测所学知识的同时,激发和提升学生的数学思维能力和创新意识。

【教学资源】学案图表资料、多媒体课件、几何画板【教学过程设计】教学环节教学过程设计学生活动设计思想设疑导入【设问】同学们,课前请大家找出九上课本《图形的相似》中相似三角形的常见基本图形(下称相似基本型),大家找出了多少个?学生回答的个数有些不同.个数的不同激发学生进行合作交流合作探究【承转】下面请以6人小组为单位进行合作探究,把大家公认的比较常见的相似基本型进行整理.请先完成的小组进行展示,其他小组进行补充.小组成员整理归纳相似基本型,并进行相互补充和完善通过小组合作学生取长补短,把握本课重点,培养合作交流和归纳能力学生归纳的基本型如下:A 型 斜A 型X 型 蝶型K 型 子母型【设疑】你可以把上面的相似基本型进行分类吗?【学生回答】A 型,X 型,K 型都有平行,是一类,但其他的没有平行.【学生补充】K 型,子母型有90°角,是一类,但其他不一定有.【追问】蝶型相似一般出现在什么图形里面?【学生回答】圆.【多媒体演示】利用几何画板演示上图的一些相似变形,丰富学生的认识。

数学九年级下册《相似三角形-复习课》教案

数学九年级下册《相似三角形-复习课》教案

初中20 -20 学年度第一学期教学设计1能根据相似的基本性质进行判断和计算。

2运用相似三角形的判定定理分析两个三角形是否相似。

两夹角相等或三边对应成比例来判断.例2、如图2所示,D 、E 两点分别在△ABC 两条边上,且DE 与BC 不平行,请填上一个你认为适合的条件_________,使得△ADE ∽△ABC .点评:结合判定方法补充条件.三、课堂练习(2008年福州市中考题)如图6,己知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,其中点P 的运动速度是1cm/s ,点Q 的运动速度是2cm/s ,当Q 点到达点C 时,P 、Q 两点都停止运动,设运动时间为t(s),作QR ∥BA 交AC于点R ,连接PR ,当t 为何值时,△APR ∽△PRQ ? 分析:这是一道动态探究型试题,解题时用到了相似三角形的性质和判定。

解:∵ QR ∥BA ∴∠QRC =∠A ∠RQC =∠B∵∠A =∠B ∴∠QRC =∠RQC ∴CQ =CR∵CB =CA ∴AR =BQ =2t∵△APR ∽△PRQ ∴∠ARP =∠RQP∵ QR ∥BA , ∴∠RQP =∠BPQ , ∴∠ARP =∠BPQ ∵∠A =∠B ∴△APR ∽△BQP ∴AP BQ AR BP= ∴226t t t t=- 解得t =65。

答:当t =65时,△APR ∽△PRQ 。

四、课堂小结1、判定三角形相似的几条思路:(1)条件中若有平行,可采用判定定理1;(2)条件中若有一对角相等,可再找一对角相等或找夹边对应成比例;(3)条件中若有两边对应成比例,可找夹角相等;图6B Q P CR A。

人教版初三数学下册《相似三角形》复习教案

人教版初三数学下册《相似三角形》复习教案

《相似三角形》复习教案(一)教学目标:知识与技能:1.能说岀相似三角形与全等三角形的区别和联系2•能说岀相似三角形的性质与判定方法3. 能运用相似三角形的性质与判定解决实际问题过程与方法:通过运用相似三角形的性质与判定,解决测高、测宽等问题学会构造相似三角形的方法,利用相似三角形的性质解决问题情感态度与价值观:经历相似三角形的运用过程,体验解决问题的方法的灵活性。

教学重点:运用相似三角形的性质与判定,解决测高、测宽等问题教学难点:构造相似三角形解决问题教学过程一、引导学生填写下列表格:1.相似三角形与全等三角形的区别和联系例1、平行四边形ABCD 中,M 为对角线AC 上一点,BM 交AD 于N , 交CD 延长线于E 。

试问图中有多少对不同的相似三角形?例2、如图,Rt △ ABC,斜边AC 上有一点D(不与点A 、C 重合),过D 点作直线截厶ABC,使截得的三角形与△ ABC 相似,则满足这样条件的直 线共有 条。

例3、如图,已知。

O 中,弦AB , CD 相交于点P , AP=6 , BP=2 , CP=4,_则PD 的长是3. 如图,正方形 ABCD 中, E 、F 分别在AB BC 边上,且 AE=CF BG 丄CE 于G 。

试证明DG丄F®4. 在 Rt A ABC 中,/ C=90°, AC=6 , BC=12,在 AC 上有一动点 D (不与 A 、C 重合),/V.作DE // BC 交AB 于点E ,作EF// AC 交BC 于点F ,问当点D 在什么位置时,四边形 CDEF 的面积最大? 六、课堂小结: 略五、课内小练习: 1.如图,已知。

