(华师大版)七年级数学下册期末考试题
华师大版数学七年级下册期末考试试卷附答案

华师大版数学七年级下册期末考试试题第I卷(选择题)一、单选题(每小题4分,共40分)1.下列式子属于不等式的个数有()①2 3x>50;①3x=4;①-1>-2;①23x;①2x≠1.A. 1个B. 2个C. 3个D. 4个2.下列方程组中是二元一次方程组的是()A. {x+y=3z+x=5B. {x+y=5y2=4 C. {x+y=3xy=2 D. {x=y+11x2−2x=y+x23.若三角形的两边长分别为7和9,则第三边的长不可能是()A. 5B. 4C. 3D. 24.一个三角形的三个内角中()A. 至少有一个钝角B. 至少有一个直角C. 至多有一个锐角D. 至少有两个锐角5.下列图标中轴对称图形的个数是()A. 1个B. 2个C. 3个D. 4个6.如果关于x的一元一次不等式组的解集在数轴上的表示如图所示,那么该不等式组的解集为()A. x≥﹣1B. x <2C. ﹣1≤x≤2D. ﹣1≤x <27.下列说法中,错误的个数为( )①若a >b ,则a +c >b +c ;②若a >b ,则ac >bc ;③若a >b ,则ac 2>bc 2;④若a >b ,c >d ,则ac >bd ;⑤若a <b <0<c ,则a 2c <b 2c.A. 2个B. 3个C. 4个D. 5个8.一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x 元,可列方程为()A. ()0.828150%x x +=+B. ()0.8-28150%x x =+C. ()280.8150%x x +=⨯+D. ()-280.8150%x x =⨯+9.如图,将①ABC 绕着点C 顺时针旋转50°后得到①A ’B’C .若∠A =40°,∠B′=110°,则①BCA ′的度数为( )A. 30°B. 50°C. 80°D. 90° 10如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ΔABC 处的A′处,折痕为DE .如果∠A =α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A. γ=2α+βB. γ=α+2βC. γ=α+βD. γ=180∘−α−β第II 卷(非选择题)二、填空题 (每小题4分,共32分)11.若正多边形的每一个内角为135∘,则这个正多边形的边数是__________.12.不等式组{x+1>01−12x≥0的最小整数解是__________.13.已知a,b,c是ΔABC的三边长,a,b满足|a−7|+(b−1)2=0,c为奇数,则c=__________.14.已知关于x的不等式3x﹣a≤0的正整数解恰是1,2,3,则a的取值范围__________.15.若a、b、c是①ABC的三边,且满足|a+b-8|+|a-b-2|=0,则c的取值范围____________..16.若235,{323x yx y+=-=-则2(2x+3y)+3(3x-2y)=________.17.如图,将周长为15cm的①ABC沿射线BC方向平移2cm后得到①DEF,则四边形ABFD的周长为_____cm 18.如图,五边形ABCDE是正五边形,若l1//l2,则∠1−∠2=__________.21题17题三.解答题。
华师大版七年级下册数学期末考试试卷及答案

华师大版七年级下册数学期末考试试题一、单选题1.已知7x =是方程27x ax -=的解,则a =( )A .1B .2C .3D .72.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.不等式1122x +的解集是( ) A .1x B .2x C .12x D .12x - 4.三角形的两边长分别是4和7,则第三边长不可能是( )A .4B .6C .10D .125.下列说法错误的是( )A .若a b =,则ac bc =B .若1b =,则ab a =C .若a b c c=,则a b = D .若()()11a c b c -=-,则a b = 6.用正三角形和正六边形铺成一个平面,则在同一个顶点处,正三角形和正六边形的个数之比为( )A .4:1B .1:1C .1:4D .4:1或1:1 7.已知关于x ,y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则m ,n 的值为( ) A .51m n =⎧⎨=⎩ B .15m n =⎧⎨=⎩C .32m n =⎧⎨=⎩D .23m n =⎧⎨=⎩ 8.如果关于x 的方程3212x a +=和方程()3423x x -=-的解相同,那么与a 互为倒数的是( )A .3B .9C .19D .529.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°10.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g11.若关于x 的不等式()()131a xa --的解都能使不等式5x a -成立,则a 的取值范围是( )A .1a 或2a ≥B .2a ≤C .12a ≤D .2a =12.如图,在ABC ∆中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,2BD DC =,8BGD S ∆=,3AGE S ∆=,则ABC ∆的面积是( )A .16B .19C .22D .30二、填空题 13.关于x 的方程()232523m a x x -++-=是一元一次方程,则a m +=__________ 14.若关于x ,y 的二元一次方程组23122x y k x y +=-⎧⎨+=-⎩的解满足1x y +=,则k 的值是______;15.如图,已知ABC ∆的面积为16,8BC =,现将ABC ∆沿直线BC 向右平移a 个单位到DEF ∆的位置,当ABC ∆所扫过的面积为32时,a 的值为____;16.如图,在ABC ∆中,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC ∆的外角EAC ∠,内角ABC ∠,外角ACF ∠,以下结论:①//AD BC ;②ACB ADB ∠=∠;③90ADC ABD ∠+∠=︒;④1452ADB CDB ∠=︒-∠,其中正确的结论有__.三、解答题17.(1)解方程:2532234x x +--=.(2)解不等式组:12025112x x x ⎧+≥⎪⎪⎨+⎪-<--⎪⎩,并将解集在数轴上表示.18.如图所示,每个小正方形的边长为1,ABC ∆,DEF ∆的顶点都在小正方形的顶点处.(1)将ABC ∆平移,使点A 平移到点F ,点B ,C 的对应点分别是点'B ,'C ,画出''FB C ∆; (2)画出DEF ∆关DF 于所在直线对称的'DE F ∆;(3)求四边形'''B C FE 的面积.19.已知y=kx+b .当x=1时,y=3;当x=-2时,y=9.(1)求出k ,b 的值;(2)当-3≤x ≤3时,求代数式x-y 的取值范围.20.如图,在ABC ∆中,AD 是高,10DAC ∠=︒,AE 是ABC ∆外角MAC ∠的平分线,交BC 的延长线于点E ,BF 平分ABC ∠交AE 于点F ,若46ABC ∠=︒,求AFB ∠的度数。
华师大版数学2023年七年级下册第二学期期末复习检测卷【含答案】

华师大版数学2023年七年级下册第二学期期末复习检测卷一、选择题(每题3分,共30分)1.下列图形中,是轴对称图形的有( )(第1题)A .4个B .3个C .2个D .1个2.若x =1是方程ax +2x =1的解,则a 的值是( )A .-1B .1C .2D .-123.下列等式变形不一定正确的是( )A .若x =y ,则x -5=y -5B .若x =y ,则ax =ayC .若x =y ,则3-2x =3-2yD .若x =y ,则=xc yc4.若关于x 的方程x +k =2x -1的解是负数,则k 的取值范围是( )A .k >-1B .k <-1C .k ≥-1D .k ≤-15.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a -3|+(b -7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7 B .7<c <10 C .3<c <7D .4<c <106.如图,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A .20 cm 2B .15 cm 2C .10 cm 2D .25 cm2(第6题) (第7题) (第8题)7.如图,将△ABC 绕点A 逆时针旋转90°能与△ADE 重合,点D 在线段BC 的延长线上,若∠BAC =20°,则∠AED 的大小为( )A .135°B .125°C .120°D .115°8.如图,桐桐从A 点出发,前进3 m 到点B 处后向右转20°,再前进3 m 到点C 处后又向右转20°,…,这样一直走下去,她第一次回到出发点A 时,一共走了( )A .100 mB .90 mC .54 mD .60m9.小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是( )A .20分B .22分C .23分D .25分(第9题) (第10题)10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°二、填空题(每题3分,共15分)11.若一个正多边形的每个外角都等于45°,则用这种多边形能铺满地面吗?答:________.(填“能”或“不能”)12.如图,在△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA 到E ,连结EF ,则∠1、∠2、∠3的大小关系是________.(第12题) (第15题)13.若代数式3x +2与代数式x -10的值互为相反数,则x =________.14.二元一次方程组的解x ,y 的值相等,则k =________.{3x +2y =10,kx +(k +2)y =6)15.如图,l 1∥l 2,五边形ABCDE 是正五边形,那么∠1-∠2的度数为________.三、解答题(共75分)316.(8分)解方程(组):(1)-+=1; (2)2x -12x -24{34 x +y =12,4x -2y =10.)17.(9分)解不等式组:然后把它的解集在数轴上表示出来,{2x +3≥x +11,3x -105<4,)并求出x 的整数解.18.(8分)在图①,图②的网格纸中,△ABC 与△DEF 的三个顶点都在格点上.(1)在图①中,以点A 为对称中心画一个与△ABC 成中心对称的图形;(2)在图②中,将△DEF 绕点D 顺时针方向旋转90°,画出旋转后的图形.(第18题)19.(9分)如图,一条直线分别交△ABC的边及延长线于点D、E、F,∠A=20°,∠CED=100°,∠D=35°,求∠B的度数.(第19题)20.(9分)如图,∠1、∠2、∠3、∠4是四边形ABCD的四个外角.用两种方法说明∠1+∠2+∠3+∠4=360°.(第20题)21.(10分)如图,将△ABC沿射线AB的方向移动2 cm到△DEF的位置.5(1)找出图中所有平行的直线;(2)找出图中与AD 相等的线段,并写出其长度;(3)若∠ABC =65°,求∠BCF的度数.(第21题)22.(11分)如图,在△ABC 中,∠C =40°.将△ABC 绕点A 按逆时针方向旋转得到△ADE ,连结BD .当DE ∥AC 时,求∠ABD 的度数.(提示:在一个三角形中,若两条边相等,则它们所对的角也相等)(第22题)23.(11分)夕阳红街道办事处为给社区干净整洁的社区环境,加入环境保洁队伍,需要购置一批保洁用具,已知1把扫帚和3把拖把共需26元;3把扫帚和2把拖把共需29元.(1)求一把扫帚和一把拖把的售价各是多少元;(2)办事处准备购进这两种保洁工具共50把,并且扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,哪种方案最省钱?请说明理由.7答案一、1.C 2.A 3.D 4.B 5.B 6.A 7.D 8.C 9.C 10.A 点拨:设A ′D 与AC 交于点O .∵∠A =40°,∴∠A ′=∠A =40°.∵∠1=∠DOA +∠A ,∠1=112°,∴∠DOA =∠1-∠A =112°-40°=72°.∵∠DOA =∠2+∠A ′,∴∠2=∠DOA -∠A ′=72°-40°=32°.二、11.不能 12.∠1>∠2>∠3 13.2 14.1215.72° 点拨:如图,延长AB 交l 2于点M.(第15题)∵五边形ABCDE ∴正五边形ABCDE 的每个外角相等.∴∠MBC ==72°.360°5∵l 1∥l 2,∴∠2=∠BMD .∵∠1=∠BMD +∠MBC ,∴∠1-∠2=∠1-∠BMD =∠MBC =72°.三、16.解:(1)-+=1,2x -12x -24去分母,得-2(2x -1)+(x -2)=4,去括号,得-4x +2+x -2=4,移项,得-4x +x =4+2-2,合并同类项,得-3x =4,系数化为1,得x =-.43(2){34x +y =12,①4x -2y =10.②)①×2+②,得x =11,解得x =2.112把x =2代入②,得8-2y =10,解得y =-1,故方程组的解为{x =2,y =-1.)17.解:解2x +3≥x +11,得x ≥8;解<4,得x <10,3x -105∴不等式组的解集是8≤x <10.在数轴上表示为:(第17题)∴x 的整数解是8、9.18.解:(1)如图①,△AB ′C ′即为所求;(第18题)(2)如图②,△DE ′F ′即为所求.19.解:∵∠CED =100°,∠D =35°,∴∠BCD =180°-∠CED -∠D =180°-100°-35°=45°.∵∠BCD 是△ABC 的外角,∴∠B =∠BCD -∠A =45°-20°=25°.920.解:方法1:∵∠1+∠BAD =180°,∠2+∠ABC =180°,∠3+∠BCD =180°,∠4+∠CDA =180°,∴∠1+∠BAD +∠2+∠ABC +∠3+∠BCD +∠4+∠CDA =180°×4=720°.∵∠BAD +∠ABC +∠BCD +∠CDA =360°,∴∠1+∠2+∠3+∠4=360°.方法2:如图,连结BD,(第20题)∵∠1=∠ABD +∠ADB ,∠3=∠CBD +∠CDB ,∴∠1+∠2+∠3+∠4=∠ABD +∠ADB +∠2+∠CBD +∠CDB +∠4=180°×2=360°.21.解:(1)AE ∥CF ,AC ∥DF ,BC ∥EF .(2)AD =CF =BE =2 cm.(3)∵AE ∥CF ,∠ABC =65°,∴∠BCF =∠ABC =65°.22.解:∵将△ABC 绕点A 按逆时针方向旋转得到△ADE ,∴∠BAD =∠EAC ,△ADE ≌△ABC ,∴∠C =∠E =40°,AB =AD .∵DE ∥AC ,∴∠E =∠EAC .∴∠BAD =∠C =40°.∵AB =AD ,∴∠ABD =∠ADB ,∴∠ABD =(180°-∠BAD )=70°.1223.解:(1)设一把扫帚的售价是x 元,一把拖把的售价是y 元.由题意,可得解得{x +3y =26,3x +2y =29,){x =5,y =7.)答:一把扫帚的售价是5元,一把拖把的售价是7元.(2)设扫帚买了m 把,共花费W 元,则拖把买了(50-m )把.由题意得,W =5m +7(50-m )=-2m +350.∵扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,∴2(50-m )≤m ≤3(50-m ),解得≤m ≤.1003752∵m 为正整数,∴m 可以取34,35,36,37,∴共有四种方案:方案一:扫帚34把,拖把16把,共花费:-2×34+350=282(元).方案二:扫帚35把,拖把15把,共花费:-2×35+350=280(元).方案三:扫帚36把,拖把14把,共花费:-2×36+350=278(元).方案四:扫帚37把,拖把13把,共花费:-2×37+350=276(元).∵282>280>278>276,∴方案四最省钱.11。
华师大版七年级下册数学期末测试卷(含答案及答题卡)

2021 年春期义务教育阶段教学质量监测
七年级 数学
(考试时间:120 分钟;满分 150 分) 注意事项: 1.答题前,考生在答题卷上务必将自己的姓名、学校、班级、考号填写清楚,并贴 好条形码.请认真核准条形码上的考号、姓名和科目. 2.解答选择题时,每小题选出答案后,用 2B 铅笔把答题卷上对应题目的答案标号涂 黑,如需改动,用橡皮擦干净后,再选涂其他答案标号. 3.解答填空题、解答题时,请在答题卷上各题的答题区域内作答.
x=3··················································································(4 分)
2x y 2①
(2)解:
2x
3y
10②
.
