八年级数学 二次根式的乘除 讲义(含知识点练习题)
八年级初二数学 二次根式(讲义及答案)含答案

八年级初二数学 二次根式(讲义及答案)含答案一、选择题1.下列计算正确的是( )A =B =C =D =2.下列计算结果正确的是( )A B .3=C =D=3.下列二次根式中,是最简二次根式的是( )ABC .D4.( )A .1B .﹣1C .D -5.下列运算正确的是( )A =B =C .3=D 2= 6.下列计算正确的是( )A =B 3=C =D .21=7.化简 )ABC D8.若a b > )A .-B .-C .D .9.下列运算正确的是( )A =B .(28-=C 12=D 1=10.x ≥3是下列哪个二次根式有意义的条件( )A B C D11.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对12.与根式- )A .B .x -C .D二、填空题13.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________14.若0a >化成最简二次根式为________. 15.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-16.2==________. 17.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).18.把_____________. 19.已知整数x ,y 满足y =,则y =__________.20.能合并成一项,则a =______.三、解答题21.计算及解方程组:(1-1-) (2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.先阅读下列解答过程,然后再解答:,a b,使a b m=,使得+=,ab n22m+==a b==>)+=⨯=,==,由于437,4312m n7,12+=,=即:227===+。
八年级数学下册12_2二次根式的乘除二次根式的乘除学习要点素材新版苏科版

二次根式的乘除学习重点二次根式的乘法和除法学习二次根式加减的基础. 那么怎样才能娴熟掌握二次根式乘除法的运算呢?笔者认为应注意掌握以下几个问题:一、正确理解二次根式乘法的意义因为 3 × 6 =36=322=32,2× 8= 2 8= 16=4,因此,一般地, a × b =a b (a≥0,b≥0).察看这一式子的左侧和右侧,得出等号的左侧是两个二次根式相乘,等号右侧是获得的积还是二次根式. 由此二次根式的乘法就是把被开方数的积作为积的被开方数.利用二次根式乘法的这个法例应注意:(1)要注意a≥0、 b≥0的条件,因为只有a、b 都是非负数公式才能建立. (2)从运算次序看,等号左侧是先分别求a、 b 的两因数的算术平方根,而后再求两个算术平方根的积,等号右侧是将非负数a、 b 先做乘法求积,再开方求积的算术平方根.( 3)公式 a ×b=a b( a≥0,b≥ 0) 能够推行到三个二次根式、四个二次根式等相乘的状况.( 4)依据这个性质能够对二次根式进行恒等变形,或将有的因式适合改变移到根号外边,或将根号外边的非负因式平方后移到根号内.例 1计算:( 1)-12×6;(2)3x ×6y ;( 3)x 2 y ×2x 4 y ;(4)2x3y×18xy3.剖析利用二次根式的乘法法例,关于第(3)小题,应视x+2y 为一个整体.解(1)-12×6=- 126=622=6 2 ;( 2)3x ×6y=3x 6 y =32 2xy =32xy ;( 3)x 2 y ×2x 4 y = 2 x 2 y 22 ;= ( x+2y)( 4)2x3 y × 18xy3= 2x3 y18 xy3= 62x4 y4=6x2y2.说明在进行二次根式乘法的过程中,应注意不可以随意扔掉负号,其结果必定要化简.例 2计算:( 1)0.4 × 3.6 ;(2)5 45 ×32.2 23剖析第( 1)小题的被开方数都是小数,先将被开方数进行因数分解,第( 2)小题的根号外都含有数字因数,能够模仿单项式的乘法.解( 1)0.4× 3.6=0.4 3.6 =0.40.4 9 =0.4×3=1.2.(2)5 45×322=5×3× 452=15× 3 152=1530 .2323232说明关于二次根式的被开方数或式中,若知足两个相同因数或因式即移到根号外面来,进而达到化简的目的 .二、掌握公式 a × b = a b (a≥0,b≥0)的反向运用关于公式 a × b =a b (a≥0,b≥0),我们能够反过来,即获得 a b = a ×b (a≥0,b≥0).利用这个公式,相同能够达到化简二次根式的目的.例 3化简:(1)7252;( 2)1681 ;(3) 2000 ;(4)532282.剖析利用公式 a b = a × b ,我们能够直接化简,关于2000 能够经过分解因数,关于第(4)小题能够利用平方差公式使之转变成乘积的形式,再运用公式.解( 1)7252=72×52=35;(2)16 81=16 ×81 =4×9=36;( 3)2000=10222 5 =102× 22× 5 =20 5 ;( 4)228253285328 =8125 =81 × 25 =9×5=45. 53=说明经过求解能够看出,假如一个二次根式的被开方数中有的因式( 或因数 ) 能开得尽方,能够逆向运用二次根式乘法的法例,将这些因式(或因数)开出来,进而将二次根式化简 .三、娴熟掌握二次根式除法的意义因为16 ÷ 4 =16= 4÷ 2= 2,而16 = 4 =2,因此16÷4=16 =16 . 4444一般地, a ÷ b =aa(a≥0,b>0).察看这一式子的左侧和右侧,从运算次序b b看,等号左侧是先分别求被除数、除数的算术平方根,而后再求两个算术平方根的商,等号右侧是将非负数a 除以正数b 求商,再开方求商的算术平方根. 利用二次根式这一除法法例能够进行简单的二次根式的化简与运算. 值得注意的是二次根式除法的法例中这是因为当 b = 0 时,分母为 0,没存心义 .和二次根式乘法的法例相同,二次根式除法的法例也能够反过来运用,即( a ≥ 0, b >0) ,相同能够利用这一公式化简二次根式.例 4计算:( 1) 72 ÷ 6;(2) 11÷1 .26剖析直接运用公式a ÷b =a ab化简 .b解 (1) 72÷ 6=72 = 72= 12=23 ;66(2) 11 ÷1= 111 = 3 6 =3.262 6 2说明 注意本例中第( 2)小题的书写格式,以便降低求解的难度.