高考数学选择题巧解3
数学选择题解法专题

高考数学选择题简捷解法专题一、数形结合画出图形或者图象能够使问题提供的信息更直观地呈现,从而大大降低思维难度,是解决数学问题的有力策略,这种方法使用得非常之多。
【例题】、(07江苏6)设函数()f x 定义在实数集上,它的图象关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )。
A 、132()()()323f f f B 、231()()()323f f f C 、213()()()332f f f D .321()()()233f f f 【解析】、当1x ≥时,()31xf x =-,()f x 的 图象关于直线1x =对称,则图象如图所示。
这个图象是个示意图,事实上,就算画出()|1|f x x =-的图象代替它也可以。
由图知,符合要求的选项是B ,【练习1】、若P (2,-1)为圆22(1)25x y -+=的弦AB 的中点,则直线AB 的方程是( )A 、30x y --=B 、230x y +-=C 、10x y +-=D 、250x y --= (提示:画出圆和过点P 的直线,再看四条直线的斜率,即可知选A )【练习2】、(07辽宁)已知变量x 、y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A 、9,65⎡⎤⎢⎥⎣⎦ B 、[)9,6,5⎛⎤-∞+∞ ⎥⎝⎦C 、(][),36,-∞+∞D 、[]3,6(提示:把yx看作可行域内的点与原点所在直线的斜率,不难求得答案,选A 。
)【练习3】、曲线[]12,2)y x =∈- 与直线(2)4y k x =-+有两个公共点时,k 的取值范围是( )A 、5(0,)12B 、11(,)43C 、5(,)12+∞D 、53(,)124(提示:事实上不难看出,曲线方程[]12,2)y x =∈-的图象为22(1)4(22,13)x y x y +-=-≤≤≤≤,表示以(1,0)为圆心,2为半径的上半圆,如图。
全国卷数学选择题答题规律技巧

全国卷数学选择题答题规律技巧全国卷数学选择题答题规律技巧数学选择题的答案(ABCD)答案基本分布都是比较均匀的,一般不会连续三道题都是选择同一个选项,基本这ABCD会出2到4次,记得小编在做数学题的时候,一本会采用2334的原则,相信大部分的同学都会采用这种方法。
其实数学选择题答题是没有什么规律可言的,但是数学选择题的题型一半我们都在平时的练习的时候做过,那几道选择体会比较难,那几道选择题是简单的,这老师都会说,我们在平时做题的时候,也能够感觉到。
我们在答数学选择题的时候,可以采用先看答案的方法,然后再去读题目,一定要把题干读懂,这样做题的效率会高一些,也可以把答案带入到题干当中,采用排除法的方式,选择最佳答案。
如果是自己会做,那么直接选择就可以了,这也会简便很多。
一定要认真审题,有时候,差一个字可能对答案都是有影响的,同学们在做选择题,不要着急选择答案,要把题读懂再去选择答案,这样准确率才会高一些,能够发现题干当中所隐含的条件,有些时候,题干不会直接给出已知条件,需要我们去反推,这样会增加我们的准确率。
学会采用剔除的方法,根据已知条件,找到相对应的答案,把错误的是三个选项剔除,找出最正确的答案,如果是你的推理能力很强,还可以采用推理的方法,找到最佳答案,利用数学定理和公式的,推算出最终的结果,这也是答数学选择题的一种最好的方法。
高考数学答题思路1、函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
高考数学选择题的常见解法

值、 特殊 数 列 、 殊 函数 、 殊 图形 、 特 特 特殊 角、 殊位 置 特
等.
解: 由 1≥ O
【 3 ( 08 全 国 ) 函数 Y一 - - 与 函数 Y= 例 】 20 , 若 厂z ()
点评 : 直接 法是解 答选择 题 最 常用 的基本 方 法, 低
用是 解 选择 题 的 常 用 方 法.
质、 定理 、 法则 等知识 , 过推理运 算 , 出结 论 , 通 得 再对 照
选择项 , 中选出正确答案 的方法叫直接法 . 从 【 1 (0 8 全 国) 例 】 20 , 函数 一
义域为 ( ) . B { z 1 .z{≥ } D { l4 z 1 . z o ≤ ) z 1 z O 可得 选 项 c ≥ 或 ≥ . .