由①-②得,4y=-8,y=-2··································································· (2 分) 把 y=-2 代入①,解得:x=2,···························································· (3 分)
2021 年春期数学学科参考答案与评分细则 第 2页(共 3页)
一、选择题:(本大题共 12 个小题,每小题 4 分,共 48 分)在每小题给出的四个选项中, 只有一项是符合题目要求的.(注意:在.试.题.卷.上.作.答.无.效.)
1.现实世界中,对称现象无处不在,我国的汉字有些也具有对称性,下列汉字是轴对称
最新华东师大版七年级数学下册各章综合测验及期中期末试卷(精选配套习题,含答案)

华东师大版七年级数学下册习题第六章一元一次方程 (1)第七章一次方程组 (9)第八章一元一次不等式 (16)第九章多边形 (23)第十章轴对称、平移与旋转 (31)期中试卷 (39)期末测试 (46)第六章一元一次方程一、选择题(每小题3分,共30分)1.下列是一元一次方程的是( )A.8+72=2×40 B.9x=3x-8C.5y-3 D.x2+x-1=02.解方程x-13-4-x2=1时,去分母正确的是( )A.2(x-1)-3(4x-1)=1 B.2x-1-12+x=1C.2(x-1)-3(4-x)=6 D.2x-2-12-3x=6 3.研究下面解方程1+4(2x-3)=5x-(1-3x)的过程:①去括号,得1+8x-12=5x-1-3x;②移项,得8x-5x+3x=-1-1+12;③合并同类项,得6x=10;④未知数系数化为1,得x=5 3 .对于上面的解法,你认为( )A.完全正确 B.变形错误的是①C.变形错误的是② D.变形错误的是③4.当x=3时,下列方程成立的个数有( )①-2x-6=0;②|x+2|=5;③(x-3)(x-1)=0;④13x=x-2.A.1个 B.2个 C.3个 D.4个5.已知关于x的方程2x+m-8=0的解是x=3,则m的值为( ) A.2 B.3 C.4 D.56.单项式3a3b2x与-13b4(x-12)a3是同类项,那么x的值是( )A.-1 B.1 C.-14D.147.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于正方体的重量的个数为( )A.2个 B.3个 C.4个 D.5个8.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( ) A.54+x=80%×108 B.54+x=80%(108-x)C.54-x=80%(108+x) D.108-x=80%(54+x)9.将x0.5-10.7=1变形为10x5=1-107,其错在( )A.不应将分子、分母同时扩大10倍 B.移项未改变符号C.去括号出现错误 D.以上都不是10.小明需要在规定时间内从家里赶到学校,若每小时走5千米,可早到20分钟;若每小时走4千米,就迟到15分钟.设规定的时间为x小时,则可列方程为( )A.5(x-2060)=4(x+1560) B.5(x+2060)=4(x-1560)C.5(x-1560)=4(x+2060) D.5(x+1560)=4(x+2060)二、填空题(每小题3分,共15分)11.若2x=-5x+3,则2x+___=3,依据是.12.当x =____时,代数式3x -28的值是2. 13.已知x =4是关于x 的一元一次方程(即x 为未知数)3a -x =x2+3的解,则a =____.14.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为____元.15.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动43周,甲、乙第一次相遇……以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转____周,时针和分针第一次相遇.三、解答题(共75分) 16.(8分)解下列方程:(1)x 2-7=5+x; (2)x -32-2x +13=1.17.(9分)截至2020年底,某省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?18.(9分)已知关于x的方程4x+2m-1=3x的解比关于x的方程3x+2m =6x+1的解大4,求m的值及这两个方程的解.19.(9分)已知小明骑车和步行的速度分别为240米/分钟,60米/分钟,小红每次从家步行到学校所需时间相同,请你根据小红和小明的对话内容(如图),求小明从家到学校的路程和小红从家步行到学校所需的时间.20.(9分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.21.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用含x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?22.(10分)某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,甲队单独完成该项工程需20天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独做,每天各可完成多少工作量?单独完成这项工程乙需要多少天?(2)若工程管理部门决定从这两个队中选一个单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.23.(11分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7·化为分数形式.由于0.7·=0.777……,设x =0.777……①, 则10x =7.777……②,②-①得9x =7,解得x =79,于是得0.7·=79.同理可得0.3·=39=13,1.4·=1+0.4·=1+49=139根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) 【基础训练】(1)0.5·=________,5.8·=________;(2)将0.2·3·化为分数形式,写出推导过程; 【能力提升】(3)0.3·15·=________,2.01·8·=________;(注:0.3·15·=0.315315……,2.01·8·=2.01818……) 【探索发现】(4)①试比较0.9·与1的大小:0.9·________1;(填“>”“<”或“=”)②若已知0.2·85714·=27,则3.7·14285·=________.(注:0.2·85714·=0.285714285714……)答案选择题:1-5:BCBCA 6-10:BDBBA 填空题:11._5x 等式的性质 12. 6 13.3 14.415. 1211 解答题16..(1)x =-24 (2)x =-1717. 解:设市县级自然保护区有x 个,则省级自然保护区有(x +5)个,根据题意,得10+x +5+x =49,解得x =17,∴x +5=22.答:省级自然保护区有22个,市县级自然保护区有17个18. 解:m =-1,第一个方程的解是x =3,第二个方程的解是x =-1 19. 解:设小红从家步行到学校所需时间为x 分钟,则小明从家步行到学校需(x +2)分钟,小明从家到学校骑车需(x -4)分钟,则240×(x -4)=60×(x +2),解得x =6,∴小明从家到学校的路程为240×(6-4)=480(米),小红从家步行到学校需6分钟20. 解:(1)设成人人数为x 人,则学生人数为(12-x)人.根据题意,得35x +352(12-x)=350.解得x =8.所以学生人数为12-8=4(人),成人人数为8人 (2)如果买团体票,按16人计算,共需费用:35×0.6×16=336(元).336<350,所以购团体票更省钱21. 解:(1)∵裁剪时x 张用A 方法,∴裁剪时(19-x)张用B 方法.∴侧面的个数为6x +4(19-x)=(2x +76)个,底面的个数为:5(19-x)=(95-5x)个 (2)由题意,得2(2x +76)=3(95-5x),解得x =7,∴盒子的个数为2×7+763=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子22. 解:(1)甲的工作量为120,由题意得乙每天完成的工作量为112-120=130,∴乙单独完成的天数为1÷130=30(天),∴甲、乙两队单独做,每天完成的工作量分别为120,130;单独完成这项工程乙需要30天 (2)设乙队每天的工程费用为x 元,则甲队的费用为(x +150)元,∴12x +12(x +150)=13 800, 解得x =500,x +150=650(元),甲单独完成所需费用为20×650=13 000(元),乙单独完成所需费用为30×500=15 000(元),故从节约资金的角度考虑,应选择甲工程队23. 解:(1)由题意知0.5·=59,5.8·=5+89=539,故答案为:59 539(2)0.2·3·=0.232323……,设x =0.232323……①,则100x =23.2323……②,②-①,得99x =23,解得x =2399,∴0.2·3·=2399(3)同理,0.3·15·=315999=35111,2.01·8·=2+110×1899=11155,故答案为:55111 11155(4)①0.9·=99=1,故答案为:= ②3.7·14285·=3+714285999999=3+57=267.故答案为:267第七章 一次方程组一、选择题(每小题3分,共30分)1.已知2x -3y =1,用含x 的代数式表示y 正确的是( )A .y =23x -1B .x =3y +12C .y =2x -13D .y =-13-23x2.方程组⎩⎨⎧3x +2y =7①,4x -y =13②,下列变形正确的是( )A .①×2-②消去xB .①-②×2消去yC .①×2+②消去xD .①+②×2消去y 3.方程组⎩⎨⎧x -y =3,3x -8y =14的解为( )A.⎩⎨⎧x =-1y =2B.⎩⎨⎧x =1y =-2C.⎩⎨⎧x =-2y =1D.⎩⎨⎧x =2y =-14.已知有理数x ,y 满足|x +6y -7|+6x +y =0,则x +y 的值是( ) A .1 B.32 C.52D .35.二元一次方程3x +y =10在正整数范围内解的组数是( )A .1B .2C .3D .46.已知⎩⎨⎧x =3,y =2是二元一次方程组⎩⎨⎧ax +by =5,ax -by =1的解,则b -a 的值为( )A .0B .1C .2D .37.如果方程组⎩⎨⎧4x +3y =7,kx +(k -1)y =3的解x ,y 的值相等,则k 的值为( )A .2B .0C .1D .-28.对于有理数x ,定义f (x )=ax +b ,若f (0)=3,f (-1)=2,则f (2)的值为( )A .5B .4C .3D .1 9.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A.⎩⎨⎧11x =9y (10y +x )-(8x +y )=13B.⎩⎨⎧10y +x =8x +y 9x +13=11yC.⎩⎨⎧9x =11y (8x +y )-(10y +x )=13D.⎩⎨⎧9x =11y (10y +x )-(8x +y )=13 10.阅读理解:a ,b ,c ,d 是实数,我们把符号⎪⎪⎪⎪⎪⎪a b c d 称为2×2阶行列式,并且规定:⎪⎪⎪⎪⎪⎪ab cd =a ×d -b ×c ,例如:⎪⎪⎪⎪⎪⎪3 2-1 -2=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解可以利用2×2阶行列式表示为⎩⎪⎨⎪⎧⎪⎪⎪⎪x =D xD y =D yD ;其中D =⎪⎪⎪⎪⎪⎪a 1 b 1a 2b 2,D x =⎪⎪⎪⎪⎪⎪c 1 b 1c 2 b 2,D y =⎪⎪⎪⎪⎪⎪a 1 c 1a 2 c 2. 问题:对于用上面的方法解二元一次方程组⎩⎨⎧2x +y =1,3x -2y =12时,下面说法错误的是( )A .D =⎪⎪⎪⎪⎪⎪2 13 -2=-7 B .D x =-14C .D y =27 D .方程组的解为⎩⎨⎧x =2y =-3二、填空题(每小题3分,共15分)11.若关于x ,y 的二元一次方程3x -ay =1有一个解是⎩⎨⎧x =3,y =2,则a =____.12.若二元一次方程组⎩⎨⎧x +y =3,3x -5y =4的解为⎩⎨⎧x =a ,y =b ,则a -b =____.13.母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知一束鲜花的价格是____元.14.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为___.15.若关于x ,y 的二元一次方程组⎩⎨⎧3x -my =5,2x +ny =6的解是⎩⎨⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎨⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是____. 三、解答题(共75分)16.(8分)解方程组:(1)⎩⎨⎧x +y =1,4x +y =10; (2)⎩⎪⎨⎪⎧x +32+y +53=6,x -43+2y -35=23.17.(9分)已知a +b =9,a -b =1,求2(a 2-b 2)-ab 的值.18.(9分)用消元法解方程组⎩⎨⎧x -3y =5,①4x -3y =2.②时,两位同学的解法如下: 解法一:由①-②,得3x =3.解法二:由②得,3x +(x -3y)=2,③把①代入③,得3x +5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”;(2)请选择一种你喜欢的方法,完成解答.19.(9分)已知关于x ,y 的方程组⎩⎨⎧3x -2y =4,ax +by =7与⎩⎨⎧2ax -3by =19,5y -x =3有相同的解,求a ,b 的值.20.(9分)当m 为何值时,方程组⎩⎨⎧3x +2y =m ,2x -y =2m +1的解x ,y 满足x -y =2?并求出此方程组的解.21.(10分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?22.(10分)随着中国传统节日“端午节”的临近,商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?23.(11分)为庆祝六一儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不足90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两所学校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛,请你为两所学校设计一种最省钱的购买服装方案.答案选择1-5:CDDAC6-10:AAADC填空:11.412. 7413.1514. ⎩⎨⎧x +y =200,(1-15%)x +(1-10%)y =17415.⎩⎪⎨⎪⎧a =32,b =-12解答题16. (1)解:⎩⎨⎧x =3,y =-2 (2)解:⎩⎨⎧x =3,y =417. 解:-218. 解:(1)解法一中的解题过程有错误,由①-②,得3x =3“×”,应为由①-②,得-3x =3 (2)由①-②,得-3x =3,解得x =-1,把x =-1代入①,得-1-3y =5,解得y =-2.故原方程组的解是⎩⎨⎧x =-1,y =-219. 解:a =4,b =-120. 解:m =1,x =1,y =-121. 解:(1)设这批学生有x 人,原计划租用45座客车y 辆,根据题意得⎩⎨⎧x =45y +15,x =60(y -1),解得⎩⎨⎧x =240,y =5.