例 5化简:( 1) 1 15 ;( 2)25x 4 ;( 3) 0.09 121 .499 y 20.36 100剖析 利用公式a=a直接化简 .bb解 (1) 115=64=64=8;4949 497( 2)25x 4 = 25x 4 = 5x 2 ;9 y 29y 23 y( 3)0.09 121 = 0.09 121 = 0.3 11=11 .0.36 1000.36 100 0.6 10 20a ≥ 0,b > 0,a = ab b说明假如被开方数是带分数,在运算时,一般先化成假分数. ,在进行第( 3)小题的运算时,也能够先对被开方数的分子与分母同时扩大100 倍,进而化小数为整数 .经过上述两道例题的化简与运算,我们知道二次根式的除法,有两种基本方法:①把除法先写成分式的形式;②直接套用公式 a = a (a ≥0,>0).b b b四、正确理解最简二次根式的意义相关二次根式的化简与运算的结果一般化成最简单的式子,即结果要化成最简二次根式 .最简二次根式一定知足:一是被开方数不含有分母;二是被开方数不含有开得尽方的因数或因式,两者缺一不行 .例 6计算:( 1)75÷( 6 ×12);(2) 2×5÷50 .剖析第( 1)小题先做括号里的,第(2)小题先做乘法,再做除法 .解( 1)75 ÷(6×12 )=75÷ 612=675 =53=5 32=5 6;126262212(2)2× 5 ÷50= 10÷50=10=10= 1 = 5 = 5 .50505525说明经过此题的运算,我们能从中领会到怎样化去分母中含有根号的因数或因式.。
03初中数学八年级下册二次根式的乘除--知识讲解(基础)

初中数学八年级下册二次根式的乘除一知识讲解(基础)【学习目标】1、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算.2、了解最简二次根式的概念,能运用二次根式的有关性质进行化简.【要点梳理】知识点一、二次根式的乘法及积的算术平方根1.乘法法则:&够=构(a》0,bNO),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:国眼店•---•也〃J的的处•----•%(角N°,•••.•%>())•(3).若二次根式相乘的结果能写成的形式,则应化简,如716=4.2.积的算术平方根:质=&瑚lag,bNO),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足am o,b》0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有口2形式的a移到根号外面.知识点二、二次根式的除法及商的算术平方根E(a NO,b>0),即两个二次根式相除,根指数不变,把被开方数相除1.除法法则:要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a》0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根的性质:E=(a no,b>0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方"4b根.要点诠释:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.知识点三、最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式.满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1)被开方数是分数或分式;(2)含有能开方的因数或因式.【典型例题】类型一、二次根式的乘除法.⑴妗右;⑵$X&⑶手;⑷辱"【答案与解析】⑴右X由二娃;【总结升华】直接利用E•岳=、屈心成8乏0)$=£怎乏0,&>0)计算即可.举一反三:【变式】各式是否正确,不正确的请予以改正:(1)j(-4)x(-9)=q><后;⑵援X姮=4X据X屈=4幅X屈顼而二8必.【答案】(1)不正确.改正:X(-9)=^4x9=^4X^=2X3=6;(2)不正确.改正:(4—x^25=.1^-x^25=pl^x25=^/U2=^16x7=4^7-2.计算:(1)(2014秋•门头沟区期末)(2)(2014秋•松江区校级期中)计算:而【思路点拨】做二次根式的乘除时要注意计算法则,根号外和根号内的因式分别相乘除,最终计算结果要化为最简形式.【答案与解析】解:(1)原式=-2寸去膜xB度3__2X2V3■而丁4一3•(2)原式无=J17X异Q.62【总结升华】掌握乘除运算的法则,并能灵活运用.类型二、最简二次根式▼ 3.(2016*自贡)下列根式中,不是最简二次根式的是()A.VI oB.V8C.VsD.V2【思路点拨】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.【答案】B.【解析】解:因为底牙侦=2扼,因此扼不是最简二次根式.故选B.【总结升华】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.举一反三:【变式】化简(1)7(-2)2aVc5(a>0,b>0)(2)V16ab2c3【答案】(1)原式=V22a2ab2c4c=2abc2V^;(2)原式=4bc\[acMe*c 八a+b/b2-2ab+a2.己知0<a<b,化简----J——.a-bV a3b2+a2b3(b-a)2_a+b b-a---------—一•X----lx(a+b)【答案与解析】原式=—,..7-.a-b^a~b~(a+b)a-b ab V(a+b)(a+b)=L Ja+bab【总结升华】JU=a成立的条件是a>0;若a<o,则何=—a.。
2022-2023学年沪教版上海八年级数学上学期同步考点精讲精练16-3-1二次根式的乘除带讲解

16.3.1二次根式的乘除考点一、二次根式的乘法及积的算术平方根1.法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2)该法则可以推广到多个二次根式相乘的运算:;≥0,≥0,…..≥0);(3)若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点: (1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.考点二、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除..要点:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根的性质(a≥0,b>0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.题型1:二次根式的乘法1-数字型10.4 1.6)A.0.2 B.0.4 C.0.6 D.0.8D【分析】根据二次根式乘法法则计算即可.原式0.8===. 故选:D . 