【 2 (0 8 江 西) 例 】 20 , 函数 —tn + s 一 l n ax i 眦 z t c a
—i 在 间号, 内 图 大 是 ) s 区 ( ) 的 象 致 ( . 眦l
4 代入法 : 各个选 择项 逐 一代 入题 设 进行检 验 , . 将 从 而作 出正确判 断 的方法 叫代入法 , 又称 为验证法 , 即 将 各选择 支分别 作为 条件 , 去验证命 题 , 能使 命题成 立 的选择支就是正 确答案 .
交 点 还 可 以 在 圆 内 , 可 以在 圆 外 . 此 , 圆 与 过 圆直 也 因 从
径 两端点所作的两相交直线 的关 系来看 , 可将勾 股定理
加 以推 广 .
味 求 快 则 会 快 中 出错 .
l ̄z n / +l的图象关 于直 - 一 对称 , 厂 z =( 则 ()
A. 2- eX 2 B. ez C. 州 e D
巧借特殊值法,妙解高考真题

2023年8月上半月㊀学法指导㊀㊀㊀㊀巧借特殊值法,妙解高考真题◉张家港高级中学㊀黄㊀轶㊀㊀摘要:巧妙利用特殊值法,借助特殊值的选取,有时可以更加简捷地求解客观题.本文中结合2022年高考真题,剖析特殊值法的巧妙应用,总结特殊值法的解题技巧与规律.关键词:高考;特殊值;客观题;函数;三角;不等式㊀㊀特殊值法破解数学客观题,有其特殊的优势与美妙的体验,它是数学基础知识㊁基本技能㊁基本思想㊁基本活动经验等 四基 落实并上升到一定高度的特殊 产物 ,是特殊与一般思维的升华.特别在解决一些函数或方程㊁数列㊁三角函数或不等式等的选择题时,利用特殊值法,解题过程简洁明了,很好地提升解题速度与解题效益.下面结合2022年高考数学真题中一些客观题特殊值法的合理选用与巧妙应用加以剖析.1巧判函数图象例1㊀(2022年高考数学全国甲卷理科 5)函数y =(3x -3-x)c o s x 在区间-π2,π2éëêêùûúú的图象大致为(㊀㊀).A.㊀㊀B .C .D.分析:解决此类题的常用思维就是先根据函数的解析式判定函数的奇偶性,再借助特殊值的选取合理排除错误的选项.而此题两次利用函数特殊值的选取,即可将不满足函数值取值情况的图象完美地排除,实现巧妙判定函数图象的目的.解析:选取特殊值x =1,可得f (1)=(31-3-1)c o s 1>0,由此排除选项C ,D ;再选取特殊值x =-1,得f (-1)=(3-1-31) c o s (-1)<0,由此排除选项B .故选择答案:A .点评:巧妙选取特殊值来判断函数或方程所对应的函数图象问题,将特殊值所对应的函数值情况与点的位置特征加以联系与对比,排除不合理的图象选项.对于单选题,在利用特殊值法巧判函数或方程所对应的函数图象问题时,经常要多次利用特殊值的巧妙选取来合理排除,直到剩下最后一个正确答案为止.2判定函数关系式例2㊀(2022年高考数学北京卷 4)已知函数f (x )=11+2x,则对任意实数x ,有(㊀㊀).A.f (-x )+f (x )=0㊀B .f (-x )-f (x )=0C .f (-x )+f (x )=1D.f (-x )-f (x )=13分析:解决此类题的常用思维就是利用题设给出的函数关系式,结合选项中对应函数关系式代入,通过指数运算与变形来转化与验证,进而得以正确判定.而此题选取特殊值加以验证即可正确判定,从而减少数学运算量,这也是一种不错的技巧方法.解析:由函数f (x )=11+2x,选取特殊值x =0,可得f (0)=11+20=12,代入各选项中进行验证,选项B ,C 成立;又选取特殊值x =1,可得f (1)=11+21=13,f (-1)=11+2-1=23,只有选项C 成立.故选择答案:C .点评:在判定一些复杂函数关系式的成立问题时,为避免复杂的逻辑推理与繁杂的数学运算,经常借助一些特殊值的选取,代入函数关系式加以化简与求值,可以很好地优化解题过程,同时对于函数关系式的判定更加直接㊁有效.34Copyright ©博看网. All Rights Reserved.