答:这批学生有240人,原计划租用45座客车5辆 (2)∵要使每位学生都有座位,∴租45座客车需要5+1=6(辆),所需费用为220×6=1320(元),租60座客车需要5-1=4(辆),所需费用为300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算22. 解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得⎩⎨⎧6x +3y =600,50×0.8x +40×0.75y =5200,解得⎩⎨⎧x =40,y =120.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元 (2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元23. 解:(1)5 000-92×40=1 320(元) (2)设甲、乙两所学校各有x 名,y 名学生准备参加演出,则⎩⎨⎧x +y =92,50x +60y =5 000,解得⎩⎨⎧x =52,y =40 (3)∵甲校有10人不能参加演出,∴甲校有52-10=42(人)参加演出,若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买可以节约(42+40)×60-4 100=820(元),但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买每套50元可节约4 100-3 640=460(元),因此,最省钱的购买方案是两校联合购买91套服装(即比实际人数多购买9套)第八章 一元一次不等式一、选择题(每小题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m -2<n -2 B.m 4>n4C .6m <6nD .-8m >-8n 2.不等式3x -6≥0的解集在数轴上表示正确的是( )3.不等式组⎩⎨⎧x +1>0,2x -6≤0的解集在数轴上表示正确的是( )4.不等式组⎩⎨⎧1-2x <3,x +12≤2的正整数解的个数是( ) A .5 B .4 C .3 D .25.已知(x -2)2+|2x -3y -m |=0中,y 为正数,则m 的取值范围是( )A .m <2B .m <3C .m <4D .m <56.在解不等式1-x 3<3x -22时,其中错误的一步是( ) ①去分母,得2(1-x )<3(3x -2);②去括号,得2-2x <9x -6;③移项,得-2x -9x <-6-2;④合并同类项,得-11x <-8;⑤系数化为1,得x <811. A .① B .② C .③ D .⑤7.不等式14(2x +m )>1的解集是x >3,则m 的值为( ) A .-2 B .-12 C .2 D.128.若关于x 的一元一次不等式组⎩⎨⎧6-3(x +1)<x -9,x -m >-1的解集是x >3,则m 的取值范围是( )A .m >4B .m ≥4C .m <4D .m ≤49.某商店老板销售一种商品,他要以不低于进价120%的价格出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价多少元,商店老板才肯出售( )A .80元B .100元C .120元D .160元10.某种饮料原零售价为每瓶6元,凡购买2瓶以上(含2瓶),超市推出两种优惠销售方法:第一种:第一瓶按原价,其余按原价的七折出售;第二种:全部按原价的八折出售.购买相同数量饮料的情况下,要使第一种销售方法比第二种销售方法的优惠多,至少要购买这种饮料( )A .3瓶B .4瓶C .5瓶D .6瓶二、填空题(每小题3分,共15分)11.用不等号填空:若a <b <0,则-a 5___-b 5;2a -1___2b -1. 12.不等式组⎩⎨⎧2(x +1)>5x -7,43x +3>1-23x的解集为____. 13.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打__8__折.14.若关于x 的一元一次不等式组⎩⎨⎧3-2x >2,x -a >0有3个整数解,则a 的取值范围是____.15.若x 为实数,则[x]表示不大于x 的最大整数,例如[1.6]=1,[π]=3,[-2.82]=-3等.[x]+1是大于x 的最小整数,对任意的实数x 都满足不等式[x]≤x <[x]+1.①利用这个不等式①,求出满足[x]=2x -1的所有解,其所有解为___.三、解答题(75分)16.(8分)解下列不等式(组),并把不等式(组)的解集在数轴上表示出来.(1)3x -22≤2; (2)⎩⎨⎧3x -5≤1①,13-x 3<4x ②.17.(9分)解不等式组⎩⎪⎨⎪⎧12(x +1)≤2,x +22≥x +33,并求出不等式组的整数解之和.18.(9分)已知不等式5(x -3)-2(x -1)>2.(1)求该不等式的解集;(2)若不等式的最小整数解与m 的值相等,求代数式m -1m +1的值.19.(9分)已知关于x ,y 的方程组⎩⎨⎧3x +2y =m +1,2x +y =m -1,当m 为何值时,x >y?20.(9分)已知方程组⎩⎨⎧x +y =-7-a ,x -y =1+3a的解x 为非正数,y 为负数. (1)求a 的取值范围;(2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1?21.(10分)小明购买A ,B 两种商品,每次购买同一种商品的单价相同,具体信息如下表:(1)求A ,B 两种商品的单价;(2)若第三次购买这两种商品共12件,且A 种商品的数量不少于B 种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.22.(10分)某市继2019年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?23.(11分)为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?答案选择题1—5:BBCCC 6-10:DADCB 填空题11. > ; < 12. -1<x <3 13. 814. -3≤x <-2 15. _x =0.5或x =116. (1)解:x ≤2(2)解:1<x ≤2 在数轴上表示解集略17. 解:解不等式12(x +1)≤2,得x ≤3,解不等式x +22≥x +33,得x ≥0,则不等式组的解集为0≤x ≤3,所以不等式组的整数解之和为0+1+2+3=618. 解:(1)x >5 (2)5719. 解:用含m 的代数式分别表示x ,y ,得x =m -3,y =-m +5,因为x>y ,所以m -3>-m +5,解此不等式,得m>4,所以当m>4时,x>y20. 解:(1)解方程组,得⎩⎨⎧x =-3+a ,y =-4-2a ,根据题意,得⎩⎨⎧-3+a ≤0,-4-2a<0,解不等式组,得-2<a ≤3 (2)当-2<a ≤3时,|a -3|+|a +2|=3-a +a +2=5 (3)解不等式(2a +1)x>2a +1,根据题意,得2a +1<0,解得a<-12,所以a 的取值范围为-2<a <-12,又∵a 为整数,∴a =-121. 解:(1)设A 种商品的单价为x 元,B 种商品的单价为y 元,根据题意可得⎩⎨⎧2x +y =55,x +3y =65,解得⎩⎨⎧x =20,y =15,答:A 种商品的单价为20元,B 种商品的单价为15元 (2)设第三次购买商品A 种a 件,则购买B 种商品(12-a)件,根据题意可得a ≥2(12-a),解得8≤a ≤12,第三次购买这两种商品的总费用为20a +15(12-a)=(5a +180)元,当a =8时所花钱数最少,即购买A 商品8件,B 商品4件22. 解:(1)设温馨提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意,得2x +3×3x =550,解得x =50,经检验,x =50符合题意,∴3x =150(元),即温馨提示牌和垃圾箱的单价分别是50元和150元 (2)设购买温馨提示牌y 个(y 为正整数),则垃圾箱为(100-y)个,根据题意得⎩⎨⎧100-y ≥48,50y +150(100-y )≤10000,∴50≤y ≤52,∵y 为正整数,∴y 为50,51,52,共3种方案;即温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,购买温馨提示牌和垃圾箱的总费用为50y +150(100-y)=-100y +15000,当y =52时,所需资金最少,最少是9800元23. 解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得⎩⎨⎧15x +9y =57000,10x +16y =68000,解得⎩⎨⎧x =2000,y =3000,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元 (2)设m 人清理养鱼网箱,则(40-m)人清理捕鱼网箱,根据题意,得⎩⎨⎧2000m +3000(40-m )≤102000,m <40-m 解得18≤m <20,∵m 为整数,∴m =18或m =19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱第九章多边形一、选择题(每小题3分,共30分)1.一个五边形的内角和为( )A.540° B.450° C.360° D.180°2.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,53.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为( )A.54° B.62° C.64° D.74°4.一副分别含有30°和45°角的两个直角三角板,拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( ) A.15° B.25° C.30° D.10°5.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )A.15° B.20° C.25° D.30°6.从一个n边形的一个顶点出发,分别连结这个顶点与其余的各顶点,若把这个多边形分割成6个小三角形,则n的值是( )A.6 B.7 C.8 D.97.幼儿园的小朋友们打算选择一种形状、大小都相同的多边形塑料板铺活动室的地面,为了保证铺地时既无缝隙又不重叠,请你告诉他们下面形状的塑料板:①正三角形;②正四边形;③正五边形;④正六边形;⑤正八边形.可以选择的是( )A.③④⑤ B.①②④ C.①④ D.①③④⑤8.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于( )A.90° B.180° C.210° D.270°9.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A.γ=2α+β B.γ=α+2βC.γ=α+β D.γ=180°-α-β10.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A.13 B.14 C.15 D.16二、填空题(每小题3分,共15分)11.一个多边形的每一个外角都是36°,则这个多边形的边数是____.12.求图中∠1的度数:(1)∠1=____;(2)∠1=____;(3)∠1=____.13.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是____.14.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小的内角的度数为____.15.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=___.三、解答题(共75分)16.(8分)如图,已知∠A=20°,∠B=27°,AC⊥DE.求∠1,∠D度数.17.(9分)如图,△ABC中,∠ABC∶∠C=5∶7,∠C比∠A大10°,BD是△ABC的高,求∠A与∠CBD的度数.18.(9分)如图,将△ABC沿EF折叠,使点C落在点C′处,试探究∠1,∠2与∠C的关系.19.(9分)小明在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现是少加了一个内角.问这个内角是多少度?小明求的是几边形的内角和?20.(9分)如图,在△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD ⊥AB于点D,DF⊥CE于点F,求∠CDF的度数.21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.22.(10分)已知△ABC.(1)如图①,∠BAC和∠ACB的平分线交于点I,∠BAC=50°,∠ACB=70°,求∠AIC的度数.(2)如图②,△ABC的外角∠CAE的平分线的反延长线与∠ACB的平分线交于点O,则∠O和∠B有什么数量关系?说明你的理由.23.(11分)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图①,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB.∴∠1+∠2=12(∠ABC+∠ACB).又∵∠ABC+∠ACB=180°-∠A,∴∠1+∠2=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠1+∠2)=180°-(90°-12∠A)=90°+12∠A.探究2:如图②中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图③中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:________.答案选择题1-5:ACCAB6-10:CBBAB填空题11. 1012. (1)∠1=62°;(2)∠1=23°;(3)∠1=105°13. 40°14. 30°15. 72°16. 解:∠1=110°,∠D=43°17. 解:设∠ABC=(5x)°,∠C=(7x)°,则∠A=(7x-10)°.由∠A+∠ABC +∠C=180°,得5x+7x+7x-10=180.解得x=10.∴∠ABC=50°,∠C=70°,∠A=60°.∵BD是△ABC的高,∴∠BDC=90°.∴∠CBD=90°-∠C=90°-70°=20°18. 解:根据翻折的性质,得∠CEF=∠C′EF,∠CFE=∠C′FE,则∠1+2∠CEF =180°,∠2+2∠EFC=180°,所以∠1+∠2+2∠CEF+2∠EFC=360°,而∠C+∠CEF+∠CFE=180°,所以∠1+∠2+2(180°-∠C)=360°,所以∠1+∠2=2∠C19. 解:设此多边形的边数为n,则由题意,得0<(n-2)×180-1125<180,解得8.25<n<9.25,所以n=9, 少加的一个内角为1260°-1125°=135°20. 解:∵∠A=40°,∠B=72°,∴∠ACB=180°-40°-72°=68°,∵CE 平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∵CD⊥AB,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=74°21. 解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F =∠CEB=25°22. 解:∵AI平分∠BAC,∴∠IAC=12∠BAC,∵CI平分∠BCA,∴∠ICA=12∠BCA,∵∠BAC=50°,∠ACB=70°,∴∠IAC=25°,∠ICA=35°,∴∠AIC=180°-25°-35°=120°(2)∠B=2∠O,理由:∵CO平分∠ACB,∴∠ACO=1 2∠ACB,∵AD平分∠EAC,∴∠DAC=12∠EAC,∵∠O+∠ACO=∠DAC,∴2∠O+∠ACB=∠EAC,又∵∠B+∠ACB=∠EAC,∴∠B=2∠O23. 