【点睛】本题考查了二次根式乘法法则:算术平方根的积等于各个被开方数积的算术平方根.2_________. 20 【分析】根据二次根式的乘法法则计算即可.解:原式==20=,故答案为:20. 【点睛】本题考查了二次根式的乘法法则,熟练掌握二次根式的乘法法则是解决本题的关键.题型2:二次根式的乘法2-字母型及复合型3__________.4a 【分析】根据二次根式的乘法进行求解即可.4a =; 故答案为:4a 【点睛】本题主要考查二次根式的乘法,熟练掌握二次根式的乘法法则是解题的关键. 4.下列计算正确的是( )A .B ()()35=15-⨯-C .-DDA 选项:24,计算错误,故与题意不符;B 3515=⨯=,计算步骤有误,故与题意不符;C 选项:22233633,计算错误,故与题意不符;D ,计算正确,故与题意相符. 故选D.5.计算(- ) A .4 B .8 C .16 D .32B 【分析】利用平方差公式进行计算即可.解:(=22=-20128.=-=故选B .【点睛】本题考查的是利用平方差公式进行二次根式的乘法运算,掌握公式特点是解题的关键.题型3:二次根式的乘法法则成立的条件6230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对B 【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案. 2x 30-=,0=0=, ∴x=-2或x=3,又∵2030x x +≥⎧⎨-≥⎩,∴x=3, 故选B. 【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.题型4:二次根式的除法1-数字型7___.用二次根式除法法则计算即可.=故答案为: 【点睛】本题考查了二次根式的除法,解题关键是熟练掌握二次根式除法法则,准确进行计算.8_____. 3 【分析】直接利用二次根式的除法运算计算得出即可.3=. 故答案为:3. 【点睛】本题主要考察了二次根式的除法,熟悉掌握运算的法则是解题的关键.9_____. 2 【分析】根据二次根式的除法法则计算即可求解.÷2=, 故答案为:2. 【点睛】本题考查了二次根式的除法运算,熟知二次根式的除法法则是解题关键.题型5:二次根式除法法则成立的条件10x 的取值范围是( ) A .x ≠2 B .x ≥0C .x ≥2D .x >2D【分析】根据被开方数为非负数,且分式的分母不能为0,列不等式组求出x 的取值范围即可.由题意可得:020x x ≥⎧⎨-⎩>,解得:x >2.故选D . 【点睛】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.11=成立的条件时,则x 的取值范围为 ___.32x -≤<【分析】由二次根式有意义的条件可得30,20x x 再解不等式组即可得到答案.解: 3020x x ①②由①得:3,x ≥-由②得:2,x <所以则x 的取值范围为3 2.x 故答案为:32x -≤< 【点睛】本题考查的是商的算术平方根的运算法则与二次根式有意义的条件,掌握0,0ba b a”是解本题的关键.12.下列各式:==a >0,b≥0);=-,其中一定成立的是________(填序号). ②③④ 【分析】根据二次根式的性质及运算法则逐项分析即可.①00,a b ≥>≠=00,a b ≥>;③当00,a b >≥时,3133b a a a a== ④3a 成立时,0a ≤3a aaaa ,故一定成立;故答案为:②③④. 【点睛】本题考查二次根式的性质以及乘除远算法则,熟练掌握基本性质计算法则是解题关键.题型6:二次根式的除法2-字母型及复合型13____.根据二次根式的除法法则解决此题.===故答案为: 【点睛】本题主要考查二次根式的除法,解题的关键是熟练掌握二次根式的除法法则.14___.根据二次根式的除法运算法则计算即可;原式255yx x y==; 【点睛】本题主要考查了二次根式的除法法则,准确计算是解题的关键.15=_________. x 【分析】根据二次根式的除法法则计算即可.=123⎛÷ ⎝=x . 【点睛】本题考查了二次根式的除法,熟练掌握除法法则是解答本题的关键.二次根式相除,把系数相除作为商的系数,被开方数相除,作为商的被开方数,并化为最简二次根式.16.计算:43434(32)⨯=______24 【分析】运用积的乘方的逆运算:(ab )n =anbn ,把43434(32)⨯写成433434432⨯⨯⨯左到右的顺序运算. 解:43434(32)⨯ =433434432⨯⨯⨯ =3×23 =3×8=24=故答案为:24,【点睛】此题考查了实数的运算,解决问题的关键是掌握正确的运算顺序. 17.当0x >= _________________.94先根据二次根式的定义和除法的性质可得0y >,再根据二次根式的性质化简,然后计算二次根式的除法即可得.由二次根式的定义得:2500x y y x ⎧≥⎪⎨≥⎪⎩,0x,0y ∴≥,又除法运算的除数不能为0,0y ∴≠, 0y ∴>,35xy =3xy==49=94本题考查了二次根式的定义与除法运算,熟练掌握二次根式的运算法则是解题关键.题型7:二次根式的乘除法1-数字型18.下列运算错误的是( ) A=B=C.25= D.2D 【分析】利用二次根式的运算性质分别运算后即可确定错误的选项,从而确定正确的答案. 解:A=BC、25=,正确,不符合题意; D、2故选:D.【点睛】本题考查了二次根式的运算,解题的关键是了解二次根式的有关的运算性质,难度不大.19___.先把除法转化为乘法,再计算即可完成.=【点睛】本题考查了二次根式的乘除混合运算,注意运算顺序不要出错.题型8:二次根式的乘除法2-字母型及复合型20.下列结论中,对于实数a、b,成立的个数有()=a=±;2a.A.0个B.1个C.2个D.3个C【分析】根据二次根式有意义的条件结合二次根式的乘除法及二次根式的性质逐一分析四条结论的正误,由此即可得出结论.①当a、b∴①不成立;②∵a>0,b≥0,∴ba≥0,②成立;=|a|,∴③不成立;=|a 2|=a 2, ∴④成立.综上可知:成立的结论有②④. 故选C . 【点睛】本题考查了二次根式有意义的条件、二次根式的乘除法以及二次根式的性质与化简,熟练掌握二次根式的乘除法及二次根式的性质是解题的关键.21=( )A B C D .【分析】直接利用二次根式的乘除运算法则化简求出即可.原式==故选:A 【点睛】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键. 22.计算:(1(20)a >(334÷(4(5)2(0,0)a b >>.(1)19;(2)3a ;(34)5)312-a b【分析】(1)根据二次根式的除法运算法则计算即可; (2)根据二次根式的乘除法混合运算法则计算即可; (3)根据二次根式的乘除法混合运算法则计算即可;(4)根据二次根式的乘除法混合运算法则计算即可;(5)根据二次根式的乘除法混合运算法则计算即可.