学法指导2023年8月上半月㊀㊀㊀3求解相应函数值例3㊀(2022年高考数学新高考Ⅱ卷 6)角α,β满足s i n (α+β)+c o s (α+β)=22c o s (α+π4)s i n β,则(㊀㊀).A.t a n (α+β)=1B .t a n (α+β)=-1C .t a n (α-β)=1D.t a n (α-β)=-1分析:解决此类题的常用思维就是利用三角恒等变换公式对题设的三角函数方程加以变形与转化,进而结合化简的结果来分析与求解对应的三角函数值问题.而此题结合两次特殊值的选取,即可合理排除不满足条件的选取,简化公式变形与推理过程,优化数学运算.解析:s i n (α+β)+c o s (α+β)=22c o s (α+π4)s i n β.①选取特殊值β=0,代入①式,得s i n α+c o s α=0,即t a n α=-1;再将β=0分别代入四个选项,由此可以排除选项A ,C .选取特殊值α=0,代入①式,可得s i n β-c o s β=0,即t a n β=1;再将α=0分别代入四个选项进行验证,由此可以排除选项B .故选择答案:D .点评:这里很好地通过三角函数关系式中角的变化以及对应选项中的三角函数值不变的特征,利用两次特殊值的选取,结合选项中的三角函数值进行排除.借助特殊值法处理相关数学问题时,有时一次特殊值的选取不能直接达到目的,可以进行第二次特殊值的选取,直至剩下最后一个选项为止.4确定参数取值范围例4㊀(2022年高考数学浙江卷 9)已知a ,b ɪR ,若对任意x ɪR ,a |x -b |+|x -4|-|2x -5|ȡ0,则(㊀㊀).A.a ɤ1,b ȡ3B .a ɤ1,b ɤ3C .a ȡ1,b ȡ3D.a ȡ1,b ɤ3分析:解决此类题的常用思维就是绝对值不等式的函数图象化处理思维㊁参数的分类讨论思维等,过程复杂,讨论繁多.而此题利用特殊值的选取,代入题设的绝对值不等式加以化简,利用含参不等式恒成立的条件确定参数的取值情况,结合各选项中的参数取值范围即可验证与确定.解析:选取特殊值x =4,由a |x -b |+|x -4|-|2x -5|ȡ0,可得a |4-b |-3ȡ0.显然a ʂ0且b ʂ4,观察各选项可知,只有a ȡ1,b ɤ3符合这个结论.故选择答案:D .点评:借助含参绝对值不等式中特殊值的选取,简化不等式,减少变量,借助不等式恒成立等相关知识确定相关参数的取值情况,再结合选项合理验证.在具体借助特殊值法确定参数取值范围的问题时,经常不能直接得到对应参数的取值范围,而是借助选项中参数不同取值范围加以验证与判断,合理排除,巧妙确定.5判断不等式成立例5㊀(2022年高考数学新高考Ⅱ卷 12)(多选题)对任意x ,y ,x 2+y 2-x y =1,则(㊀㊀).A.x +y ɤ1B .x +y ȡ-2C .x 2+y 2ɤ2D.x 2+y 2ȡ1分析:解决此类题的常用思维就是不等式思维㊁配方思维或换元思维等,利用条件中的二元方程,结合基本不等式㊁完全平方公式或三角换元等方法来处理,解题过程较为繁琐.而此题利用特殊值法,根据满足二元方程条件下的特殊值的两次合理选取,即可正确排除对应的选项来达到正确判断的目的,简单快捷.解析:选取特殊值x =y =1,其满足方程x 2+y 2-x y =1,则有x +y =2ɤ1不成立,故选项A 错误;再选取特殊值x =-y =33,其满足方程x 2+y 2-x y =1,则有x 2+y 2=23ȡ1不成立,故选项D 错误;根据多选题 至少有两个选项是正确 的特征,故选择答案:B C .点评:利用特殊值法破解一些数学的综合与创新问题时,有一定的 秒杀 效果,但要注意一般 可遇而不可求 ,不具有可推广性与普及性.如果一定要花大量时间去配凑特殊值,往往得不偿失.这里借助二元方程的结构特征,可以快速选取相应的特殊值来验证,综合多选题的特征,当确定其中两个选项为错误时,则另外两个选项肯定是正确答案.巧借特殊值法,可以在很大程度上简化繁杂的逻辑推理过程与复杂的数学运算过程,但也不能盲目任意选取特殊值,要吻合数学问题中特殊与一般思维之间的联系与转化,才能达到正确使用特殊值法的目的.巧妙借助特殊值法,能很好降低知识复杂层次,弱化基础知识难度,强化数学思想方法,优化数学解题过程,提升数学解题效益,节省宝贵考试时间,真正达到小题小做 小题巧做 小题快做 等良好解题效益.Z44Copyright ©博看网. All Rights Reserved.。
