时间序列分析模拟试卷2

合集下载

时间序列分析考试卷及答案

时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,。

一、单项选择题(每小题3 分,共24 分。

)1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。

A. MA(2)B.ARMA(1,1)C.AR(2)D.MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。

A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。

(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。

A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。

A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。

A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。

A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2)8. 记∇为差分算子,则下列不正确的是( C )。

时间序列试卷参考答案

时间序列试卷参考答案

时间序列试卷参考答案内蒙古财经学院2009——2010学年第一学期期末考试试卷《时间序列分析》试卷参考答案一、填空题(1分*20空=20分)1. 描述性2. 平稳性,白噪声3. 严平稳,宽平稳,宽平稳4. 时域分析方法,频域分析方法5. 纯随机性,2χ,1,:210>?==m H m ρρρ ,m k H k ≤≤≠?1,0:1ρ6. 否,一阶,12步,d(x,1,12)7. 差分运算,ARMA 模型8. 自回归9. t t x B ε=Φ)(二、不定项选择题(2分*5=10分)1 A C D ;2 A D ;3 A BD ;4 B ;5 A D三、判断并说明理由(10分)1.(5分)答:说法不完全正确。

模型的有效性检验指的是检验模型的有效性。

如果模型有效,则拟合残差应该不含有任何信息,即残差为纯随机序列;如果模型拟合不显著,则拟合残差应该残留未被模型提取充分的信息,即非纯随机序列。

所以模型的有效性检验等同于对残差进行纯随机性检验,而不是平稳性检验。

2.(5分)答:说法是错误的。

证明:2110110121)()()0,1,0(εσεεεεεεεεεt x Var x Var x x x x ARIMA t t t t t t t t t t t =+++=+++==++=+=----- 模型:例如即方差非齐次。

四、简答题:(第1小题15分,第2小题5分,本题共20分)1. 答:(1)平滑法是进行趋势分析和预测时常用的一种方法。

它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律(2)根据平滑技术的不同,平滑法可以具体分为移动平均法和指数平滑法。

移动平均法假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。

根据这种假定,我们可以用一定时间间隔内的平均值作为某一期的估计值,具体公式为:++++++++++++=+-++---+--++----为偶数,为奇数,n x x x x x n n x x x x x n x n t n t t n t n t n t n t t n t n t t )2121(1)(1~2121222112112121 指数平滑法的思想是在实际生活中,我们会发现对大多数随机事件而言,一般都是近期的结果对现在的影响会大些,远期的结果对现在的影响会小些。

时间序列分析-模拟试卷2套及答案

时间序列分析-模拟试卷2套及答案

《时间序列分析》 期中考试模拟试卷(A )1.问答题(1) 常见的数据有哪些种类? (2) 什么是时间序列数据?(3) 常见的时间序列数据有哪些典型特征? (4)如何度量序列相依性?2.名词解释 (1) 平稳性 (2) 遍历性 (3) ACF(4) 长期协方差 (5) 白噪声3.下列自回归过程是否平稳? 若平稳,计算其均值和方差、以及自相关函数。

(1)r t =3+0.95r t−1+a t . (2)r t =1+1.05r t−1+a t .4.下列滑动平均过程是否可逆? (a )若可逆,求出其可逆表示;(b )计算其均值和方差、以及自相关函数。

(1)r t =3+0.95a t−1+a t . (2)r t =1+1.05a t−1+a t .5.证明:若y t =y t−1+u t ,u t 为i.i.d.N(0,σ2),则有T−2∑y t−12d →Tt=1σ2⋅∫[W (r )]2dr 1,T −1∑y t−1u t Tt=1d→σ22{[W (1)]2 −1}.参考答案1. (1)横截面数据、时间序列数据和面板数据;(2)时间序列数据是指同一个个体的一个或者多个特征在一系列时间观测点上的数据;(3) 序列平稳、非平稳、差分平稳、结构变化、季节性、协整、波动率聚集等;(4) 可以使用Pearson 相关系数度量变量之间的线性相关性,以及非线性相关系数,例如Spearman 秩相关系数和Kendall τ相关系数,来度量变量之间的非线性相关关系。