解:(1)探究2结论:∠BOC=12∠A,理由如下:如图∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=12∠ABC,∠2=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=12(∠A+∠ABC)=12∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2-∠1=12∠A+∠1-∠1=12∠A(2)探究3:∠OBC =12(∠A +∠ACB),∠OCB =12(∠A +∠ABC),∠BOC =180°-∠OBC -∠OCB =180°-12(∠A +∠ACB)-12(∠A +∠ABC)=180°-12∠A-12(∠A +∠ABC +∠ACB)=90°-12∠A ,∴结论:∠BOC =90°-12∠A第十章轴对称、平移与旋转一、选择题(每小题3分,共30分)1.下列图形中一定是轴对称图形的是( )A.直角三角形B.四边形C.平行四边形D.长方形2.下列图形中,既是中心对称图形,又是轴对称图形的是( )3.如图,△ABC经过平移到达△DEF的位置,则下列四个说法中,正确的有( )①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC ∥EF,BC=EF.A.1个 B.2个 C.3个 D.4个4.如图,是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( ) A.150° B.180° C.210° D.120°5.如图,在下列四种图形变换中,该图案不包含的变换是( )A.平移 B.轴对称 C.旋转 D.中心对称6.如图,如果甲、乙两图关于点O成中心对称,则乙图不符合题意的一块是( )7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为( ) A.30° B.60° C.90° D.150°,8.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为( )A.6 B.8 C.10 D.129.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P 关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为( ) A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包括△ABC本身)共有( )A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共15分)11.如图,下列各图是旋转对称图形的有____,是中心对称图形的有____.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD=____度.13.如图,△ABC≌△DEF,∠A=70°,∠B=40°,BF=6,则∠DEF=____,EC=____.14.如图,一块长46 m,宽25 m的草地上,准备修两条如图所示的小径,则修了小径后,草地可种草的面积变为____ m2.15.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,若AF=12AB,则可通过____(填“平移”“旋转”或“轴对称”)变换,使△ABE变换到△ADF的位置,且线段BE,DF的数量关系是____,位置关系是___.三、解答题(共75分)16.(8分)下列图形是全等图形的有:____.(填序号)17.(9分)如图,四边形ABCD的顶点D在直线m上.(1)画出四边形ABCD关于直线m为对称轴的对称图形A1B1C1D;(2)延长线段BA和B1A1,它们的交点与直线m有怎样的关系;(3)如果∠A=91°,BC=16 cm,请你求出∠A1的度数与B1C1的长.18.(9分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.19.(9分)如图,在8×8的方格纸中,将△ABC向右平移4个单位长度得到△A1B1C1,△ABC关于直线MN对称的图形为△A2B2C2,将△ABC绕点O旋转180°得△A3B3C3.(1)在方格纸中画出△A1B1C1、△A2B2C2和△A3B3C3;(2)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成轴对称?请画出对称轴;(3)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成中心对称?请画出对称中心P.20.(9分)学完图形的全等后,数学老师出了一道题:“如图,已知△ABC≌△ADE,∠BAD=40°,∠C=50°,问DE与AC有何位置关系,并说明理由.”请你完成这道题.21.(10分)认真观察前四个图中阴影部分构成的图案(每个小正方形的边长都为1),回答下列问题:(1)请写出这四个图案都具有的三个共同特征:特征1:__________________________________________________;特征2:__________________________________________________;特征3:__________________________________________________.(2)请在第五个图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.22.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且点A与点A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.23.(11分)如图,在正方形ABCD中,点E在BC上,∠FDE=45°,△DEC 按顺时针方向旋转一个角度后得△DGA.(1)图中哪一个点是旋转中心?旋转角度是多少?(2)试指明图中旋转图形的对应线段与对应角?(3)图中有除正方形四边相等外的相等线段与相等的角吗?有没有能够完全重合的三角形?若有,请找出来;若没有,说明理由.(4)你能求出∠GDF的度数吗?说明你的理由.。
(新课标)华东师大版七年级数学下册图形的全等章末测试题(考点+分析+点评)

2017-2018学年(新课标)华东师大版七年级下册10.5图形的全等一.选择题(共9小题)1.我们把两个能够完全重合的图形称为全等图形,则下列命题中真命题是()A.有一条边长对应相等的两个矩形是全等图形B.有一个内角对应相等的两个菱形是全等图形C.有两条对角线对应相等的两个矩形是全等图形D.有两条对角线对应相等的两个菱形是全等图形2.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是()A.球B.圆柱C.三棱柱D.圆锥3.用两个全等的直角三角形拼成凸四边形,拼法共有()A. 3种B.4种C.5种D.6种4.全等三角形又叫做合同三角形.平面内的合同三角形分为真正合同三角形和镜面合同三角形.假如△ABC和△A′B′C′是全等三角形,且点A与点A′对应,点B与点B′对应,点C与点C′对应.当沿周界A﹣B﹣C﹣A及A′﹣B′﹣C′﹣A′环绕时,若运动方向相同,则称它们是真正合同三角形(如图①);若运动方向相反,则称它们是镜面合同三角形(如图②).两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻转180度.下列各组合同三角形中,属于镜面合同三角形的是()A.B.C.D.5.下列说法不成立的是()A.两个全等三角形能重合B.两个全等三角形沿某一直线折叠能重合C.两个全等三角形的面积相等D.两个全等三角形的周长相等6.如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同7.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A. 150°B.180° C 210°D.225°8.如图,与左边正方形图案属于全等的图案是()A.B.C.D.9.如图,△ABC≌△DEF,则此图中相等的线段有()A. 1对B.2对C.3对D.4对二.填空题(共8小题)10.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2= _________ 度.11.如图所示的方格中,∠1+∠2+∠3= _________ 度.12.下列图形中全等图形是_________ (填标号).13.能够_________ 的两个图形叫做全等图形.14.如图,观察下面两组图形,它们是不是全等图形:(1)_________ ;(2)_________ .(只需答“是”或“不是”)15.已知A与A′,B与B′是对应点,则△ABC和△A′B′C′全等用符号语言表示为:_________ .16.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与_________ 对应;B与_________ 对应;C与_________ 对应;D与_________ 对应.17.与下左图所示图形全等的是_________ .三.解答题(共4小题)18.易知周长相等的两圆相同,周长相等的两个正方形相同,那么,周长相等的两个三角形全等吗?19.下列图形中的全等图形共有_________ 对.20.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.21.找出图中全等的图形.10.5图形的全等参考答案与试题解析一.选择题(共9小题)1.我们把两个能够完全重合的图形称为全等图形,则下列命题中真命题是()A.有一条边长对应相等的两个矩形是全等图形B.有一个内角对应相等的两个菱形是全等图形C.有两条对角线对应相等的两个矩形是全等图形D.有两条对角线对应相等的两个菱形是全等图形考点:全等图形;命题与定理.菁优网版权所有分析:根据全等图形的定义及特点,结合各选项进行判断即可.解答:解:A、有一条边长对应相等的两个矩形是全等图形,命题不正确,故本选项错误;B、有一个内角对应相等的两个菱形是全等图形,命题不正确,故本选项错误;C、有两条对角线对应相等的两个矩形是全等图形,命题不正确,故本选项错误;D、两条对角线对应相等的两个菱形是全等图形,是真命题,故本选项正确.故选D.点评:本题考查了全等图形的知识,注意掌握全等图形的定义,属于基础题.2.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是()A.球B.圆柱 C 三棱柱D.圆锥考点:全等图形;简单几何体的三视图.菁优网版权所有分析:主视图、左视图、俯视图是分别从物体正面、正面和上面看,所得到的图形.解答:解:A、球的三视图是相等圆形,故A符合题意;B、圆柱的三视图分别为长方形,长方形,圆,故B不符合题意;C、三棱柱三视图分别为长方形,长方形,三角形,故C不符合题意;D、圆锥的三视图分别为三角形,三角形,圆及圆心,故D不符合题意.故选:A.点评:本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.3.用两个全等的直角三角形拼成凸四边形,拼法共有()A. 3种 B 4种 C 5种D.6种考点:全等图形.菁优网版权所有专题:作图题.分析:拿两个“90°、60°、30°”的三角板试一试即可得.解答:解:可拼成如上图所示的四种凸四边形.故选B.点评:要注意不同边的组合方式,不要遗漏任何一种可能性.本题是一个操作题,动手做一做即可.4.全等三角形又叫做合同三角形.平面内的合同三角形分为真正合同三角形和镜面合同三角形.假如△ABC和△A′B′C′是全等三角形,且点A与点A′对应,点B与点B′对应,点C与点C′对应.当沿周界A﹣B﹣C﹣A及A′﹣B′﹣C′﹣A′环绕时,若运动方向相同,则称它们是真正合同三角形(如图①);若运动方向相反,则称它们是镜面合同三角形(如图②).两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻转180度.下列各组合同三角形中,属于镜面合同三角形的是()A.B.C.D.考点:全等图形.菁优网版权所有专题:新定义.分析:认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.解答:解:由题意知真正合同三角形和镜面合同三角形的特点,可判断要使C组的两个三角形重合必须将其中的一个翻转180°;而其它组的全等三角形可以在平面内通过平移或旋转使它们重合.故选C.点评:此题考查了学生的阅读理解能力及空间想象能力,较灵活.认真读题,透彻理解题意是正确解决本题的关键.5.下列说法不成立的是()A.两个全等三角形能重合B.两个全等三角形沿某一直线折叠能重合C.两个全等三角形的面积相等D.两个全等三角形的周长相等考点:全等图形.菁优网版权所有分析:能够完全重合的两个图形叫做全等形,由此可判断各选项.解答:解:两个全等三角形能重合,成立;B、两个全等三角形沿某一直线折叠能重合,不一定成立.C、两个全等三角形的面积相等,成立;D、两个全等三角形的周长相等,成立;故选B.点评:本题考查了全等图形的知识,解答本题的关键是掌握全等图形的定义.6.如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同考点:全等图形.菁优网版权所有分析:根据全等图形的定义,能够完全重合的两个图形是全等图形解答即可.解答:解:如果两个图形全等,则这个图形必定是形状大小完全相同.故选B.点评:本题主要考查了全等图形的定义,是基础题,比较简单.7.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A. 150°B.180°C.210°D.225°考点:全等图形.菁优网版权所有专题:压轴题;数形结合.分析:根据SAS可证得△ABC≌△EDC,可得出∠BAC=∠DEC,继而可得出答案.解答:解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180°.故选B.点评:本题考查全等图形的知识,比较简单,解答本题的关键是判断出△ABC ≌△EDC.8.如图,与左边正方形图案属于全等的图案是()A. B C.D.考点:全等图形.菁优网版权所有分析:根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.解答:解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选c.点评:本题考查的是全等形的识别,主要根据全等图形的定义做题,属于较容易的基础题.9.如图,△ABC≌△DEF,则此图中相等的线段有()A. 1对B.2对C.3对D.4对考点:全等图形.菁优网版权所有分析:根据两个三角形全等,可以得到3对三角形的边相等,根据BC=EF,又可以得到BE=CF可得答案是4对.解答:解:∵△ABC≌△DEF∴AB=DE,AC=DF,BC=EF∵BC=EF,即BE+EC=CF+EC∴BE=CF即有4对相等的线段故选D.点评:本题主要考查了全等三角形的对应边相等问题;做题时,结合已知,认真观察图形,得到BE=CF是正确解答本题的关键.二.填空题(共8小题)10.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2= 90 度.考点:全等图形.菁优网版权所有专题:数形结合.分析:根据图形可判断出△ACM≌△BAN,从而可得出∠1和∠2互余,继而可得出答案.解答:解:在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.故答案为:90.点评:此题考查了全等图形的知识,解答本题的关键是判断出△ACM≌△BAN,可得出∠1和∠2互余,难度一般.11.如图所示的方格中,∠1+∠2+∠3= 135 度.考点:全等图形.菁优网版权所有专题:图表型.分析:标注字母,然后根据网格结构可得∠1与∠3所在的三角形全等,然后根据全等三角形对应角相等可以推出∠1+∠3=90°,再根据∠2所在的三角形是等腰直角三角形可得∠2=45°,然后进行计算即可得解.