选择题解题技巧

解析:分析选择支可知,四条曲线中有且只有一条曲线不符合要求,故可考虑找不符合条件的曲线从而筛选,而在四条曲线中②是一个面积最大的椭圆,故可先看②,显然直线和曲线 是相交的,因为直线上的点 在椭圆内,对照选项故选D。
6、分析法:就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。
(1)特殊值
例1、若sinα>tanα>cotα( ),则α∈()
A.( , )B.( ,0)C.(0, )D.( , )
解析:因 ,取α=- 代入sinα>tanα>cotα,满足条件式,则排除A、C、D,故选B。
例2、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为()
A.-24B.84C.72D.36
A.①②④B.①④C.②④D.①③
解析:取f(x)=-x,逐项检查可知①④正确。故选B。
(3)特殊数列
例5、已知等差数列 满足 ,则有 ( )
A、 B、 C、 D、
解析:取满足题意的特殊数列 ,则 ,故选C。
(4)特殊位置
例6、过 的焦点 作直线交抛物线与 两点,若 与 的长分别是 ,则 ()
A、 B、 C、 D、
解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2-S1=12,a3=a1+2d=-24,所以前3n项和为36,故选D。
(2)特殊函数
例3、如果奇函数f(x)是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是()
A.增函数且最小值为-5B.减函数且最小值是-5
C.增函数且最大值为-5D.减函数且最大值是-5
高考数学选择题解题策略

高考数学选择题的解题策略摘要:在做高考数学试卷时,选择题的做法灵活多样,可以采用直接法、特殊值法、排除法、代入法、图解法(数形结合法)等。
关键词:直接法;特殊值法;排除法;代入法;图解法(数形结合法)数学选择题在当今高考试卷中,不但题目多,而且占分比例高,此类题型具有概括性强、知识覆盖面广、小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。
因此,如何巧解、快解、准确地得出结论就显得越来越重要。
下面通过一些实例来介绍一些常用的解题方法。
一、直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.到此就应该停笔,结合答案很快就选a.点拨:直接法是解答选择题最常用的基本方法,经过统计研究表明,大部分选择题的解答用的是此法.但解答中也要注意结合选项特点灵活做题,注意题目的隐含条件,争取少算.这样既节约了时间,又提高了命中率.二、特殊值法用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而做出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.三、排除法从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.四、代入法将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.五、图解法(数形结合法)据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.习惯上也叫数形结合法.严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略,但它在解有关选择题时非常简便有效.不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图象反而会导致错误的选择.总之,解答选择题要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的“个性”,寻求简便解法,充分利用选择肢的暗示作用,迅速地作出正确的选择.这样不但可以迅速、准确地获取正确答案,而且可以提高解题速度,为后续解题节省时间.(作者单位陕西省咸阳市乾县杨汉中学)。