(1)原式19==;(2)原式=3a ==;(3)原式331(2442=÷=⨯÷;(4)原式=(5)原式1 23()2ab =⨯÷-12ab =-212ab a =-⨯312a b =-.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待. 23.计算:(1)(2)((3)0,0)a b >>(1)2)154-;(3 【分析】 (1)根据二次根式乘除法法则计算即可;(2)根据二次根式乘除法法则计算即可;(3)根据二次根式乘除法法则计算即可.(1)原式233=⨯2=(2)原式13153()5=844⨯-⨯=-⨯-;(3)原式== 【点睛】本题考查了二次根式的混合运算,主要考查学生的化简能力,题目比较典型,但是一道比较容易出错的题目.题型9:有理化因式241的一个有理化因式是( )A B C 1 D . 1- D【分析】根据有理化因式的定义进行求解即可.两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.解:∵由平方差公式,)111x =-,11-.故选:D .【点睛】本题主要考查了对有理化因式的理解,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.25的有理化因式是 ___.根据有理化因式的定义(两个根式相乘的积不含根号)即可得答案.3x =-,【点睛】本题考查了有理化因式,熟练掌握有理化的方法是解题关键.26.写出n 的一个有理化因式:_______.n 【分析】根据平方差公式即可得出答案.解:n的有理化因式n,故答案为n.【点睛】此题考查了有理化因式的定义:两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式,及平方差计算公式,熟记有理化因式的定义是解题的关键.27.)B C DAC【分析】根据有理化因式定义:如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式,结合各个选项中两个代数式特征作出判断即可.解:∵3(2)x=-,∴故选:C.【点睛】本题考查了有理化因式的定义:两个含二次根式的非零代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一般地,282的有理化因式可以是___.2【分析】利用平方差公式进行有理化即可得.解:因为2)5=--=-,14x x22,2.【点睛】本题考查了有理化因式,熟练掌握有理化的方法是解题关键.题型10:与分母有理化计算变形问题292的倒数是( )A 2B .2C .2D A【分析】根据二次根式分母有理化的方法进行化简即可.22, 故选:A .【点睛】本题考查了二次根式的分母有理化,解题关键是熟练运用二次根式性质进行分母有理化.30.已知a=1则a 与b 的关系是( ) A .互为相反数B .互为倒数C .相等D .互为负倒数A【分析】把的分子分母同乘(1a 比较得出结论即可.1b1=--(1a=1∴a 与b 互为相反数.故选A.【点睛】本题考查分母有理化.31m >0,n >0)分别作了如下变形:()m n-====关于这两种变形过程的说法正确的是( )A .甲,乙都正确B .甲,乙都不正确C .只有甲正确D .只有乙正确D【分析】甲的做法是先把分母有理化,再约分;乙的做法是先把分子分解因式,再约分.计算过程中,要考虑m=n 这种情况.甲的做法是先把分母有理化,再约分,如果m=n 则化简不成立;乙的做法是先把分子分解因式,再约分,正确.故本题选D .【点睛】本题考查的是分母有理化的计算方法.32.若a ,b =a b 的值为( ) A .12B .14CD B【分析】将a b 的式子,从而得到a 和b 的关系,继而能得出a b 的值.a ==b 44=. ∴14a b =. 故选B .【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.题型11:二次根式乘除的应用33.若一个长方体的长为_______.12【分析】直接根据长方体体积公式求解可得.∵长方体的长为∴长方体的体积=12故答案为:12【点睛】本题考查求长方体的体积,注意正方体的体积求法与长方体类似,为棱长×棱长×棱长.34.站在竖直高度 h m 的地方,看见的水平距离是 d m ,它们近似地符合公式85h d =.某一登山者登上海拔2000 m 的山顶,那么他看到的水平距离是________m . 160 【分析】把h=2000代入公式85h d =进行即可. 解:把h=2000代入公式85h d =得 2000884008201605d ===⨯=所以答案是:160. 【点睛】本题考查了二次根式的计算.熟练掌握二次根式的性质是运算的关键.35.若3的整数部分是a ,小数部分是b ,则22a b +的值是___________.523-【分析】首先根据3的取值范围得出a ,b 的值进而求出即可.解:∵123<<,3的整数部分是a ,小数部分是b ,∴a =1,b =3-1∴()222=1+3-1=5-23a b + 故答案为:523-【点睛】此题主要考查了估算无理数的大小,得出a ,b 的值是解题关键.一、单选题11128 ) A 2B .2C .2D 2B【分析】直接根据二次根式的除法计算法则求解即可得到答案.解:原式2=. 故选B .【点睛】本题主要考查了二次根式的乘除计算,解题的关键在于能够熟练掌握二次根式的乘除计算法则. 2.下列各运算,正确的是( )A .=B 35=CD x y + B【分析】根据二次根式的运算法则和二次根式有意义的条件进行计算即可.解:A 、30=,故本选项错误;B 35,本选项正确;CD故选:B .【点睛】本题考查了二次根式的运算法则,二次根式有意义的条件,掌握这些知识点是解题关键.3.计算 )A B C D .C【分析】根据二次根式的运算法则即可求出答案.原式=故选C .【点睛】本题考查二次根式的乘除法,解题的关键是熟练运用二次根式的乘除法法则,本题属于基础题型.4( )(a >0,b >0)A .10b a B .10a b C .2a D .2a 2C【分析】根据二次根式的除法法则计算可得.解:原式2a ===, 故选C .【点睛】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.5其中0,a b ≥满足的条件是( )A .b <0B .b ≥0C .b 必须等于零D .不能确定B【分析】根据二次根式乘法法则的条件解答即可.解:=0a ≥,∴b ≥0.故选:B .【点睛】本题考查了二次根式的定义和乘法法则的理解,属于基础题型,熟知二次根式的被开方数非负是解答的关键.6 ) A .10到11之间B .9到10之间C .8到9之间D .7到8之间D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.