解答:解:如图,根据网格结构可知,在△ABC与△ADE中,,∴△ABC≌△ADE(SSS),∴∠1=∠DAE,∴∠1+∠3=∠DAE+∠3=90°,又∵AD=DF,AD⊥DF,∴△ADF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.点评:本题主要考查了全等图形,根据网格结构的特点找出全等三角形以及等腰直角三角形是解题的关键.12.下列图形中全等图形是⑤和⑦(填标号).考点:全等图形.菁优网版权所有分析:要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.解答:解:由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.故答案为:⑤和⑦.点评:本题考查的是全等形的识别,做题时一定要看是否重合,属于较容易的基础题.13.能够完全重合的两个图形叫做全等图形.考点:全等图形.菁优网版权所有分析:根据全等图形是能够完全重合的两个图形进行解答.解答:解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.点评:本题考查全等形的概念:能够完全重合的两个图形叫做全等形,比较简单.14.如图,观察下面两组图形,它们是不是全等图形:(1)不是;(2)不是.(只需答“是”或“不是”)考点:全等图形.菁优网版权所有分析:根据全等图形的定义进而判断得出即可.解答:解:(1)图①不是全等图形;(2)图②不是全等图形;故答案为:不是,不是.点评:此题主要考查了全等图形的判定,利用定义能够完全重合的两个图形叫做全等形得出是解题关键.15.已知A与A′,B与B′是对应点,则△ABC和△A′B′C′全等用符号语言表示为:△ABC≌△A′B′C′.考点:全等图形.菁优网版权所有分析:“全等”用符号“≌”表示.在记两个三角形全等时,通常把对应顶点写在对应位置上.解答:解:∵A与A′,B与B′是对应点,∴△ABC≌△A′B′C′,故答案为:△ABC≌△A′B′C′.点评:此题主要考查了全等的表示方法,关键是掌握对应顶点写在对应位置上.16.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与M 对应;B与N 对应;C与Q 对应;D与P 对应.考点:全等图形.菁优网版权所有分析:能够完全重合的两个图形叫做全等形.按照剪开前后各基本图形是重合的原则进行逐个验证、排查.解答:解:由全等形的概念可知:A是三个三角形,与M对应;B是一个三角形和两个直角梯形,与N对应;C是一个三角形和两个四边形,与Q对应;D是两个三角形和一个四边形,与P对应故分别填入M,N,Q,P.点评:本题考查的是全等形的识别,注意辩别组成图形的基础图形的形状.17.与下左图所示图形全等的是(1)、(2)、(4).考点:全等图形.菁优网版权所有分析:能够完全重合的两个图形叫做全等形.1是由右图逆时旋转90度得到的,2是右图逆时旋转180度得到的,4与右图能够重合,共有3个,解答:解:由全等形的概念可知:(1),(2),(4)与左图完全相同,只是(2)(3)的位置发生了变化.点评:本题考查的是全等形的识别,属于较容易的基础题.三.解答题(共4小题)18.易知周长相等的两圆相同,周长相等的两个正方形相同,那么,周长相等的两个三角形全等吗?考点:全等图形.菁优网版权所有分析:能够完全重合的两个三角形叫做全等三角形,周长相等的两个三角形,构成三角形的三条边不一定全部相等,可得周长相等的两个三角形不一定全等.解答:解:不一定全等,例如,两个三角形的周长均为10,一个三角形的三边长为4,3,3,而另一个三角形的三边长为4,4,2,这两个三角形显然不全等,但当两个三角形为正三角形时,这两个三角形全等.点评:本题考查了全等图形的知识,要求同学们熟练掌握全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.19.下列图形中的全等图形共有 4 对.考点:全等图形.菁优网版权所有分析:要认真观察图形,从(1)开始找寻,看后面的谁与之全等,然后是(2),看后面的哪一个与它全等,如此找寻,可得答案.解答:解:由全等形的概念可知:共有4对图形全等,即(1)与(10)、(5)与(9)、(4)与(8)、(2)与(12)能够重合.故填4点评:本题考查的是全等形的识别,做题时一定要看是否重合,属于较容易的基础题.20.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.考点:全等图形.菁优网版权所有专题:方案型.分析:根据正方形的性质,①两条对角线把正方形分成四个全等的三角形;②作一组对边的平行线也能把正方形分成四个全等的矩形;③连接一组对边的中点,把正方形分成两个全等的矩形,再作矩形的对角线就把每个矩形都分成两个全等的三角形,这样就分成了四个全等的三角形;④过正方形的中心做互相垂直的两条线也能把正方形分成四个全等的四边形.解答:解:设计方案如下:点评:本题主要考查了全等图形的意义,要利用正方形及全等形的性质解答,方案多种多样,只要是满足要求就可以.21.找出图中全等的图形.考点:全等图形.菁优网版权所有分析:利用能够完全重合的两个图形称为全等图形,全等图形的大小和形状都相同,进而判断即可.解答:解:如图所示:1和2全等,3和4全等.点评:本题考查了全等形的概念和性质,正确判断出全等图形是解题关键.美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!。
华东师大版数学七年级下册期末模拟试题50题含答案
华东师大版数学七年级下册期末模拟试题50题含答案(填空题+解答题)一、填空题1.如图所示,D 是等腰Rt ABC 内一点,BC 是斜边,如果将ABD △绕点A 逆时针方向旋转到ACD '△的位置,则ADD '的度数为__________.2.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”,如果一个“梦想三角形”有一个角为132°,那么这个“梦想三角形”的最小内角的度数为_____________________.3.x 的13是27,可列方程为____________. 4.如图,已知四边形ABCD 中,对角线BD 平分∠ABC ,∠ADB =32°,∠BCD +∠DCA =180°,那么∠ACD 为_____度.5.如图,75ACD ∠=︒,30A ∠=︒,则∠B =___________°6.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何?其译文是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x 个人,那么可以列方程为__________.7.关于x的方程(k-4)x|k|-3+1=0是一元一次方程,则k的值是______.8.已知一个多边形的每个内角都相等,其内角和为2340°,则这个多边形每个外角的度数是________________°.9.中国清代数学著作《御制数理精蕴》中有这样一道题:“马四匹、牛六头,共价四十八两(“两”是我国古代货币单位);马三匹、牛五头,共价三十八两.则牛每头价__两”.10.如图,AB∠CD,∠A=35°,∠C=80°,则∠E=____.11.关于x的不等式组22x b ax a b-⎧⎨-⎩><的解集为﹣3<x<3,则ab=___.12.将一副直角三角板如图放置,使含30︒角的三角板的一条直角边和含45︒角的三角板的一条直角边重合,则α∠的度数为______.13.如图,三角形ABC沿着BC方向平移得到三角形A B C''',点P是直线AA'上另一点,若三角形ABC、三角形''PB C的面积分别为S1,S2,则两三角形面积大小关系是S1_______S2 (用“<”或“=”或“>”填空)14.不等式组:21213x xx+>⎧⎨-≤⎩的解集是_________.15.如图,ABC放置在一组等距的平行线中,点A,B,C均在平行线上,AC与1l 交于点D,BC与2l交于点E,若A,E两点恰好关于BD对称,四边形ABED的周长为3,则ABC的周长为_______.16.如图是一个三角板的尺寸,用代数式表示它的面积(阴影部分)为_____________.17.某种商品进价150元,标价200元,但销量较小.为了促销,商场决定在标价的基础上打折销售,若为了保证利润率不低于20%,那么至多打_______折销售.18.已知一个角的余角的补角是这个角补角的 45,则这个角余角的度数是______. 19.若x ≥﹣5的最小值为a ,x ≤5的最大值是b ,则a +b =_____.20.如图是一块长方形的场地,长72AB m =,宽31AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为____________m 2.21.如图,四边形ABCD 为一条长方形纸带,AB ∠CD ,将四边形ABCD 沿EF 折叠,A 、D 两点分别为A '、D '对应,若∠1=∠2,则∠AEF 的度数为______.22.如图,四边形纸片ABCD 中,75A ∠=,65B ∠=,将纸片折叠,使C ,D 落在AB 边上的'C ,'D 处,折痕为MN ,则''AMD BNC ∠+∠=______度.23.如图,在△ABC 中,∠ABC <∠BCA <∠BAC ,∠BAC 和∠ABC 的外角平分线AE 、BD 分别与BC 、CA 的延长线交于E 、D .若AB =AE ,BD =BA .则∠BCA 的度数为____.24.把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=︒,90C ∠=︒,45A ∠=︒,30A ∠=︒,则12∠+∠=______.25.如图,已知∠ABE =142°,∠C =62°,则∠A =___________°.26.若关于x 的方程13x a -=与23304x a +-=的解相同,则=a ____________. 27.某学校要为生物科学活动社团提供实验器材,计划购买A ,B 两种型号的放大镜,A 型号的放大镜每个20元,B 型号的放大镜每个15元,且所需购买A 型号放大镜的数量是B 型号放大镜数量的2倍,且总费用不超过1100元,则最多可以购买A 型号放大镜______个.28.如图,将△ABC 绕点A 顺时针旋转70度后得到△ADE ,点B 与点D 是对应点,点C 与点E 是对应点.如果∠EAB =30度,那么∠DAC 等于_____度.二、解答题29.一个正多边形的一个外角的度数等于它的一个内角度数的13,求这个正多边形的边数.30.解方程组:(1)2332x y x y +=⎧⎨-+=⎩(2)541257x y y x -=⎧⎨-=⎩ (3)32323x y x y -=-⎧⎨+=⎩(4)20%15% 1.257x y x y +=⎧⎨+=⎩31.解方程组4(1)21x y y x +=⎧⎨=+⎩325(2)517x y x y -=⎧⎨+=⎩ 32.如图,直线AB ,CD 相交于点O ,90EOD ∠=︒,OF 平分BOC ∠,1x ∠=.(1)求2∠和3∠的度数(用含x 的式子表示):(2)当x 为何值时?322∠=∠.33.利用等式的基本性质解方程:(1)4123x x -=+;(2)123x x -= 34.定义新运算,对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)1615⊕=⨯-+=-+=-.(1)求(2)3-⊕的值;(2)若3x ⊕的值小于13,求x 的取值范围.35.解不等式:0.20.10.3x +﹣2<322x -. 36.解不等式:4(x ﹣1)﹣12<x . 37.解方程:(1)()()2311210.5x x -+=-+; (2)2121136x x -++=. 38.如图,在∠ABC 中,∠CAE =18°,∠C =42°,∠CBD =27°.(1)求∠AFB 的度数;(2)若∠BAF =2∠ABF ,求∠BAF 的度数.39.如图所示,图1为一个棱长为10的正方体,图2为图1的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x =_______,y =______; (2)如果面“2”是左面,面“4”在后面,则上面是_______(填6或10或x 或y ); (3)图1中,点M 为所在棱的中点,在图2中找到点M 的位置,直接写出图2中ABM 的面积.40.填空,完成下列说理过程如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD=65°,求∠AOE 的度数.解:(1)如图,因为OD 是∠AOC 的平分线,所以∠COD=12∠AOC .因为OE 是∠BOC 的平分线,所以∠COE=12 .所以∠DOE=∠COD+ =12(∠AOC+∠BOC)=12∠AOB= °.(2)由(1)可知∠BOE=∠COE= ﹣∠COD= °.所以∠AOE= ﹣∠BOE= °.41.三个连续的正偶数组成一个偶数组,其和不大于24,请求出这样的偶数组. 42.“数形结合”是重要的数学思想.如:()32--表示3与2-差的绝对值,实际上也可以理解为3与2-在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A ,B ,所对应的数分别用a ,b 表示,那么A ,B 两点之间的距离表示为AB a b =-.利用此结论,回答以下问题:(1)数轴上表示2-和5两点之间的距离是__________.(2)若13x ,则x =______.(3)若x 表示一个有理数,142x x ++-的最小值为_________. (4)已知数轴上两点A 、B 对应的数分别为2-,8,现在点A 、点B 分别以3个单位长度/秒和2单位长度/秒的速度同时向右运动,当点A 与点B 之间的距离为2个单位长度时,求点A 所对应的数是多少?43.已知,ABC 中,AB AC =,点E 是边AC 上一点,过点E 作//EF BC 交AB 于点F()1如图∠,求证:AE AF =;()2如图∠,将AEF 绕点A 逆时针旋转(0144)αα<<得到''AE F .连接''CE BF . ∠若'6BF =,求'CE 的长;∠若36EBC BAC ∠=∠=,在图∠的旋转过程中,当'//CE AB 时,直接写出旋转角α的大小.44.折纸是我国一项古老的传统民间艺术,这项具有中国特色的传统文化在几何中可以得到新的解读.已知在∠ABC 中,∠A =80°,请根据题意,探索不同情境中∠1+∠2(或∠1-∠2)与∠A 的数量关系.(1)如图∠,若沿图中虚线DE 截去∠A ,则∠1+∠2=_______.(2)如图∠,若沿图中虚线DE 将∠A 翻折,使点A 落在BC 上的点A ’处,则∠1+∠2=_______.(3)如图∠,翻折后,点A 落在点A ’处,若∠1+∠2=80°,求∠B +∠C 的度数(4)如图∠,∠ABC 纸片沿DE 折叠,使点A 落在点A ’处,若∠1=80°,∠2=24°,求∠A的度数.45.如图,在边长为1个单位长度的小正方形组成的网格中,∠ABC 与∠DEF 关于点O 成中心对称,∠ABC 与∠DEF 的顶点均在格点上,请按要求完成下列各题:(1)请在图中直接画出O 点,并直接填空:OA=______(2)将∠ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到∠A 1B 1C 1,请画出∠A 1B 1C 1.46.解不等式组:()12221x x x ->⎧⎨+≥-⎩,并将其解集用数轴表示出来. 47.∠ABC 是格点三角形,则在图中能够作出与∠ABC 全等的且有一条公共边的格点三角形(不含∠ABC )的个数是______.48.解下列方程.(1)4x -6=2(3x -1); (2)2532168x x +--=.参考答案:1.45°##45度【分析】利用旋转的性质得出∠D′AD=90°,AD=AD′,进而得出答案.【详解】解:由题意可得,∠CAB=90°,∠将∠ABD绕点A逆时针方向旋转到∠ACD′的位置,∠∠D′AD=90°,AD=AD′,∠∠ADD′=∠AD′D=45°.故答案为:45°.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质,根据题意得出AD=AD′是解题关键.2.4°或12°【分析】根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为132°,可得另两个角的和为48°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°-132°-132÷3°=4°,48°÷(1+3)=12°,由此比较得出答案即可.