以上度量的共同点在于均为数据之间相依性的度量,并对样本数据得到相应的统计量,进行假设检验;但当时间序列数据之间存在非线性关系时,线性相关度量可能无法反应变量之间的相依性。

2. (1)平稳性分为严平稳和弱平稳,参考定义1.1和定义1.2;(2)遍历性刻画的是时间序列数据之间的相依程度随着数据之间时间间隔的增加而逐渐减弱的特征; (3)序列自相关系数关于阶数的变化的函数即为自相关函数,记为ACF ; (4)长期协方差为平稳时间序列的样本均值乘以√T (即√Ty ̅=√Ty t T t=1)的方差的极限; (5)白噪声是指均值为0、方差有限、且不存在时间维度上的相关性的平稳时间序列;。

时间序列分析试题

时间序列分析试题

第九章 时间序列分析一、单项选择题1、乘法模型是分析时间序列最常用的理论模型。

这种模型将时间序列按构成分解为( ) 等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。

A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:C2、加法模型是分析时间序列的一种理论模型。

这种模型将时间序列按构成分解为( )等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。

A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:B3、利用最小二乘法求解趋势方程最基本的数学要求是( )。

A.∑=-任意值2)ˆ(t Y Y B. ∑=-min )ˆ(2t Y Y C. ∑=-max )ˆ(2t Y Y D. 0)ˆ(2∑=-t Y Y 答案:B4、从下列趋势方程t Y t86.0125ˆ-=可以得出( )。

A. 时间每增加一个单位,Y 增加0.86个单位B. 时间每增加一个单位,Y 减少0.86个单位C. 时间每增加一个单位,Y 平均增加0.86个单位D. 时间每增加一个单位,Y 平均减少0.86个单位答案:D.5、时间序列中的发展水平( )。

时间序列分析试卷及标准答案

时间序列分析试卷及标准答案

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________。

4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 对于一阶自回归模型MA(1):10.3t t t X εε-=-,其自相关函数为______________________。

7. 对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++L L则预测方差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。

时间序列分析考试卷及答案

时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;Ñ为差分算子,。

一、单项选择题(每小题3 分,共24 分。

)1. 若零均值平稳序列{}tX ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。

模型。

A. MA(2) B.ARMA(1,1) C.AR(2) D.MA(1) 2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。

A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其,则其MA MA MA特征方程的根是(特征方程的根是(特征方程的根是( C C C )。

)。

)。

(A )5.0,4.021==l l (B )5.0,4.021-=-=l l (C )52221==l l , (D ) 5.2221=-=l l ,4. 设有模型112111)1(----=++-t t t t t e e X X X q f f ,其中11<f ,则该模型属于(,则该模型属于( B )。

)。

A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1) 5. AR(2)模型tt t t e Y Y Y +-=--215.04.0,其中64.0)(=t e V ar ,则=)(t t e Y E ( B B )。

)。

)。

A.0 B.64.0 C. 16.0 D. 2.06.6.对于一阶滑动平均模型对于一阶滑动平均模型对于一阶滑动平均模型MA(1): MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为,则其一阶自相关函数为( C )( C )( C )。

A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X Ñ,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立(应该建立( B )模型。

时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,。

一、单项选择题(每小题3 分,共24 分。

)1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。

A. MA(2)B.ARMA(1,1)C.AR(2)D.MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。

A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。

(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。

A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。

A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。

A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。

A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2)8. 记∇为差分算子,则下列不正确的是( C )。

时间序列分析试卷及答案

时间序列分析试卷及答案时间序列分析试卷1一、填空题(每小题2分, 共计20分)1.ARMA(p,q)模型是一种常用的时间序列模型, 其中模型参数为p和q。

2.设时间序列{Xt}, 则其一阶差分为Xt-Xt-1.3.设ARMA (2.1): Xt=0.5Xt-1+0.4Xt-2+εt-0.3εt-1, 则所对应的特征方程为1-0.5B-0.4B^2+0.3B。

4.对于一阶自回归模型AR(1):Xt=10+φXt-1+εt, 其特征根为φ, 平稳域是|φ|<1.5.设ARMA(2.1):Xt=0.5Xt-1+aXt-2+εt-0.1εt-1, 当a满足|a|<1时, 模型平稳。