解:原式==4∵34<,∴748<+<,故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.7)B C DAC【分析】三角形面积计算既可以用直角边计算,又可以用斜边和斜边上的高计算,根据这个等量关系即可求斜边上的高.直角三角形中,两直角边长的乘积等于斜边长与斜边上的高(h=,∴h=.故选:C.【点睛】本题考查了二次根式的运算,根据面积相等的方法巧妙地计算斜边上的高是解本题的关键.8n的最小值是()A.3 B.2 C.48 D.6A【分析】先将所给二次根式化为最简二次根式,然后再判断n的最小正整数值.∴是一个完全平方数,正整数n的最小值为3.48n是正整数,3n故选:A.【点睛】本题考查了二次根式的定义,解答本题的关键是能够正确的对二次根式进行化简.9.计算201820192)2)的结果是( )A .2+B 2 C .2 D B【分析】原式利用积的乘方变形为201820182)2)2),再利用平方差公式计算,从而得出答案.201820192)2)=201820182)2)2)=))2018222⎡⎤⎣⎦=())201812-2故选B .【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.10.已知226a b ab +=,且a >b >0,则a b a b +-的值为( )AB .C .2D .±2 A【分析】已知a 2+b 2=6ab ,变形可得(a +b )2=8ab ,(a -b )2=4ab ,可以得出(a +b )和(a -b )的值,即可得出答案.解:∵a 2+b 2=6ab ,∴(a +b )2=8ab ,(a -b )2=4ab ,∵a >b >0,∴a +b a -b∴a b a b +-= 故选A .【点睛】本题考查了分式的化简求值问题,完全平方公式的变形求值,二次根式的除法,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.二、填空题11.计算;(1=__________________;(2=_________;(3=_________;(4=__________,(5=__________;(6=____________;(7=__________;(8=__________.(1(2 (3; (4 (5 (6 (7, (8)【分析】=00a b ≥>、),反过来,可=00a b ≥>、).(1= (2=(3=4(5=(6=(7=;(8=. 【点睛】本题考查了二次根式的除法运算,掌握二次根数的除法法则是解题的关键.12=______.44 【分析】利用二次根式的混合运算法则计算即可.=4==4故答案为:4【点睛】本题考查二次根式的混合运算法则,解题的关键是熟练掌握二次根式的混合运算法则.13.化简;(1)_____________;(2___________()0a >;(3)10111)1)=_____________;45 31.【分析】(1)根据二次根式的乘法运算法则计算,然后利用二次根式性质化简即可;(2)先把被开方式因式分解,利用二次根式性质化简,化简结果也可3(3)利用乘方的逆运算分出一次幂与10次幂即))1110111=,再利用积的乘方逆运将底数用平方差公式化简后再与一次幂因式相乘.解:(1)45==;(23==()0a >;(3))))101011101)1)111111⎡⎤==⨯=⎣⎦故答案为(1)452)331.【点睛】本题考查二次根式的乘法乘方混合运算,掌握二次根式性质,二次根式乘方与乘法运算法则是解题关键.14y0xy的值为________.=,那么()20201【分析】根据非负数的性质列出方程求出x,y的值,代入所求代数式计算即可.解:由题意得,x0=,y0,解得,x=,y=则xy1=,∴()2020=.xy1故答案为:1.【点睛】本题考查的是算术平方根的非负性,绝对值的非负性,二次根式的乘法运算,有理数乘方的含义,代数式的值,一元一次方程的解法,掌握以上知识是解题的关键.15.不等式>____________.x<利用解不等式的方法与步骤求得解集,进一步化简即可.xx<x<故答案为:x<【点睛】本题考查了二次根式的实际运用,掌握解不等式的方法与二次根式的化简是解答本题的关键.16a b=,用含a、b=_________.ab【分析】的形式,即可求解.=ab故答案为ab【点睛】此题考查了二次根式乘法的逆用,熟练掌握二次根式是解题的关键.17.交通警察在处理事故时,车辆是否超速是划分责任的一个主要依据,根据实际工作经验,刹车后车轮滑过的距离可以用来推算当时的车速,所用的公式为其中v 表示车速=v d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦系数.在一段限速80km /h 的地段,发生了一起交通事故,警察在现场调查中测得24d m =, 1.3f =,则肇事汽车当时______超速.(填“已经”或“没有”)已经【分析】把d 、f 的值代入公式进行计算即可得解.∵d =24m ,f =1.3,∴v 16×5.59≈89.4km/h .∵89.4>80,∴肇事汽车当时已经超速.故答案为已经.【点睛】本题考查了二次根式的应用,把已知数据代入公式进行计算即可,计算时要用计算器.18.==……请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________.(1)n n =+≥【分析】(2=+(3=+n (n ≥1)(1)n n =+≥=(2=+(3+……,发现的规律用含自然数n (n ≥1)(1)n n =+≥.(1)n n =+≥ 【点睛】 本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.三、解答题19⎛÷ ⎝2a -根据二次根式的乘除计算法则和化简法则求解即可.解:当0a >,0b >时,原式232b b ⎛=⋅- ⎝322⎛=- ⎝2a =- 当0a <,0b <时,原式232b b ⎛=⋅ ⎝⎭ 322⎛= ⎝2a =-∴原式2a =-【点睛】本题主要考查了利用二次根式的性质化简,二次根式的乘除计算,熟知相关计算法则是解题的关键. 20.计算:(1)(25;(3))21;(4))33;(5)(6(1);(2)1;(3)6+4)4;(5)5;(6)5.【分析】(1)根据二次根式的乘法运算法则进行计算;(2)根据二次根式的乘法运算法则进行计算;(3)利用完全平方公式进行计算;(4)利用平方差公式进行计算;(5)根据二次根式的乘法运算法则进行计算;(6)根据二次根式的除法运算法则进行计算;解:(1)32⨯=(2555651===-=;(3))22211516=+=+=+(4))223331394=-=-=;(5)615==-=;(6235==+=. 