O 的两条弦AB 、CD 相交与AB 的中点E ,且AB=4 , 求CD 的长。

2.如图,A 、 B 、D 、E 四点在。

O 上, AE 、BD 的延长线相交于点 C , 8, OC=12 , / EDC 2 BAO CD CEAC 一 CB ' (2)计算CD?CB 的值,并指出CB 的取值范围。

相似三角形 复习课教案

相似三角形 复习课教案

相似三角形复习课教案一、教学目标1、使学生理解相似三角形的概念,掌握相似三角形的判定定理和性质定理。

2、能够熟练运用相似三角形的知识解决实际问题,提高学生的逻辑推理和综合运用能力。

3、通过复习,培养学生的空间观念和创新意识,激发学生对数学的兴趣。

二、教学重难点1、重点(1)相似三角形的判定定理和性质定理。

(2)相似三角形的应用。

2、难点(1)相似三角形的判定定理的灵活运用。

(2)相似三角形与其他几何图形的综合应用。

三、教学方法讲授法、练习法、讨论法四、教学过程1、知识回顾(1)相似三角形的概念:对应角相等,对应边成比例的三角形叫做相似三角形。

相似三角形对应边的比叫做相似比。

(2)相似三角形的判定定理①两角对应相等的两个三角形相似。

②两边对应成比例且夹角相等的两个三角形相似。

③三边对应成比例的两个三角形相似。

(3)相似三角形的性质定理①相似三角形对应角相等,对应边成比例。

②相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

③相似三角形周长的比等于相似比,面积的比等于相似比的平方。

2、例题讲解例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。

解:因为 DE∥BC,所以△ADE∽△ABC。

所以\(\frac{AD}{AB} =\frac{AE}{AC}\)因为 AD = 3,BD = 2,所以 AB = AD + BD = 5所以\(\frac{3}{5} =\frac{4}{AC}\)解得 AC =\(\frac{20}{3}\)所以 CE = AC AE =\(\frac{20}{3} 4 =\frac{8}{3}\)例 2:如图,在△ABC 中,∠C = 90°,D 是 AC 上一点,DE⊥AB 于 E,若 AC = 8,BC = 6,DE = 3,求 AD 的长。

解:在 Rt△ABC 中,AB =\(\sqrt{AC^2 + BC^2} =\sqrt{8^2 + 6^2} = 10\)因为∠A =∠A,∠AED =∠C = 90°所以△ADE∽△ABC所以\(\frac{AD}{AB} =\frac{DE}{BC}\)即\(\frac{AD}{10} =\frac{3}{6}\)解得 AD = 53、课堂练习(1)如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2,DB = 1,AE = 15,求 EC 的长。

初中数学复习相似三角形教案

初中数学复习相似三角形教案

初中数学复习相似三角形教案一、教学目标:1.知识目标:复习相似三角形的概念和性质,学习相似三角形的判定条件。

2.能力目标:能够判断两个三角形是否相似,并根据相似比例求解问题。

3.情感目标:培养学生对数学的兴趣和学习积极性,培养学生的观察和推理能力。

二、教学重点和难点:1.教学重点:相似三角形的判定条件及应用。

2.教学难点:理解和运用相似三角形的判定条件。

三、教学方法:1.情景导入法:通过提问或展示一个实际生活中的问题,引起学生的兴趣。

2.归纳法:通过对已学知识进行归纳总结,加深学生的理解。

3.合作学习法:通过小组合作学习,让学生互相合作、共同探讨问题,提高学生的思考能力。

四、教学过程1.情景导入(10分钟)教师可通过一个有趣的问题导入,如:小明的房子与小刚的房子相似吗?为什么?请学生们思考并讲解。

2.知识点讲解(20分钟)步骤1:复习相似三角形的定义和性质。

-复习相似三角形的定义:如果两个三角形的对应角相等,那么这两个三角形是相似的。

-复习相似三角形的性质:相似三角形的对应边成比例,对应角相等。

步骤2:讲解相似三角形的判定条件。

-边比例判定定理:如果两个三角形的三条边各对应边的比例相等,那么这两个三角形是相似的。

-AA判定法:如果两个三角形的两个对应角相等,那么这两个三角形是相似的。

步骤3:示例讲解。

-通过示例,引导学生理解判定条件的应用。

3.拓展探究(20分钟)步骤1:学生小组合作学习。

-学生们分小组进行合作探究,每组一份练习题,完成后进行讨论。

步骤2:学生展示和讲解。

-每组选择一位学生代表进行展示和讲解。

-其他学生进行提问和讨论。

-教师对学生的答案进行点评和指导。

4.知识运用(20分钟)步骤1:课堂练习。

-教师出示一些练习题,让学生独立完成。

-教师巡视课堂,提供必要的帮助和指导。

步骤2:学生讲解和讨论。

-随机点名学生讲解答案和解题思路。

-其他学生进行提问和讨论。

5.归纳总结(10分钟)-教师引导学生对本节课所学内容进行归纳总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形(2)中考复习教案
教学重点:注意数形结合、分类讨论以及转化的思考方法。