6.对于一阶自回归模型Xt=φXt-1+εt, 其平稳条件是|φ|<1.7.对于二阶自回归模型AR(2):MA(1):Xt=εt-0.3εt-1, 其自相关函数为Xt=0.5Xt-1+0.2Xt-2+εt, 则模型所满足的XXX-Walker方程是ρ1-0.5ρ2=0.2, ρ2-0.5ρ1=1.8.设时间序列{Xt}为来自ARMA(p,q)模型: Xt=φ1Xt-1+。

+φpXt-p+εt+θ1εt-1+。

+θqεt-q, 则预测方差为σ^2(1+θ1^2+。

+θq^2)。

9.对于时间序列{Xt}, 如果它的差分序列{ΔXt}是平稳的, 则Xt~I(d)。

10.设时间序列{Xt}为来自GARCH(p,q)模型, 则其模型结构可写为σt^2=α0+α1εt-1^2+。

+αpεt-p^2+β1σt-1^2+。

+βqσt-q^2.二、(10分)设时间序列{Xt}来自ARMA(2,1)过程, 满足(1-B+0.5B^2)Xt=(1+0.4B)εt, 其中{εt}是白噪声序列, 并且E(εt)=0, Var(εt)=σ^2.1)判断ARMA(2,1)模型的平稳性。

根据特征方程1-φ1B-φ2B^2, 求得其根为0.5±0.5i, 因此模型的平稳条件是|φ1-0.5i|<1和|φ1+0.5i|<1, 即-1<φ1<1.因为0.5i不在实轴上, 所以模型不是严平稳的, 但是是宽平稳的。

时间序列练习题

时间序列练习题时间序列分析是一种用于研究以时间为顺序的数据变动规律的方法。

它可以帮助我们理解和预测未来的趋势,对于决策和规划具有重要的意义。

本文将通过一些时间序列练习题,帮助读者更好地理解和应用时间序列分析。

练习题一:季度销售数据分析某公司的销售数据按照季度记录如下:季度销售额Q1 100Q2 200Q3 300Q4 400请你根据这些数据,进行以下的分析和预测:1. 绘制季度销售额的时间序列图。

2. 计算季度销售额的平均值。

3. 判断季度销售额是否存在趋势性,并进行趋势线的拟合。

4. 判断季度销售额是否存在季节性,如果存在,请进行季节性分解。

5. 使用你认为最适合的模型进行未来一年季度销售额的预测,并给出预测结果。

练习题二:月度股票收益率分析某股票连续12个月的收益率数据如下:月份收益率1 0.032 0.053 -0.024 0.025 -0.016 0.047 -0.038 0.019 0.0210 -0.0511 0.0112 0.03请你根据这些数据,进行以下的分析和预测:1. 绘制月度股票收益率的时间序列图。

2. 计算月度收益率的平均值和标准差。

3. 判断股票收益率是否存在趋势性,并进行趋势线的拟合。

4. 判断股票收益率是否存在季节性,如果存在,请进行季节性分解。

5. 使用你认为最适合的模型进行未来三个月股票收益率的预测,并给出预测结果。

练习题三:年度气温分析某城市过去10年(2011年至2020年)的年度平均气温数据如下:年份平均气温(摄氏度)2011 192012 212013 202014 182015 172016 182017 202018 222019 232020 21请你根据这些数据,进行以下的分析和预测:1. 绘制年度平均气温的时间序列图。