【点睛】本题考查二次根式的乘除法,理解二次根式的性质,掌握二次根式乘除运算法则是解题关键.21【分析】 根据二次根式的乘法与除法法则进行计算即可.3112n m m m =⨯m n=362= 本题考查了二次根式的乘除运算及二次根式的化简,掌握二次根式乘除运算的法则并正确化简二次根式是解题的关键.22.【分析】根据二次根式的乘除运算法则进行即可.12=12==根据题意知:x 与y 同号== 本题考查了二次根式的乘除混合运算,掌握二次根式的乘除运算法则是关键,最后二次根式要化成最简二次根式.23.计算(1(2(x <2y <0) (1) 203;(2)-21xy 试题分析:(1)根据二次根式的乘法和除法法则计算,(2)根据二次根式的性质进行化简.试题解析÷ =203,(2x <2y <0) =2122y x y x xy -⨯--, =21xy -. 24.阅读下面问题:1;=1×1× 试求:________; (2)当n________; (3)…的值.(3)9【分析】(1)根据题目中的例子,可以将所求式子化简;(2)根据题目中的例子,可以将所求式子化简;(3)先将所求式子变形,然后计算即可.【小题1】=【小题2】=【小题3】....+11=101=-9=.【点睛】本题考查二次根式的化简求值、分母有理化、平方差公式,解答本题的关键是明确它们各自的计算方法.。
初中数学知识点精讲精析 二次根式的乘除

3.2 二次根式的乘除学习目标1.理解二次根式的乘法法则,能熟练地进行二次根式的乘法运算。
2.能熟练地进行二次根式的化简及变形。
知识详解1.二次根式的乘法二次根式的乘法:a·b=ab(a≥0,b≥0)即两个二次根式相乘,就是把被开方数相乘.2.积的算术平方根积的算术平方根,等于各算术平方根的积.利用积的算术平方根的性质可对二次根式进行化简,使其不含能开得尽方的因数或因式.3.运用二次根式乘法法则的“四点注意”(1)被开方数:乘法法则中的a,b可以是数,也可以是代数式,但都必须满足a≥0,b ≥0这个条件.(2)二次根式前的“系数”:当二次根式前面的“系数”不为1时,可类比单项式乘以单项式的法则进行运算,即系数之积作为积的系数,被开方数之积作为积的被开方数。
(3)运算的结果:二次根式相乘的结果必须化为最简.(4)二次根式法则的推广:多个二次根式相乘时,所有系数之积作为积的系数,所有被开方数之积作为积的被开方数。
4.二次根式的除法二次根式的除法:ab=ab(a≥0,b>0)即:二次根式相除,只把被开方数相除,结果仍然作为被开方数.5.商的算术平方根:商的算术平方根等于各算术平方根的商.6. 最简二次根式最简二次根式应满足以下两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.所以,化简二次根式时,要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式.(3)分母中的根号若不能直接约去,先利用除法法则将式子化为商的算术平方根,再把被开方数中的分子、分母都乘以分母,然后化简即可7. 理解二次根式除法法则的四点注意(1)二次根式除法法则中的a,b既可以是数,也可以是代数式.(2)在运算中应注意约分要彻底.(3)若法则中a,b为带分数时,则一定要先化为假分数,再运用法则进行运算.(4)运算过程中,注意符号变化,结果要化成最简二次根式.8. 二次根式化成最简二次根式“四步法”(1)转化:把根号下的带分数或小数化成假分数.(2)分解:被开方式是多项式的要进行分解因式.(3)化简:将被开方式中开得尽方的因数或因式,根据二次根式的性质,用它的算术平方根代替后移到根号外,并化去分母中的根号.(4)约分:约去可以约分的数或因式.【典型例题】例1.这个二次根式可以是(写出满足条件的一个即可).=2例2. 最简二次根式的条件是(1);(2)【答案】(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.【解析】根据最简二次根式的定义可知最简二次根式的条件是(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.例=【答案】9【解析】原式=|-9|=9.【误区警示】易错点1:最简二次根式1.当m=时,最简二次根式可以合并.【答案】1 4【解析】由题意,知:3m+1=2-m;解得14 m=易错点2:化简方法2.=【答案】7 11【解析】711原式【综合提升】针对训练1. 下列计算正确的是()A .2510a a =() B .257a a a +=CD .2. 下列运算正确的是( )A .326•x x x =B .2a+3b=5abC .22a 1a 1+=+()D 63. (a≥0)的结果是1.【答案】A【解析】A .2510a a =()项正确,B .257a a a +=,C ,D .错误。
二次根式乘除练习题带答案

二次根式乘除练习题带答案二次根式乘除练习题带答案二次根式是数学中的一个重要概念,也是我们在学习代数时经常遇到的一个知识点。
在解决实际问题或进行数学推理时,我们经常需要对二次根式进行乘除运算。
为了帮助大家更好地理解和掌握二次根式的乘除运算,下面将给出一些练习题,并附带答案供大家参考。
练习题一:计算下列二次根式的乘积,并将结果化简为最简形式:1. √3 * √52. √6 * √83. √10 * √12答案:1. √3 * √5 = √(3 * 5) = √152. √6 * √8 = √(6 * 8) = √48 = √(16 * 3) = 4√33. √10 * √12 = √(10 * 12) = √120 = √(10 * 12) = √(4 * 3 * 10) = 2√30练习题二:计算下列二次根式的商,并将结果化简为最简形式:1. √20 / √42. √27 / √93. √50 / √10答案:1. √20 / √4 = √(20 / 4) = √52. √27 / √9 = √(27 / 9) = √33. √50 / √10 = √(50 / 10)= √5练习题三:计算下列二次根式的乘积或商,并将结果化简为最简形式:1. (√2 + √3) * (√2 - √3)2. (√5 - √7) * (√5 + √7)3. (√8 + √12) / (√2 + √3)答案:1. (√2 + √3) * (√2 - √3) = (√2)^2 - (√3)^2 = 2 - 3 = -12. (√5 - √7) * (√5 + √7) = (√5)^2 - (√7)^2 = 5 - 7 = -23. (√8 + √12) / (√2 + √3)= (√4 * 2 + √4 * 3) / (√2 + √3) = (2√2 + 2√3) / (√2 + √3) = 2通过以上练习题的解答,我们可以看到二次根式的乘除运算并不复杂。