高考数学必杀技之选择题解题方法
高考数学必杀技之选择题解题方法乐至中学 冷世平数学选择题在当今高考试卷中,不但题目多,而且占分比例高,虽然选择题由原来的12题改为10题,但其分值仍占到试卷总分的三分之一。
数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。
要想选择题准确率高,除了要有扎实的基础知识外,方法和技巧也非常重要。
现将高考数学中常用的几种求解选择题的方法列举如下,供同学们参考。
一、直接法通过阅读和观察,从题设条件出发,通过正确的运算、推理或判断,直接得出结论,然后再与选择支对照,从而作出选择的一种方法。
这种解题方法一般适用于基本无需转化或推理的简单题目,运用此种方法解题需要扎实的数学基础。
例1.已知12,F F 是椭圆221169x y +=的两个焦点,经点2F 的的直线交椭圆于点,A B ,若5AB =,则11AF BF +等于( ).9A .10B .11C .16D【答案】C【分析】从题设条件以及题目所求来看,此题主要考查椭圆的定义,故解决此题,可以从椭圆的定义入手。
【解析】由椭圆的定义可得121228,28AF AF a BF BF a +==+==,两式相加后将225AB AF BF ==+代入,得1111AF BF +=,故选C 。
例2.抛物线2y x =-上的点到直线4380x y +-=的距离的最小值是( )4.3A 7.5B 8.5C .3D 【答案】A【分析】本题主要考查抛物线上一个动点到定直线距离的求法,题目中要求距离的最小值,可以从两个方面考虑:一是转化为函数的最值问题;二是转化为两平行线之间的距离问题,很容易想到,当且仅当抛物线的切线与已知直线平行时,切点到已知直线的距离为最小值。
【法一】此题可以直接转化为求一个动点到一条定直线的距离的最小值,自然而然想到点到直线的距离公式。
不妨设动点200(,)P x x -,由点到直线的距离公式可知,22000220203()34843335553x x x d -+-+===≥=,故选A 。
高考数学(理)二轮复习:巧解客观题的10大妙招(一)选择题的解法
值 49=7,故选 B.
题型概述
解题方法
归纳总结
方法二 特例法
从题干(或选项)出发,通过选取特殊情况代入,将问题 特殊化或构造满足题设条件的特殊函数或图形位置进行判 断.特殊化法是“小题小做”的重要策略,要注意在怎样的 情况下才可使用,特殊情况可能是:特殊值、特殊点、特 殊位置、特殊数列等.适用于题目中含有字母或具有一般性 结论的选择题.
题型概述
解题方法
归纳总结
探究提高 图形化策略是依靠图形的直观性进行研究的, 用这种策略解题比直接计算求解更能简捷地得到结果.运用 图解法解题一定要对有关函数图象、方程曲线、几何图形 较熟悉,否则,错误的图象反而会导致错误的选择.
题型概述
解题方法
归纳总结
【训练 4】 过点( 2,0)引直线 l 与曲线 y= 1-x2相交于 A、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线 l 的 斜率等于( )
则 tan θ2 等于(
)
m-3 A.9-m
m-3 B.|9-m|
C.-15
D.5
解析 由于受条件 sin2θ+cos2θ=1 的制约,m 一定为确定
的值进而推知 tan θ2 也是一确定的值,又π2 <θ<π,所以π4
θπ
< 2 < 2 ,故 tan
2θ>1.所以 D 正确.
答案 D
题型概述
解题方法
x=-1,排除 B.