2. 计算年度平均气温的平均值、中位数和极差。

3. 判断气温是否存在趋势性,并进行趋势线的拟合。

4. 判断气温是否存在季节性,如果存在,请进行季节性分解。

时间序第三章试卷题

时间序列分析第三章试卷一、选择题(每题2分,共20分)1. 在时间序列分析中,下列哪个模型是通过样本自相关函数和偏自相关函数进行识别的?A. MA(q)模型B. AR(p)模型C. ARMA(p,q)模型D. 以上都是2. 下列关于平稳性的说法,正确的是?A. 强平稳意味着随机过程的分布随时间变化B. 弱平稳仅假设随机过程的前两阶矩随时间变化C. 平稳性可以通过样本均值和方差进行检验D. 平稳性是统计推断的基础3. 在AR(p)模型的参数估计中,常用的方法是?A. 最小二乘法(OLS)B. 迭代法C. Yule-Walker方程D. 以上都是4. 下列哪个统计量用于检验残差序列是否为白噪声?A. AICB. BICC. Q统计量D. R方5. 在ARMA模型的识别中,如果自相关系数和偏自相关系数都表现出拖尾性质,那么最可能的模型是?A. MA(q)模型B. AR(p)模型C. ARMA(p,q)模型D. 无法确定6. 下列关于时间序列图的说法,错误的是?A. 可以用来判断序列的平稳性B. 可以用来判断序列的纯随机性C. 总是能准确反映序列的真实趋势D. 可以作为模型选择的参考7. 在时间序列分析中,白噪声是指?A. 序列的均值和方差都不随时间变化B. 序列的自相关系数始终为零C. 序列的偏自相关系数始终为零D. 以上都是8. 下列哪个模型在参数估计时,需要用到非线性方程组?A. AR(p)模型B. MA(q)模型C. ARMA(p,q)模型D. 以上都不是9. 在平稳性检验中,常用的方法包括?A. 时序图法B. 自相关图法C. 混成检验法D. 以上都是10. 下列关于AIC和BIC的说法,正确的是?A. AIC和BIC都用于模型选择B. AIC值越小,模型越好C. BIC值越大,模型越好D. 以上都是二、填空题(每题2分,共20分)1. 在时间序列分析中,样本自相关函数用于衡量序列在不同时间点上的______关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________。

4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 对于一阶自回归模型MA(1):10.3t t t X εε-=-,其自相关函数为______________________。

7. 对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++L L则预测方差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。

(1) 判断()2,1ARMA 模型的平稳性。

(5分)(2) 利用递推法计算前三个格林函数012,,G G G 。

(5分)三、(20分)某国1961年1月—2002年8月的16~19岁失业女性的月度数据经过一阶差分后平稳(N =500),经过计算样本其样本自相关系数ˆ{}k ρ及样本偏相关系数ˆ{}kkφ的前求(1) 利用所学知识,对}{t X 所属的模型进行初步的模型识别。

(10分) (2) 对所识别的模型参数和白噪声方差2σ给出其矩估计。

(10分)四、(20分)设}{t X 服从ARMA(1, 1)模型:110.80.6t t t t X X εε--=+-其中1001000.3,0.01X ε==。

(1) 给出未来3期的预测值;(10分)(2) 给出未来3期的预测值的95%的预测区间(0.975 1.96u =)。

(10分)五、(10分)设时间序列}{t X 服从AR(1)模型:1t t t X X φε-=+,其中{}t ε为白噪声序列,()()2t t 0,E Var εεσ==,1212,()x x x x ≠为来自上述模型的样本观测值,试求模型参数2,φσ的极大似然估计。

六、(20分)证明下列两题:(1) 设时间序列{}t x 来自()1,1ARMA 过程,满足110.50.25t t t t x x εε---=-,其中()2t ~0,WN εσ, 证明其自相关系数为11,00.2710.52k k k k k ρρ-=⎧⎪==⎨⎪≥⎩(10分) (2) 若t X ~I(0),t Y ~I(0),且{}t X 和{}t Y 不相关,即(,)0,,r s cov X Y r s =∀。

试证明对于任意非零实数a 与b ,有~(0)t t t Z aX bY I =+。

(10分)七、 填空题(每小题2分,共计20分)1. 设时间序列{}t X ,当__________________________序列{}t X 为严平稳。

2. AR(p)模型为_____________________________,其中自回归参数为______________。

3. ARMA(p,q)模型_________________________________,其中模型参数为____________________。

4. 设时间序列{}t X ,则其一阶差分为_________________________。

5. 一阶自回归模型AR(1)所对应的特征方程为_______________________。

6. 对于一阶自回归模型AR(1),其特征根为_________,平稳域是_______________________。

7. 对于一阶自回归模型MA(1),其自相关函数为______________________。

8. 对于二阶自回归模型AR(2):1122t t t t X X X φφε--=++,其模型所满足的Yule-Walker 方程是___________________________。

9. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t ptp t t q t q X X Xφφεθεθε----=++++++L L ,则预测方差为___________________。