教学过程:例题分析例1.如图,将两块完全相同的等腰直角三角形摆放成如图所示的样子,假设图形中的所有点、线都在同一平面内,回答下列问题:(1)图中共有多少个三角形?把它们一一写出来;(2)图中有相似(不包括全等)三角形吗?如果有,把它们一一写出来。

例2.如图,等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P为下底BC上一点(不与B、C重合),连结AP,过P点作PE交DC于E,使得∠APE=∠B (1)求证:△ABP∽△PCE;(2)求等腰梯形的腰AB 的长; (3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长;如果不存在,请说明理由.
例3.已知:如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B 作弦BF交AD于点E,交半圆O于点F,弦AC与BF交于点H,且AE=BE. 求证:(1)��AB=��AF;(2)AH•BC=2AB•BE.
例4.如图矩形ABCD的边长AB=2,AD=3,点D在直线上,AB在x
轴上。

(1)求矩形ABCD四个顶点的坐标;(2)设直线与y轴的交点为E,M(x,0)为x轴上的一点(x>0),若ΔEOM∽ΔCBM,求点M的坐标;(3)设点P沿y轴在原点O(0,0),与H(0,-6)点之间移动,问过P、A、B三点的抛物线的顶点是否在此矩形的内部,请说名理由。

例5.已知如图,ΔABC的内接矩形EFGH的一边在BC上,高AD=16,BC=48。

(1)若EF:FH=5:9,求矩形EFGH的面积;(2)设EH=x,矩形EFGH的面积为y,写出y与x的函数关系式;(3)按题设要求得到的无数多个矩形中,是否能够找到两个不同的矩形,使它们的面积之和等于ΔABC的面积?若能找到,请你求出它们的边长EH,若找不到,请你说明理由。

例6.如图(1),AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于E,EF⊥BD,垂足为F,我们可以证明成立(不要求证明),若将图中的垂直改为斜交,如图(2),AB∥CD,AD,BC,相交于点E,过E作EF∥AB,交BD于F,则:(1)还成立吗?如果成立,请给出证明;如果不成立,请说明理由;(2)若AB、CD是方程的两根,
设EF为y,求y与m之间的关系式及m的取值范围。

(3)请给出,,间的关系式,并给出证明。

例7.如图1,已知AB是⊙O的直径,AB垂直于弦CD,垂足为M,弦AE与CD交于F,则有结论AD2=AE•AF成立(不要求证明). (1)若将弦CD向下平移至与⊙O相切于B点时,如图2,则AE.AF是否等于AG2?如果不相等,请探求AE•AF等于哪两条线段的积?并给出证明. (2)当CD继续向下平移至与⊙O相离时,如图3,在(1)中探求的结论是否还成立,并说明理由
二.同步检测 1.在梯形ABCD中AD∥BC,AC与BD交于点O,如果AD:BC=1:3,下列结论正确() A. B. C. D. 2.已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比为1:4,那么两底的比为() A.1:2 B.1:4 C.1:8 D:1:16 3.一油桶高0.8m,桶内未盛满油,一根木棒长1m,从桶该小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分长0.8m,则桶内油面的高度为__________m。

4.如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E,求证:(1)AD=AE;
(2)AB•AE=AC•DB.
5.已知如图,矩形ABCD中,CH⊥BD于点H,P为AD上的一个动点(点P与点A、D不重合),CP与BD交于点E,若CH=60/13,DH:CD=5:13,设AP=x,四边形ABEP的面积为y。

(1)求BD的长;(2)求y与x的函数关系式,并写出自变量x的取值范围;(3)当四边形ABEP的面积是ΔPED面积的5倍时,连接PB,判断ΔPAB与ΔPDC 是否相似?如果相似,求出相似比;如果不相似,请说明理由。

6.如图,在矩形ABCD中,E为AD的中点,FE⊥EC交AB于F,连接FC(AB >AE)。

(1)ΔAEF与ΔEFC是否相似?若相似,证明你的结论;若不相似,请说明理由。

(2)设,是否存在这样的k值,使得ΔAEF∽ΔBCF?若存在,证明你的结论并求出k值;若不存在,请说明理由。

7.如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是B。

请在射线BF上找一点M,使以点B、M、C为顶点的三角形与∆ABP相似(请注意:全等三角形是相似图形的特例)。

8.如图,在∆ABC中,点E、F在BC边上,点D、G分别在AB、AC上,四边形DEFG是矩形,若矩形DEFG的面积与∆ADG的面积相等,设∆ABC 的BC边上的高AH与DG相交于点K。

求的值。

9.如图,正∆ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交BC于点P。

(1)求证:DP=PE;(2)若D 为AC的中点,求BP的长。

10.如图,直角梯形ABCD中,AB∥CD,AB⊥BC,对角线AC⊥BD,垂足为E, AD=BD,过点E作EF∥AB交AD于F。

求证:(1)AF=BE;(2)。

相关文档
最新文档