【详解】解:当132°的角是另一个内角的3倍时,最小角为180°-132°-132÷3°=4°;当180°-132°=48°的角是另一个内角的3倍时,最小角为48°÷(1+3)=12°;因此,这个“梦想三角形”的最小内角的度数为4°或12°.故答案是:4°或12°.【点睛】考查三角形的内角和定理,掌握三角形的内角和180°是解决问题的关键.3.127 3x=【分析】“的”是乘号,“是”是等号,根据题意x乘以13等于27,据此列方程即可.【详解】根据题意得:1273x=.【点睛】本题考查一元一次方程的应用,是重要考点,难度容易,根据等量关系列方程是解题的关键.4.58.【分析】延长BA和BC,过D点作DE∠BA于E点,过D点作DF∠BC于F点,根据BD 是∠ABC的平分线可得出DE=DF,过D点作DG∠AC于G点,进而得出CD为∠ACF的平分线,设∠ABD=x°,则∠ABC=2x°,∠EAD=∠ABD+∠ADB=x°+32°,再根据∠BAE+∠BCF=360°,即可得出结论.答案第1页,共25页【详解】延长BA 和BC ,过D 点作DE ∠BA 于E 点,过D 点作DF ∠BC 于F 点,过D 点作DG ∠AC 于G 点,∠BD 是∠ABC 的平分线,∠DE =DF ,又∠∠BCD +∠DCA =180°,∠BCD +∠DCF =180°,∠∠ACD =∠DCF ,∠DG =DF =DE∠AD 为∠EAC 的平分线,设∠ABD =x °,则∠ABC =2x °,∠EAD =∠ABD +∠ADB =x °+32°,∠∠BAE +∠BCF =360°,∠2(x °+32°)+∠BAC +∠ACB +2∠ACD =360°,2x °+64°+180°﹣2x °+2∠ACD =360°,∠ACD =58°.故答案为58.【点睛】此题主要考查角平分线的性质,以及平角的运用,关键是列出关系式,即可解题. 5.45【分析】根据三角形的外角等于与它不相邻的两个内角的和这一性质即可求解. 【详解】 ACD A B ∠=∠+∠,75ACD ∠=︒,30A ∠=︒∴ 753045B ACD A =-=︒-︒=︒∠∠∠ .故答案为:45【点睛】本题主要考查三角形的外角的性质,熟悉性质是解题的关键.6.4003400300100x x -=-【分析】设有x 个人,然后根据每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱,列出方程即可.【详解】解:设有x 个人,由题意得:4003400300100x x -=-,故答案为:4003400300100x x -=-.【点睛】本题主要考查了从实际问题中抽象出一元一次方程,解题的关键在于准确理解题意.7.-4【分析】根据一元一次方程的定义,可得答案.【详解】解:由题意,得|k|-3=1,且k-4≠0,解得k=-4,故答案为-4.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点,解题关键是掌握一元一次方程的一般形式.8.24【分析】设这个多边形是n 边形,它的内角和可以表示成(n −2)∠180°,就得到关于n 的方程,求出边数n .然后根据多边形的外角和是360°,多边形的每个内角都相等即每个外角也相等,这样就能求出多边形的一个外角.【详解】解:设这个多边形是n 边形,根据题意得:(n −2)∠180°=2340°,解得n =15;那么这个多边形的一个外角是360°÷15=24°,即这个多边形的一个外角是24°.故答案为:24.【点睛】考查了多边形内角与外角的关系.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.9.4【分析】设马每匹价x 两,牛每头价y 两,根据“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两”,即可得出关于x ,y 的二元一次方程组,解之即可得出结【详解】解:设每匹马x两,每头牛y两,由题意得,4648 3538x yx y+=⎧⎨+=⎩①②,∠×4﹣∠×3,得:2y=8,解得;y=4,把y=4代入∠,得:4x=48﹣24,解得:x=6,故方程组的解为:64xy=⎧⎨=⎩,答:每头牛价4两.故答案为:4.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是根据马牛总钱数为等量关系列方程组求解.10.45°【分析】由平行线的性质可求得∠BFE,结合三角形的外角的性质可求得∠E.【详解】解:如图,∠AB∠CD,∠C=80°,∠∠BFE=∠C=80°,∠∠A+∠E=∠BFE,∠A=35°,∠∠E=∠BFE﹣∠A=45°,故答案为:45°.【点睛】本题主要考查三角形外角的性质及平行线的性质,掌握两直线平行,同位角相等及三角形的外角等于与它不相邻的两个内角的和是解题的关键.11.-9【分析】利用一元一次不等式组的解法解出不等式组,根据题意列出方程组,解方程组即【详解】解:22x b a x a b -⎧⎨-⎩>①<②, ∠解不等式∠得:x >2a +b ,解不等式∠得:x <2b +a ,又∠不等式组的解集为−3<x <3,∠2323a b b a +=-⎧⎨+=⎩, 解得,33a b =-⎧⎨=⎩, ∠ab =−9,故答案为:−9.【点睛】本题考查的是一元一次不等式组、二元一次方程组的解法,根据题意列出二元一次方程组是解题的关键.12.165︒【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出1∠,再求出α∠即可.【详解】解:由三角形的外角性质得,14590135∠=︒+︒=︒,130********α∠=∠+︒=︒+︒=︒.故答案为:165︒.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.13.=【分析】根据平行线间的距离相等可知∠ABC ,∠PB′C′的高相等,再由同底等高的三角形面积相等即可得到答案.【详解】解:∠∠ABC 沿着BC 方向平移得到∠A′B′C′,∠AA′∠BC′,BC=B'C',∠点P是直线AA′上任意一点,∠∠ABC,∠PB′C′的高相等,∠S1=S2.故答案为:=.【点睛】本题主要考查三角形的面积,平移的性质,关键是掌握平移的性质:∠平移不改变图形的形状和大小;∠经过平移,对应点所连的线段平行(或共线)且相等,对应线段平行(或共线)且相等,对应角相等.14.-1<x≤2【分析】分别求出各个不等式的解,再取公共部分,即可得到答案.【详解】21213x xx+>⎧⎨-≤⎩①②,由∠得:x>-1,由∠得:x≤2,∠不等式组的解集是:-1<x≤2.【点睛】本题主要考查解一元一次不等式组,熟练掌握解不等式组的步骤及口诀:“大大取大,小小取小,大小小大中间找”,是解题的关键.15.4.5【分析】根据A,E两点恰好关于BD对称可以得到AD=DE,AB=BE,再根据平行线等距可以得到CD=2AD,CE=BE,最后根据四边形ABED的周长为3,即可等量代换求出三角形ABC的周长.【详解】解:∠A,E两点恰好关于BD对称∠AD=DE,AB=BE∠这组平行线等距∠CD=2AD,CE=BE∠四边形ABED的周长=AB+BE+ED+AD=2AD+2BE=3∠AD+BE=1.5∠∠ABC的周长=AD+CD+CE+BE+AB∠∠ABC的周长= AD+2AD+BE+BE+BE=3(AD+BE)=4.5故答案为:4.5.【点睛】本题主要考查了对称的性质,平行线等距的性质,解题的关键在于能够熟练掌握相关知识进行求解.16.212ab r π- 【详解】试题解析:由图可得, 阴影部分的面积是:212ab r π- 17.九【分析】利润率不低于20%,意思是利润率大于或等于20%,相应的关系式为:(售价-进价)÷进价≥20%,把相关数值代入即可求解.【详解】解:设打x 折,根据题意得20015010100%20%150x ⨯-⨯≥ 解得9x ≥,答:至多打九销售.故答案为:九【点睛】此题主要考查了一元一次不等式的应用,进价本题的关键是得到利润率的相关关系式,注意“不低于”用数学符号表示为“≥”;利润率是利润与进价的比值.18.60°【分析】设这个角的度数为x ,则它的余角为90°-x ,补角为180°-x ,再根据题意列出方程,求出x 的值,再根据余角的定义即可求解.【详解】解:设这个角的度数为x ,则它的余角为90°-x ,补角为180°-x ,依题意得:180°-(90°-x )=45(180°-x ), 解得x=30°,90°-30°=60°.故这个角的余角度数是60°.故答案为:60°.【点睛】本题考查的是余角及补角的定义,能根据题意列出关于x 的方程是解答此题的关键.19.0【分析】根据“≥”“≤”的意义,判断出a 和b 的最值即可解答.【详解】解:∠x ≥﹣5的最小值是a ,∠a =﹣5;∠x ≤5的最大值是b ,∠b =5;则a +b =﹣5+5=0.故答案为:0.【点睛】本题考查了用不等式表示数量关系,理解“≥”“≤”的意义是解答本题的关键. 20.2100【分析】根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.【详解】由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(72-2)米,宽为(31-1)米.所以草坪的面积应该是长×宽=(72-2)(31-1)=2100(米2).故答案为:2100.【点睛】本题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.21.60°##60度【分析】由题意知2AEF FEA '∠=∠=∠,1180AEF FEA '∠+∠+∠=︒,角度等量替换,然后求解即可.【详解】解:由翻折的性质可知:AEF FEA '∠=∠∵AB CD∴2AEF FEA '∠=∠=∠∵1180AEF FEA '∠+∠+∠=︒,12∠=∠∴260AEF ∠=︒=∠故答案为:60°.【点睛】本题考查了翻折的性质,平行的性质,平角.解题的关键在于确定角的数量关系.22.80【分析】先由四边形性质求出∠C+∠D=360〬-∠A-∠B=360〬-75〬-65〬=220〬.由折叠性质得∠MD 'C '+∠NC 'D '=∠C+∠D=220〬.再根据三角形内角和得:''AMD BNC ∠+∠=∠MD 'C '+∠NC 'D '-∠A-∠B.【详解】因为,四边形的内角和是360〬,所以,∠C+∠D=360〬-∠A-∠B=360〬-75〬-65〬=220〬.所以由折叠得,∠MD 'C '+∠NC 'D '=∠C+∠D=220〬.又因为,∠NC 'D '=∠B+∠BNC ', ∠MD 'C '=∠A+∠AMD ',所以,''AMD BNC ∠+∠=∠MD 'C '+∠NC 'D '-∠A-∠B=220〬-75〬-65〬=80〬. 故答案为80.【点睛】本题考核知识点:折叠,三角形外角,四边形内角. 解题关键点:熟记三角形外角性质和折叠性质.23.36°【分析】设∠ABC =x ,由∠ABC =∠AEB ,则∠AEB =x ,根据三角形外角的性质得到∠1=∠ABC +∠AEB =2x ,则∠2=2x ,利用对顶角相等得∠3=∠D =4x ,再根据三角形外角的性质得∠BCA =∠2+∠AEC =3x ,∠FBD =∠D +∠BCD =7x ,则∠DBA =∠FBD =7x ,在∠BCD 中利用三角形的内角和定理可得到关于x 的方程,解出x ,然后求得∠BCA 的度数.【详解】设∠ABC =x ,∠∠ABC =∠AEB ,∠∠AEB =x ,∠∠1=∠ABC +∠AEB =2x ,∠∠2=2x ,∠∠3=∠D =4x ,∠BCA =∠2+∠AEC =3x ,∠∠FBD =∠D +∠BCD =7x ,∠∠DBA =∠FBD =7x ,∠7x +7x +x =180°,解得x =12°,∠∠BCA =3x =36°.故填:36°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了角平分线的性质以及三角形外角的性质.24.210°【分析】根据三角形的内角和定理和三角形外角性质解答即可.【详解】解:如图:∠∠1=∠D+∠DOA ,∠2=∠E+∠EPB ,∠∠DOA=∠COP ,∠EPB=∠CPO ,∠∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°-∠C=30°+90°+180°-90°=210°, 故答案为210°.【点睛】本题考查三角形内角和,关键是根据三角形的内角和定理和三角形外角性质解答.25.80【分析】根据平角的概念可得∠ABC =38°,再由三角形内角和定理即可求解;【详解】解:∠∠ABE =142°,∠∠ABC =180°-∠ABE =180°-142°=38°,∠∠A +∠C +∠ABC =180°,∠C =62°,∠∠A =180°-(∠C +∠ABC )=180°-(38°+62°)=80°,故答案为:80.【点睛】本题主要考查三角形的内角和定理、平角的概念,掌握相关知识并灵活应用是解题的关键.26.65【分析】求方程13x a -=的解,代入23304x a +-=中解方程即可. 【详解】解:13x a -=, x-a=3,x=3+a ,∠方程13x a -=与23304x a +-=的解相同, ∠将x=3+a 代入23304x a +-=,得2(3)3304a a++-=,∠6+5a-12=0,解得a=65,故答案为:65.【点睛】此题考查同解方程,正确解方程是解题的关键.27.40【分析】设出A型放大镜为x个,根据不等关系列出不等式,求解即可.【详解】设A型放大镜x个,则B型放大镜为12x个,根据题意可得:20x+15×12x≤1100.解得:x≤40.故答案为:40.【点睛】本题主要考查了一元一次不等式在实际问题中的应用,关键是找出其中的不等量关系,并列出不等式.28.110【分析】根据旋转的性质即可得到结论.【详解】∠将△ABC绕点A顺时针旋转70度后得到△ADE,∠∠CAE=70°,∠∠BAE=30°,∠∠CAB=EAD=40°,∠∠CAD=∠CAB+∠BAE+DAE=110°,故答案为:110.【点睛】本题考查了旋转的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.29.8【分析】首先设正多边形的一个外角等于x°,则内角为3x°,即可得方程:x+3x=180,解此方程得到外角度数,再根据外角和求边数即可.【详解】解:设正多边形的一个外角等于x°,∵外角等于它的一个内角的13, ∴这个正多边形的一个内角为:3x °,∴x +3x =180,解得:x =45,∴这个多边形的边数是:360°÷45°=8.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用.30.(1)11x y =⎧⎨=⎩;(2)83193x y ⎧=-⎪⎪⎨⎪=-⎪⎩;(3)511911x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)43x y =⎧⎨=⎩ 【分析】(1)由方程组中x 的系数互为相反数,利用∠+∠消去x ,求解y ,从而可得答案;(2)由方程组中x 的系数互为相反数,利用∠+∠消去x ,求解y ,从而可得答案; (3)把方程∠化为32x y =-,再利用代入法消去x ,求解y ,从而可得答案; (4)把方程∠化为4325x y +=∠,∠-∠3⨯消去y ,求解x ,从而可得答案.【详解】解:(1)2332x y x y +=⎧⎨-+=⎩①② ∠+∠得:55,y =1,y ∴=把1y =代入∠得:23,x +=1,x =∴ 方程组的解是1.1x y =⎧⎨=⎩(2)541257x y y x -=⎧⎨-=⎩①② ∠+∠得:319,y -=19,3y ∴=- 把193y =-代入∠得:76512,3x +=405,3x ∴=- 8,3x ∴=- ∴ 方程组的解是83.193x y ⎧=-⎪⎪⎨⎪=-⎪⎩(3)32323x y x y -=-⎧⎨+=⎩①② 由∠得:32x y =-∠把∠代入∠得:()33223y y -+=1163,y ∴-=9,11y ∴= 把911y =代入∠得:5,11x = ∴ 方程组的解是511.911x y ⎧=⎪⎪⎨⎪=⎪⎩(4)20%15% 1.257x y x y +=⎧⎨+=⎩①② 由∠得:4325x y +=∠∠-∠3⨯得:4,x =把4x =代入∠得:3,y =∴ 方程组的解是4.3x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的解法,掌握利用代入法与加减法解二元一次方程组是解题的关键.31.