人教版八年级下册数学二次根式乘除知识点和对应练习

二次根式的乘除课堂导入计算:(1)4× 25与4× 25;(2)16× 9与16× 9.思考:对于2× 3与2× 3呢?从计算的结果我们发现2× 3=2× 3,这是什么道理呢?一、知识梳理:1、二次根式的乘法;2、二次根式的除法;3、二次根式乘除的应用、考点分类考点一:二次根式的乘法法则a·b=ab(a≥ 0,b≥0)【例1】式子x+1·2-x=(x+1)(2-x)成立的条件是()A.x≤2 B.x≥-1C.-1≤x≤2 D.-1< x<2x+1≥ 0,解析:根据题意得解得-1≤ x≤ 2.故选C.2-x≥0,方法总结:运用二次根式的乘法法则:a· b=ab(a≥0,b≥0),必须注意被开方数均是非负数这一条件.变式训练】等式x 1 x 1 x21 成立的条件是()A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或 x ≤-1解析: 有理式的乘法运算律及乘法公式对二次根式同样适用, 计算时注意最后结果要化 为最简形式.(3) 6 27×(-3 3) =- 18 27×3=- 18 81=- 18×9=- 162;34·a2· 18ab·6a b =- 23a · 36×3b 3=- 23a ·b63b=- 9a b3b.方法总结: 在运算过程中要注意根号前的因数是带分数时, 必须化成假分数, 如果被开 方数有能开得尽方的因数或因式,可先将二次根式化简后再相乘.变式训练】计算: (1) 2 5 ;(2) 3 12;(3)2 xy1考点二:二次根式的乘法的化简积的算术平方根的性质 : ab = a ·b (a ≥0, b ≥0) 【例 3】 化简:(1) (- 36)× 16×(- 9); (2) 362+482;(3) x 3+6x 2y +9xy 2.解析: 主要运用公式 ab = a · b (a ≥0,b ≥0)和 a 2= a (a ≥ 0)对二次根式进行化简. 解 : (1) (- 36)× 16×(- 9) = 36×16×9= 62× 42× 32= 62× 42× 32=1196 2 4239例 2】 (1) 3× 5; 64; (3)6 27×(- 3 3);4) 288(5)1) 49 ( 144) ; (6) 46×4×3=72;(2)362+482=(12×3)2+(12×4)2=122×(32+42)=122× 52=12×5=60;(3)x3+6x2y+9xy2=x(x+3y)2=(x+3y)2· x=|x+3y| x.方法总结:利用积的算术平方根的性质可以对二次根式进行化简.【变式训练】化简:(1)96x2y3z4(x 0,y 0);(2)2.25a2b (a 0);(3)x4x2y2(x>0);(4)2323考点三:二次根式的乘法应用【例4】小明的爸爸做了一个长为588πcm,宽为48πcm的矩形木相框,还想做一个与它面积相等的圆形木相框,请你帮他计算一下这个圆的半径(结果保留根号).解析:根据矩形的面积公式、圆的面积公式,构造等式进行计算.解:设圆的半径为r cm.因为矩形木相框的面积为588π× 48π=168π(cm2),所以πr2=168π,r=2 42cm(r=-2 42舍去).答:这个圆的半径是2 42cm.方法总结:把实际问题转化为数学问题,列出相应的式子进行计算,体现了转化思想.考点四:二次根式的除法二次根式的除法法则:0,b 0分母有理化:把分母中的根号化去,就叫分母有理化,方法是分子分母都乘以分母的有理化因式,两个根式相乘后不再含有根式,这样的两个根式就叫互为有理化因式,如 3 的有理化因式就是 3, 8 的有理化因式可以是8 也可以是 2 , a b 的有理化因式就是a b .例 5】 计算:解析: 本题主要运用二次根式的除法法则来进行计算, 若被开方数是分数, 则被开方数 相除时,可先用除以一个数等于乘这个数的倒数的方法进行计算,再进行约分.(2)- 123÷ 554=-132÷554=- 53×554=- 18=- 3 2;方法总结: 利用二次根式的除法法则进行计算时, 可以用 “ 除以一个不为零的数等于乘 这个数的倒数 ” 进行约分化简. 【变式训练】计算:考点五:二次根式除法的化简解: (1 )0.76 = 0.76=) 0.19 = 0.19=(3)(3) 62a ab b;(4) 5÷6a 2b 2abab商的算术平方根的性质:a aa 0,b 0bb例 6】若 2-a a = 2-aa ,则 a 的取值范围是 (A .a <2B .a ≤2C .0≤a <2D .a ≥0a ≥0,解析: 根据题意得 解得 0≤ a <2.故选 C.2-a > 0,变式训练】1 x 1 x成立的条件是 ( ).xx解析: 运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.方法总结: 被开方数中的带分数要化为假分数, 被开方数中的分母要化去, 即被开方数不含 分母,从而化为最简二次根式.考点六:最简二次根式1)被开方数不含分母; ( 2)被开方数中不含能开得尽方的因数或因式.例 8】 在下列各式中,哪些是最简二次根式?哪些不是?并说明理由.解析: 根据满足最简二次根式的两个条件判断即可.方法总结: 运用商的算术平方根的性质: 数且分母不等于零这一条件(a >0,b ≥0),必须注意被开方数是非负A . x < 1 且 x ≠0B . x >0 且 x ≠ 1C .0<x ≤1D .0<x < 1(2) 43a c4b 2(a >0,b > 0,c >0).例 7】 化简:(3) 25; (4) 0.5;(5) 154.解: (1) 45=3 5,被开方数含有开得尽方的因数,因此不是最简二次根式;(3) 25,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简 二次根式; 因此不是最简二次根式;(5) 145= 95= 3 5 5,被开方数中含有分母,因此它不是最简二次根式.方法总结: 解决此题的关键是掌握最简二次根式的定义, 最简二次根式必须满足两个条 件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.变式训练】把下列式子化成最简二次二次根式3) 4y (4) 16ab 2c 3(b 0,c 0)例 9】座钟的摆针摆动一个来回所需的时间称为一个周期, 其中 T 表示周期(单位:秒),l 表示摆长 (单位:米),g =9.8米/秒2,假若一台座钟摆长为 0.5米,它每摆动一个来回发出一次滴答声, 那么在 1 分钟内, 该座钟大约发出了多少次滴答声( π≈ 3.14)?解析: 由给出的公式代入数据计算即可. 要先求出这个钟摆的周期, 然后利用时间除周 期得到次数.,被开方数中含有分母,因此它不是最简二次根式1) 49 121 ( 2) 3005) 24 276) 18 20 75 7) 3243522,被开方数含有小数,其周期计算公式为方法总结: 解决本题的关键是正确运用公式. 