10. 设时间序列{}t X 为来自GARCH(p, q)模型,则其模型结构可写为_____________。

八、(20分)设{}t X 是二阶移动平均模型MA(2),即满足t t t-2X εθε=+,其中{}t ε是白噪声序列,并且()()2t 0,t E Var εεσ==(1) 当1θ=0.8时,试求{}t X 的自协方差函数和自相关函数。

(2) 当1θ=0.8时,计算样本均值1234(X X X X )4+++的方差。

九、(20分)设}{t X 的长度为10的样本值为0.8,0.2,0.9,0.74,0.82,0.92,0.78,0.86,0.72,0.84,试求 (1) 样本均值x 。

(2) 样本的自协方差函数值21ˆ,ˆγγ和自相关函数值21ˆ,ˆρρ。

(3) 对AR(2)模型参数给出其矩估计,并且写出模型的表达式。

十、(20分)设}{t X 服从ARMA(1, 1)模型:110.80.6t t t t X X εε--=+-其中1001000.3,0.01X ε==。

(1) 给出未来3期的预测值;(2) 给出未来3期的预测值的95%的预测区间。

十一、 (20分)设平稳时间序列}{t X 服从AR(1)模型:11t t t X X φε-=+,其中{}t ε为白噪声,()()2t 0,t E Var εεσ==,证明:221()1t Var X σφ=-十二、 单项选择题(每小题4分,共计20分)11. t X 的d 阶差分为(a )=dt t t k X X X -∇- (b )11=d d d t t t k X X X ---∇∇-∇ (c )111=dd d t t t X X X ---∇∇-∇ (d )11-12=d d d t t t X X X ---∇∇-∇12. 记B 是延迟算子,则下列错误的是(a )01B = (b )()1=t t t B c X c BX c X -⋅⋅=⋅(c )()11=t t t t B X Y X Y --±± (d )()=1ddt t d t X X B X -∇-=-13. 关于差分方程1244t t t X X X --=-,其通解形式为(a )1222t t c c + (b )()122t c c t + (c )()122t c c - (d )2tc ⋅14. 下列哪些不是MA 模型的统计性质(a )()t E X μ= (b )()()22111q t Var X θθσ=+++L(c )()(),,0t t t E X E με∀≠≠ (d )1,,0q θθ≠K15. 上面左图为自相关系数,右图为偏自相关系数,由此给出初步的模型识别(a )MA (1) (b )ARMA (1, 1) (c )AR (2) (d )ARMA (2, 1)十三、 填空题(每小题2分,共计20分)1. 在下列表中填上选择的的模型类别2. 时间序列模型建立后,将要对模型进行显著性检验,那么检验的对象为___________,检验的假设是___________。

3. 时间序列模型参数的显著性检验的目的是____________________。

4. 根据下表,利用AIC 和BIC 准则评判两个模型的相对优劣,你认为______模型优于______模型。

5. 时间序列预处理常进行两种检验,即为_______检验和_______检验。

十四、 (10分)设{}t ε为正态白噪声序列,()()2t t 0,E Var εεσ==,时间序列}{t X 来自110.8t t t t X X εε--=+-问模型是否平稳?为什么?十五、 (20分)设}{t X 服从ARMA(1, 1)模型:110.80.6t t t t X X εε--=+-其中1001000.3,0.01X ε==。

(3) 给出未来3期的预测值;(10分)(4) 给出未来3期的预测值的95%的预测区间(0.975 1.96u =)。

(10分)十六、 (20分)下列样本的自相关系数和偏自相关系数是基于零均值的平稳序列样本量为500计算得到的(样本方差为2.997)ACF: 0:340; 0:321; 0:370; 0:106; 0:139; 0:171; 0:081; 0:049; 0:124; 0:088; 0:009; 0:077 PACF: 0:340; 0:494; 0:058; 0:086; 0:040; 0:008; 0:063; 0:025; 0:030; 0:032; 0:038; 0:030根据所给的信息,给出模型的初步确定,并且根据自己得到的模型给出相应的参数估计,要求写出计算过程。

十七、 (10分)设}{t X 服从AR (2)模型:1121t t t t X X X ααε--=++其中{}t ε为正态白噪声序列,()()2t t 0,E Var εεσ==,假设模型是平稳的,证明其偏自相关系数满足223kk k k αφ=⎧=⎨≥⎩。

相关文档
最新文档