(1)13x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩ 【分析】(1)使用代入消元法求解即可;(2)使用加减消元法求解即可.【详解】解:(1)421x yy x+=⎧⎨=+⎩①②,将∠代入∠,得:x+2x+1=4,解得x=1,将x=1代入∠,得:y=3,则方程组的解为13xy=⎧⎨=⎩;(2)325517x yx y-=⎧⎨+=⎩①②,∠+∠×2,得:13x=39,解得:x=3,将x=3代入∠,得:15+y=17,解得y=2,所以方程组的解为32xy=⎧⎨=⎩.【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.32.(1)∠2=90°-x,∠3=45°+12x;(2)54°【分析】(1)根据平角的定义利用∠1表示出∠2,再求出∠BOC,根据角平分线的定义表示出∠3;(2)根据∠3=2∠2得出方程,解之即可.【详解】解:(1)∠∠AOB=180°,∠EOD=90°,∠∠2=90°-∠1=90°-x,∠∠BOC=180°-∠2=180°-(90°-x)=90°+x,而OF平分∠BOC,∠∠3=12∠BOC=12(90°+x)=45°+12x;(2)∠∠2=90°-x,∠3=45°+12x,令∠3=2∠2,则45°+12x =2(90°-x ),解得:x =54°,∠当x 为54°时,∠3=2∠2.【点睛】本题考查了平角的定义,角平分线的定义,一元一次方程,主要考查学生的计算能力.33.(1)2x =;(2)3x =【分析】(1)先移项、合并同类项,再系数化为1,即可得到答案;(2)先移项、合并同类项,再系数化为1,即可得到答案;【详解】解:(1)4123x x -=+,∠4231x x -=+,∠24=x ,∠2x =;(2)123x x -=, ∠123x x -=, ∠223x =, ∠3x =.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法和步骤. 34.(1)11;(2)x >-1【分析】(1)根据运算的定义把所求的式子化成一般的形式,然后计算即可;(2)根据运算的定义列出不等式,然后解不等式即可得到结果.【详解】解:(1)由题意可得:(-2)∠3=(-2)×(-2-3)+1=10+1=11;(2)3∠x =3(3-x )+1=10-3x ,根据题意得:10-3x <13,解得:x >-1.【点睛】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).35.x >45-【分析】将不等式变形,先去分母,再去括号,移项、合并同类项即可. 【详解】解:不等式整理得,2132232x x +--<, 去分母,得2(2x +1)-12<3(3x -2).去括号,得4x +2-12<9x -6.移项,得4x -9x <-6+12-2.合并同类项,得-5x <4,系数化为1,得x >45-. 【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.36.x <32. 【分析】根据去括号,移项合并,化系数为1的步骤进行求解即可.【详解】解﹕去括号得:4x ﹣4﹣12<x ,移项合并得:3x <92, 解得:x <32, 所以原不等式的解集为x <32. 【点睛】本题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键. 37.(1)0x =(2) 1.5x =-【分析】(1)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【详解】(1)解:()()2311210.5x x -+=-+23312x x --=--31223x x -+=--+20x -=0x =(2)解:2121136x x -++= ()221621x x -+=+42621x x -+=+42126x x -=+-23x =-1.5x =-【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键. 38.(1)∠AFB =87°;(2)∠BAF =62°.【分析】(1)利用三角形的外角性质计算即可;(2)利用三角形内角和定理构建方程求出∠ABF 即可解决问题.【详解】(1)解:∠∠AEB =∠C +∠CAE ,∠C =42°,∠CAE =18°,∠∠AEB =60°,∠∠CBD =27°,∠∠AFB =27°+60°=87°;(2)解:∠∠BAF =2∠ABF ,∠AFB =87°,∠3∠ABF =180°-87°,∠∠ABF =31°,∠∠BAF =62°.【点睛】本题考查了三角形内角和定理,三角形的外角性质等知识,解题的关键是熟练掌握基本知识.39.(1)12,8;(2)6;(3)图见解析,25或125【分析】(1)根据两个面相隔一个面是对面,对面的和是14,可得答案;(2)根据临面,对面的关系,可得答案;(3)根据展开图面与面的关系,可得M 的位置,根据三角形的面积公式,可得答案.【详解】解:(1)如果长方体相对面上的两个数字之和相等,则有x+2=6+y=4+10,所以x=12,y=8;故答案为:12,8;(2)面“2”是左面,面“4”在后面,则上面是6,故答案为:6;(3)如图:S△ABM=12×10×5=25.或S△ABM=12×10×25=125.【点睛】本题考查了正方体的相对两个面上的文字,正方体展开图中相隔一个面的两个面互为对面.40.(1)∠BOC,∠COE,90;(2)∠DOE,25,∠AOB,155【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC,∠COE=12∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.【详解】解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=12∠AOC.因为OE是∠BOC的平分线,所以∠COE=12∠BOC.所以∠DOE=∠COD+ ∠COE =12(∠AOC+∠BOC)=1 2∠AOB= 90 °. (2)由(1)可知∠BOE=∠COE= ∠DOE ﹣∠COD= 25 °.所以∠AOE= ∠AOB ﹣∠BOE= 155 °【点睛】此题主要考查了垂线和角平分线的定义,要注意领会由两角和为90°得互余这一要点.41.2,4,6; 4,6,8和6,8,10【详解】假设连续三个正偶数第一个偶数为x ,则另外两个偶数是2x +,4x + 根据题意,得:2424x x x ++++≤解得:6x ≤因为x 是正偶数,所以x 的值只能是2、4或6故偶数组分别是2,4,6; 4,6,8和6,8,10【点睛】本题考查了求一元一次不等式的正整数解,根据题意列出不等式是关键.42.(1)7;(2)4或2-;(3)142;(4)22或34. 【分析】(1)利用数轴上两点之间的距离公式:AB a b =-,代入计算即可得到答案; (2)由3=3,± 可得13x -=或13,x -=- 再解方程即可得到答案;(3)先画好数轴,如图,A 表示1,2- B 表示4, 当x 对应的点B 在线段AC 上时,则此时111444,222AC AB BC x x ⎛⎫=+=++-=--= ⎪⎝⎭而且利用两点之间线段最短,可得此时可得最小值; (4)如图,A 向右移动后对应的数为:23,t -+ B 向右移动后对应的数为:8+2,t 再利用两点之间的距离公式表示,AB 再利用2,AB = 建立绝对值方程,解方程可得答案.【详解】解:(1)数轴上表示2-和5两点之间的距离是:()52527,--=+= 故答案为:7(2) 13x13x ∴-=或13,x -=-解得:4x =或 2.x =-故答案为:4或2-(3)如图,A 表示1,2- B 表示4, 当x 对应的点B 在线段AC 上时,则11,4,22AB x x BC x ⎛⎫=--=+=- ⎪⎝⎭111444,222AC AB BC x x ⎛⎫∴=+=++-=--= ⎪⎝⎭此时:142x x ++-的值最小,为14.2故答案为:14.2(4)如图,A 向右移动后对应的数为:23,t -+ B 向右移动后对应的数为:8+2,t而移动后:2,AB =()8+2232,t t ∴--+=102,t ∴-=102t ∴-=或102,t -=-解得:8t =或12.t =当8t =时,A 向右移动后对应的数为:2322422,t -+=-+=当12t =时,A 向右移动后对应的数为:2323634.t -+=-+=【点睛】本题考查的是数轴上两点之间的距离,绝对值的含义,建立绝对值方程,一元一次方程的解法,掌握数形结合的方法解题是解本题的关键.43.(1)见解析 (2)∠6 ∠36或72【分析】(1)根据等腰三角形两底角相等∠ABC=∠ACB ,再根据平行线的性质得出,∠AFE=∠ABC ,∠AEF=∠ACB ,得出∠AFE=∠AEF ,进一步得出结论;(2)求出AE=AF ,再根据旋转的性质可得∠E′AC=∠F′AB ,AE′=AF′,然后利用“边角边”证明△CAE′和△BAF′全等,根据全等三角形对应边相等证明即可;(3)把△AEF 绕点A 逆时针旋转AE′与过点C 与AB 平行的直线相交于M 、N ,然后分两种情况,根据等腰梯形的性质和等腰三角形的性质分别求解即可.【详解】()1∠AB AC =,∠ABC C ∠=∠,∠//EF BC ,∠AFE A ∠=∠,AEF C ∠=∠,∠AFE AEF ∠=∠,∠AE AF =;()2∠由旋转的性质得,''E AC F AB ∠=∠,''AE AF =,在'CAE 和'BAF 中,''''AE AF E AC F AB AB AC =⎧⎪∠=∠⎨⎪=⎩,∠()''CAE BAF SAS ≅,∠''6CE BF ==;∠由()1可知AE BC =,所以,在AEF 绕点A 逆时针旋转过程中,点E 经过的路径(圆弧)与过点C 且与AB 平行的直线l 相交于点M 、N ,如图,∠当点E 的像'E 与点M 重合时,四边形ABCM 是等腰梯形,所以,72BAM ABC ∠=∠=,又∠36BAC ∠=,∠36CAM α=∠=;∠当点E 的像'E 与点N 重合时,∠'//CE AB ,。
华师大版数学七年级下册期末复习试题(三)(有答案)
华师大版数学七年级下册期末复习试题(三)一、选择题(3分×8=24分)1、如果2(23)3250a b c a b c+-+-+=,那么ab的值为()A 、1B 、-1C 、5 D、-52、已知方程组325a xb y mc xd y n+=⎧⎨-=⎩的解是21xy=⎧⎨=-⎩,则方程组(2)3(3)2(2)5(3)a xb y mc xd y n++-=⎧⎨+--=⎩的解是()A21xy=⎧⎨=-⎩B42xy=⎧⎨=⎩C2xy=⎧⎨=⎩D4xy=⎧⎨=-⎩3、小亮在计算多边形内角和时,先测量各个内角的度数,再求和,结果得1570°,下列说法中错误的是()A 、小亮多加了一个内角,这个内角的度数是130°;B 、小亮少加了一个内角,这个内角的度数是50°;C 、小亮测量的多边形的边数可能是10;D、小亮测量的多边形的边数一定是11;4、已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是().A 、k<-3B、1≤ k<3 C 、-3≤k<-1D、k≥-35、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
下列说法错误的是()A 、2秒或5秒时,甲到A、B、C的距离和为40个单位;B 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲、乙在数轴上相遇点代表的数是-10.4;C 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。
甲、乙在数轴上相遇点代表的数是-44;D、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。
甲、乙在数轴上相遇点代表的数是-8;6、点A1、A2、A3、……A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1A O=1,点A2在点A1的右边,且A2A1=2,点A3在点A2的左边,且A3A2=3,点A4在点A3的右边,且A4A3=4,……,依照上述规律点A2008、A2009所表示的数分别为()。
华师大版数学七年级下册 期末检测卷
2021-2022学年七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列方程中,解是x=4的是()A.2x+5=0 B.﹣3x﹣8=﹣4C.x+3=2x﹣3 D.2(x﹣1)=3x﹣52.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.3.(3分)如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.B.C.D.4.(3分)下列正多边形中,与正八边形组合能够铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形5.(3分)用加减法解方程组,下列解法错误的是()A.①×3﹣②×2,消去x B.①×2﹣②×3,消去yC.①×(﹣3)+②×2,消去x D.①×2﹣②×(﹣3),消去6.(3分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.75°C.85°D.90°7.(3分)把边长相等的正五边形ABCDE和正方形ABFG按照如图所示的方式叠合在一起,则∠EAG的度数是()A.18°B.20°C.28°D.30°8.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A.+3=﹣3 B.﹣3=+3 C.+3=D.﹣3=10.(3分)按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种二、填空题(每题3分,共15分)11.(3分)若关于x的方程2x+a=9﹣a(x﹣1)的解是x=3,则a的值为.12.(3分)如图,在△ABC中,AB=AC,BC=4cm,将△ABC沿BC方向平移得到△DEF,若DE=6cm,EC=1cm,则四边形ABFD的周长为cm.13.(3分)如图,则∠A+∠B+∠C+∠D+∠E+∠F= 度.14.(3分)下列说法:①三角形的内角和等于180°,外角和等于360°;②三角形的一个外角等于它的两个内角和;③三角形的三边长为3,5,x,则x的取值范围是2<x<8;④角是轴对称图形,角的对称轴是角的平分线.其中正确的有(填序号).15.(3分)已知关于x的不等式组只有3个整数解,则实数a的取值范围是.三、解答题(本大题共8题,满分75分)16.(12分)(1)解不等式组,并把解集在数轴上表示出来(2)方程组:17.(6分)解方程组:18.(10分)如图,△ABC的顶点都在方格纸的格点上.(不写做法)(1)画出△ABC关于直线MN的对称图形△A1B1C1;(2)画出△ABC关于点O的中心对称图形△A2B2C2;(3)画出△ABC绕点B逆时针旋转90°后的图形△A3B3C3;(4)画出△ABC先向左平移2个单位长度,再向下平移7个单位长度得到的△A4B4C4.19.(8分)如图,在Rt△ABC中,∠C=90°,∠A=33°,将△ABC沿AB方向向右平移得到△DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm.请求出CF的长度.20.(9分)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式x2﹣9>0.解:∵x2﹣9=(x+3)(x﹣3),∴(x+3)(x﹣3)>0.