用二次根式的除法进行运算, 解这类问题 时要注意代入数据的单位是否统一.变式训练】体积为 18 的长方体的宽为 1cm ,高为 =2 cm ,求这个长方体的长课后作业:2. 已知 x , y 均为实数,且满足 =( y -1 ) ,那么 x2013- y2013= _________3. y = 中实数 x 的取值范围是4. 已知 n 是一个正整数, 是整数,则 n 的最小值是 _______________________5. 有理数 m ,n 在数轴上的位置如图所示,那么化简 | m -n |-的结果是 __________6.. 已知长方形的宽是 3 ,它的面积是 18 ,则它的长是 _______________________7. 若 y = -2,则(x +y )2=解: 滴答声.60T60≈42(次 ),∴在 1 分钟内,该座钟大约发出了 42 次1. 把二次根式 化成最简二次根式,则∵T =290..85≈1.42, 9.88.把根号外的因式移到根号内,结果为9.计算:×(a≥0)=10.若=2x-1 ,则x 的取值范围是9)(12)。
二次根式运算专题:八年级下册

二次根式运算专题:八年级下册1. 简介二次根式是数学中的一种基本表达形式,通常表示为√a,其中a是非负实数。
在八年级下册的数学课程中,我们将学习如何进行二次根式的运算,包括加减乘除以及指数幂的运算。
2. 二次根式的加减法2.1 同底数二次根式的加减法同底数二次根式的加减法运算规则如下:√a + √a = 2√a√a - √a = 02.2 不同底数二次根式的加减法不同底数二次根式的加减法运算规则如下:√a + √b = √(a + b) (a ≥ b)√a - √b = √(a - b) (a ≥ b)3. 二次根式的乘除法3.1 同底数二次根式的乘除法同底数二次根式的乘除法运算规则如下:√a * √a = √a^2 = a√a / √a = 13.2 不同底数二次根式的乘除法不同底数二次根式的乘除法运算规则如下:√a * √b = √(a * b)√a / √b = √(a / b)4. 二次根式的指数幂二次根式的指数幂运算规则如下:(√a)^n = √(a^n) (n为正整数)(√a)^(-n) = 1 / (√(a^n)) (n为正整数)5. 综合练习以下是一些八年级下册数学课程中关于二次根式运算的综合练习题:1. 计算:(√2 + √3) * (√2 - √3)2. 计算:√8 / √23. 计算:(√3)^44. 计算:√(16 * 9)6. 总结通过本专题的学习,我们了解了二次根式的加减法、乘除法以及指数幂的运算规则,并通过综合练习题进行了巩固。
希望同学们能够掌握这些运算方法,并在实际问题中灵活运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.3 与 4 之间
B.4 与 5 之间
2之间
D.6 与 7 之间
24 =_________;
75a3 =_________;
25x3 50x2 x ≥ 0 =_________.
2.5 下列二次根式中,最简二次根式是( )
A. 2x2
B. 0.5
(3)
48 2
1 ;
2
(4) 10mn2 6m2n .
6 若 2mn2 和 33m2n2 都是最简二次根式,则 m _____, n ______ .
7 已知 a,b 是正整数. (1)若 7 是整数,则满足条件的 a 的值为____________;
a
(2)若 7 10 是整数,则满足条件的有序数对 a,b 为__________________
A.6 至 7 之间
B.7 至 8 之间
C.8 至 9 之间
D.9 至 10 之间
例 2.1.2 填空: 3 ( 3 12) __________,
2a 2b
c =__________.
5b c 5a
例 2.1.3 已知 x 3 2 , y 3 2 ,则 x3 y xy3 =__________.
ab
8 计算:(1) 1 12 3 24 2
(2)
8
2
1 2
(3) 2 5 3 2 2 5 3 2 (4) 3 83 2 2
二次根式的乘除
知识精讲 一.二次根式的乘法法则: a b ab ( a 0 , b 0 ).
二.二次根式的除法法则: a a ( a 0 , b 0 ). bb
三.最简二次根式 最简二次根式需要满足的条件: (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式; (3)分母中不含二次根式.
1 x 1
(3) 3 2 y x 0
3x
随堂练习
2.1 计算:
1 ×
27 =__________.
3
2012
2013
2.2 3 2 3 2 =__________.
(4)
x5
x
1
x 1
x
1
2.3 若平行四边形的一边长为 2,面积为 4 6 ,则此边上的高介于( )
二:除法
例 2.2.1 如果 ab>0,a+b<0,那么下面各式:① a = a ,② a • b =1,③ ab ÷ a =-b,其
bb
ba
b
中正确的是( )
A.①②
B.②③
C.①③
D.①②③
例 2.2.2 计算(1) 18 8 (2) 4a 9a (3) 48 3 27 3
C. x2 y2
D. 1 x
课下练习
1 在算式 (
3)
( 3 ) 的 中填上运算符号,使结果最大,这个运算符号是( )
3
3
A.加号
B.减号
C.乘号
D.除号
2 在算式(- 3 )囗(- 3 )的囗中填上运算符号,使结果最大,这个运算符号是( )
3
3
A.加号
B.减号
C.乘号
D.除号
3 下列二次根式
三点剖析 一.考点:1.二次根式的乘法;2.二次根式的除法;3.最简二次根式.
二.重难点:1.二次根式的乘除法运算;2.二次根式的化简.
三.易错点:
1.利用乘除法则时注意 a、b 的取值范围, a、b 都非负,否则不成立;
2.二次根式的计算最终结果一定要化简成最简二次根式.
例题 一:乘法
例 2.1.1 计算 32 1 2 5 的结果估计在( ) 2
三:最简二次根式
例 2.3.1 在 下 列 二 次 根 式 10 , a ,2 5m , 3x2 , a2 b2 , a , 12x , a b , 1 ,a
2
3
3 2 2
a b 中,最简二次根式有__________. 2
例 2.3.2 化简:
(1) 5 1 5
(2) 1 x
6x1 ,
a2 b2 ,
2ab2 ,
0.5ab ,
a,
b ,
34
24x ,
x2 4x 4 中,最简二
次根式的个数是( )
A.1 个
B.2 个
C.3 个
D.4 个
4 若 20n 是整数,则正整数 n 的最小值为____.
5 计算:(1) 18 24 60 ;(2) 2 3a 4 6ab ;