由有理数的乘法法则“两数相乘,同号得正”,有(1)(2)解不等式组(1),得x>3,解不等式组(2),得x<﹣3,故(x+3)(x﹣3)>0的解集为x>3或x<﹣3,即一元二次不等式x2﹣9>0的解集为x>3或x<﹣3.问题:求分式不等式的解集.21.(9分)用两种方法证明“三角形的外角和等于360°.如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.证法1:∵∠BAE+∠1=180°,∠CBF+∠2=180°,∠ACD+∠3═180°∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°.∴∠BAE+∠CBF+∠ACD= .∵,∴.请把证法1补充完整,并用不同的方法完成证法2.22.(11分)为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B 两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型B型价格(万元/台) a b240 200处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.23.(10分)问题情景如图1,△ABC中,有一块直角三角板PMN放置在△ABC 上(P点在△ABC内),使三角板PMN的两条直角边PM、PN恰好分别经过点B 和点C.试问∠ABP与∠ACP是否存在某种确定的数量关系?(1)特殊探究:若∠A=50°,则∠ABC+∠ACB= 度,∠PBC+∠PCB= 度,∠ABP+∠ACP= 度;(2)类比探索:请探究∠ABP+∠ACP与∠A的关系.(3)类比延伸:如图2,改变直角三角板PMN的位置;使P点在△ABC外,三角板PMN的两条直角边PM、PN仍然分别经过点B和点C,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.参考答案一、选择题1.C.2.D.3.A.4.B.5.D.6.C.7.A.8.D.9.B.10.B.二、填空题11.1.12.22.13.360°.14.①③.15.﹣2<a≤﹣1.三、解答题16.解:(1)由不等式①得:x﹣3x+6<4,∴x>1由不等式②得:3x﹣3≤1+2x,∴x≤4它的解集在数轴上表示如图所示:∴不等式组的解集是1<x≤4.(2)解:①×6得3(x+3)+2(y+5)=42,即3x+2y=23.③②×15得5(x﹣4)+3(2y﹣3)=30,即5x+6y=59.④③×3﹣④得4x=10,即x=2.5.将x=2.5代入③得7.5+2y=23,解得y=7.75.∴方程组的解为.17.解:①+②得:4x+3z=18④,①+③得:2x﹣2z=2⑤⑤×2﹣④得:﹣7z=﹣14,解得:z=2,把z=2代入①得:x=3,把x=3,z=2代入①得:y=1,则方程组的解为.18.解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)如图所示:△A3BC3即为所求.(4)如图所示:△A4B4C4即为所求.19.解:(1)∵在Rt△ABC中,∠C=90°,∠A=33°,∴∠CBA=90°﹣33°=57°,由平移得,∠E=∠CBA=57°;(2)由平移得,AD=BE=CF,∵AE=9cm,DB=2cm,∴AD=BE=×(9﹣2)=3.5cm,∴CF=3.5cm.20.解:由有理数的除法法则“两数相除,同号得正,异号得负”,有(1)(2),解不等式组(1)得﹣0.2<x<1.5,解不等式组(2)得无解,故分式不等式的解集为﹣0.2<x<1.5.21.解:证法1补充如下:540°﹣(∠1+∠2+∠3)∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°;证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=∠2+∠3+∠1+∠3+∠1+∠2,即∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3)∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=2×180°=360°,或证法2:过点A作射线AP∥BD,∵AP∥BD,∴∠CBF=∠BAP,∠ACD=∠EAP,∵∠BAE+∠BAP+∠EAP=360°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:540°﹣(∠1+∠2+∠3);∠1+∠2+∠3=180°;∠BAE+∠CBF+∠ACD=540°﹣180°=360°;22.解:(1)购买A型的价格是a万元,购买B型的设备b万元,,解得:.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)当m=0,10﹣m=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;当m=1,10﹣m=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,此时买设备所需资金为:12+10×9=102万元;当m=2,10﹣m=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,此时买设备所需资金为:12×2+10×8=104万元;所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B型处理机9台.23.解:(1)∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP+∠ACP=130°﹣90°=40°.故答案为:130,90,40;(2)结论:∠ABP+∠ACP=90°﹣∠A.证明:∵90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°﹣∠A.(3)不成立;存在∠ACP﹣∠ABP=90°﹣∠A.理由:△ABC中,∠ABC+∠ACB=180°﹣∠A,∵∠MPN=90°,∴∠PBC+∠PCB=90°,∴(∠ABC+∠ACB)﹣(∠PBC+∠PCB)=180°﹣∠A﹣90°,即∠ABC+∠ACP+∠PCB﹣∠ABP﹣∠ABC﹣∠PCB=90°﹣∠A,∴∠ACP﹣∠ABP=90°﹣∠A.。
华师大版七年级下册数学期末考试试卷带答案
华师大版七年级下册数学期末考试试题一、单选题1.若x=−1是方程ax+3x=2的解,则a的值是( )A.-1 B.5 C.1 D.-5 2.下列各式中是二元一次方程的是( )A.3x−2y=7z B.2x+y=5C.1x+2=3y D.x−3=4y23.对于二元一次方程y−2x=7,用含y的方程表示x为( )A.x=y−72B.x=7−y2C.x=7+2y D.x=7−y4.已知关于x的一元一次方程(a+2)x|a|−1+5=0,则a的值为( ) A.±2 B.-2 C.2 D.±1 5.已知<b,下列式子不成立的是( )A.a−5<b−5B.3a<3bC.−12a>−12b D.−a+1<−b+16.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.12≤a≤52D.32≤a≤527.下列各组数不可能是一个三角形的边长的是( )A.5,7,12 B.5,12,13C.5,5,5 D.5,7,78.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.9.如图,将ΔABC绕点C按逆时针方向旋转得ΔA′B′C,且A′点在AB上,A′B′交CB于点D,若∠BCB′=β,则∠CA′B′的度数为( )A .180°−βB .90°+12βC .180°−12βD .90°−12β 10.方程2x−14=1−3−x 8去分母后正确的结果是( )A .2(2x −1)=1−(3−x)B .2(2x −1)=8−(3−x)C .2x −1=8−(3−x)D .2x −1=1−(3−x) 11.在等式y =kx +b 中,当x =2时,y =-4;当x =-2时,y =8,则这个等式是( ) A .y =−3x +2B .y =3x +2C .y =3x −2D .y =−3x −212.下列四种正多边形中,用同一种图形不能铺满平面的是 ( )]A .正三角形B .正方形C .正五边形D .正六边形 13.已知等腰三角形一腰上的中线将它的周长分成6cm 和12cm 两部分,则等腰三角形的底边长为( )A .10cmB .2cmC .6cm 或4cmD .2cm 或10cm14.“五一”期间,某电器按成本价提高20%后标价,再打7折(标价的70%)销售,售价为2080元,设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x(1+20%)×70%=2080B .x ⋅20%⋅70%=2080C .2080×20%×70%=xD .x ⋅20%=2080×70%15.若关于x ,y 的二元一次方程组{3x +y =−3m +2x +2y =4的解满足x +y >−32,满足条件的m 的所有正整数值为( )A .0,1,2B .0,1,2,3C .1,2,3D .1,2,3,4,516.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数可能是( )A .10,11,12B .11,10C .8,9,10D .9,10二、填空题17.若(x +y −2)2+|4x +3y −7|=0,则7x −3y 的值为_____. 18.已知方程组456218x y x y -=⎧⎨+=⎩和13418ax by ax by +=-⎧⎨-=⎩的解相同,则2a b -=_____. 19.一个多边形对角线的条数与它的边数相等,这个多边形的边数是_____.20.如图,两个全等的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =8, DH =2,平移距离为3,则阴影部分的面积是________.21.关于x 的不等式组23284a x x a ->⎧⎨+>⎩的解集中每一个值均不在-1≤x ≤4的范围中,则a 的取值范围是_____.三、解答题 22.解方程:43(8)4x x --=.23.解不等式:[]32(7)x x --≤4x .24.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.25.解三元一次方程组:3113y z x x y z x z y +-=-⎧⎪+-=-⎨⎪+-=⎩26.在△ABC 中,∠B =20°,∠ACB =110°,AE 平分∠BAC ,AD ⊥BD 于点D ,求∠EAD 的度数.27.如图,四边形ABCD 中,100BAD ∠=︒,70BCD ∠=︒,点M ,N 分别在AB ,BC 上,将BMN ∆沿MN 翻折,得FMN ∆,若//MF AD ,//FN DC ,求B 的度数.28.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知△ABC 的顶点均为网格线的交点.(1)将△ABC 向下平移5个单位长度,再向左平移1个单位长度,画出平移后的△A 1B 1C 1; (2)画出△A 1B 1C 1关于直线l 轴对称的△A 2B 2C 2;(3)将△ABC 绕点C 逆时针旋转90°,画出旋转后的△A 3B 3C 3以A 、A 3、B 、B 3为顶点的四边形的面积为 .29.先阅读下列解题过程,然后解答问题(1)、(2)、(3). 例:解绝对值方程:21x =.解:讨论:①当x ≥0时,原方程可化为21x =,它的解是12x =. ②当x <0时,原方程可化为21x -=,它的解是12x =-. ∴原方程的解为12x =和12-. 问题(1):依例题的解法,方程122x =的解是 ; 问题(2):尝试解绝对值方程:226x -=;问题(3):在理解绝对值方程解法的基础上,解方程:215x x -+-=.30.为落实“绿水青山就是金山银山”的发展理念,某县政府部门决定,招标一工程队负责完成一座水库的土方施工任务.该工程队有A ,B 两种型号的挖掘机,已知1台A 型和2台B 型挖掘机同时施工1小时共挖土80立方米,2台A 型和3台B 型挖掘机同时施工1小时共挖土140立方米.每台A 型挖掘机一个小时的施工费用是350元,每台B 型挖掘机一个小时的施工费用是200元.(1)分别求每台A 型,B 型挖掘机一小时各挖土多少立方米?(2)若A 型和B 型挖掘机共10台同时施工4小时,至少完成1360立方米的挖土量,且总费用不超过14000元.问施工时有哪几种调配方案?且指出哪种调配方案的施工费用最低,最低费用多少元?31.(1)如图1,在△ABC中,∠A<90°,P是BC边上的一点,P1,P2是点P关于AB、AC的对称点,连结P1P2,分别交AB、AC于点D、E.①若∠A=58°,求∠DPE的度数;②请直接写出∠A与∠DPE的数量关系;(2)如图2,在△ABC中,若∠BAC=90°,用三角板作出点P关于AB、AC的对称点P1、P2,(不写作法,保留作图痕迹),试判断点P1,P2与点A是否在同一直线上,并说明理由.参考答案1.D【解析】【分析】将x=-1代入到方程ax+3x=2后即可求得a的值.【详解】∵x=-1方程ax+3x=2的解,∴-a+3×(-1)=2得:a=−5.故选D.【点睛】此题考查一元一次方程的解,解题关键在于将x=-1代入到方程.2.B【解析】【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【详解】A. 3x−2y=7z不是二元一次方程,因为含有3个未知数;B. 2x+y=5是二元一次方程;+2=3y不是二元一次方程,因为不是整式方程;C. 1xD. x−3=4y2不是二元一次方程,因为其未知数的最高次数为2.故选B.【点睛】此题考查二元一次方程的定义,解题关键在于掌握其定义.3.A【解析】【分析】把y看做已知数求出x即可.【详解】方程y−2x=7,解得:x=y−7,2故选:A.【点睛】此题考查二元一次方程的解,解题关键在于把y看做已知数求出x.4.C【解析】【分析】根据一元一次方程的一般定义,可得|a|-1=1且a-2≠0,进一步得到答案.【详解】由题意,得|a|−1=1且a+2≠0,解得a=2.故选:C.【点睛】此题考查一元一次方程的定义,解题关键在于掌握其定义.5.D【解析】【分析】利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变.【详解】A. 不等式两边同时减5,不等号方向不变,故本选项正确,不符合题意;B. 不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C. 不等式两边同时乘以−1,不等号方向改变,故本选项正确,不符合题意;2D. 不等式两边同时乘以-1加1,不等号方向改变,故本选项错误,符合题意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(华师大版)七年级数学下册期末考试题
大家完成了小学的学习,进入紧张的初中阶段。
这篇(华师大版)七年级数学下册期末考试题,是特地为大家整理的,欢迎阅读
一、选择题(每小题3分,共21分)
1.方程的解是( )
A. B. C. D.
2.若大于,则下列不等式中,不成立的是( )
A. B. C. D.
3.下列长度的各组线段首尾相接能构成三角形的是( )
A.3 、5 、8 B.3 、5 、6
C.3 、3 、6 D.3 、5 、10
4.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购
其中某一种地砖镶嵌地面,可供选择的地砖共有( )
A.1种B.2种C.3种D.4种
5. 如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是( )
A.60度B.72度C.90度D.144度
6.在4乘以4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形,那幺符合条件的小正方形共有( )
A.1个B.2个C.3个D.4个
7. 如图1,宽为50 cm的矩形图案由10个全等的小长方形拼成,其中一个。