(2)f(x)=14x2+sinπ2 +x=14x2+cos
x,故
f′(x)=14x2+cos
x′
=12x-sin x,记 g(x)=f′(x),其定义域为 R,且 g(-x)=12(-x)-
sin(-x)=-12x-sin
2021届高考数学总复习:特例法和设元法巧解三元变量比较大小问题
2021届高考数学总复习:特例法和设元法巧解三元变量比较大小问题比较大小时,若题设涉及三个指数式连等,或三个对数式连等,则可利用特例法求解,也可在设元变形的基础上,灵活运用相关函数的性质求解。
【典例】 设x ,y ,z 为正实数,且log 2x =log 3y =log 5z >0,则x 2,y 3,z 5的大小关系不可能是( )A .x 2<y 3<z 5B .y 3<x 2<z 5C .x 2=y 3=z 5D .z 5<y 3<x 2【解析】 解法一:取x =2,则由log 2x =log 3y =log 5z 得y=3,z =5,此时易知x 2=y 3=z 5,此时选项C 正确。
取x =4,则由log 2x =log 3y =log 5z 得y =9,z =25,此时易知x 2<y 3<z 5,此时选项A 正确。
取x =2,则由log 2x =log 3y =log 5z 得y =3,z =5,此时易知z 5<y 3<x 2,此时选项D 正确。
综上,利用排除法可知本题应选B 。
解法二:设log 2x =log 3y =log 5z =k ,则x =2k ,y =3k ,z =5k ,所以x 2=2k -1,y 3=3k -1,z 5=5k -1。
又易知k >0,接下来对k 与1的大小关系加以讨论。
若k =1,则x 2=1,y 3=1,z 5=1,所以x 2=y 3=z 5,所以选项C 有可能正确。
若0<k <1,则根据函数f (t )=t k -1在(0,+∞)上单调递减可得2k -1>3k -1>5k -1,所以z 5<y 3<x 2,所以选项D 有可能正确。
若k >1,则根据函数f (t )=t k -1在(0,+∞)上单调递增可得2k -1<3k -1<5k -1,所以x 2<y 3<z 5,所以选项A 有可能正确。
高考数学题难题巧解思路与方法
高考数学题难题巧解思路与方法一、定义法求解所谓定义法,就是直接用数学定义解题。
选择题的命题侧重于对圆锥曲线定义的考查,凡题目中涉及焦半径、通径、准线、离心率及离心率的取值范围等问题,用圆锥曲线的第一和第二定义解题,是一种重要的解题策略。
【例1】(2008年,山东卷,理10)设椭圆C 1的离心率为135,焦点在x 轴上且长轴长为26. 若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )(A )1342222=-y x(B )15132222=-y x(C )1432222=-y x(D )112132222=-y x【巧解】由题意椭圆的半焦距为5=c ,双曲线2C 上的点P 满足|,|8||||||2121F F PF PF <=- ∴点P 的轨迹是双曲线,其中5=c ,4=a ,∴3=b ,故双曲线方程为1342222=-y x ,∴选(A )巧练一:(2008年,陕西卷)双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别是F 1,F 2,过F 1作倾斜角为30°的直线交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为( )A .6B .3C .2D .33巧练二:(2008年,辽宁卷)已知点P 是抛物线x y 22=上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )(A )217(B )3(C )5(D )29 【例2】(2009年高考福建卷,理13)过抛物线)0(22>=p px y 的焦点F 作倾斜角为450的直线交抛物线于A 、B 两点,线段AB 的长为8,则=p .【巧解】依题意直线AB 的方程为2p x y -=,由⎪⎩⎪⎨⎧=-=pxy p x y 222消去y 得:04322=+-p px x ,设),(11y x A ,),(22y x B ,∴p x x 321=+,根据抛物线的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、筛选判断
包括逐一验证法——将选项逐一代入条件中进行验证,或者逻辑排除法,即通过对四个选项之间的内在逻辑关系进行排除与确定。
【例题】、设集合A 和B 都属于正整数集,映射f :A B →把集合A 中的元素n 映射到集合B 中的元素,则在映射f 下,像20的原像是( )
A 、2
B 、3
C 、4
D 、5
【解析】、经逐一验证,在2、3、4、5中,只有4符合方程2n n +=20,选C 。
【练习1】、将函数sin (0)y x ωω=
的图象按向量a=(,0)6π
-平移以后的图象如图所示,则 平移以后的图象所对应的函数解析式是(
A 、sin()6y x π=+
B 、sin()6y x π=-
C 、sin(2)3y x π=+
D 、sin(2)3y x π
=-(提示:若选A 或B ,则周期为2π,与图象所示周期不符;若选D ,则与 “按向量a=(,0)6π
-平移” 不符,选C 。
此题属于容易题) 【练习2】、如图,单位圆中AB 的
长度为x ,()f
x 表示AB 与弦AB 2倍,则函数()y f x
=的图象是( )
A 、
B 、
C 、
D 、
(提示:解法1 设AOB θ∠=,则x θ=,
则S 弓形=S 扇形- S △AOB =1112sin cos 2222
x θθ
⨯-⨯ 11(sin )(sin )22x x x θ=-=-,当(0,)x π∈时, sin 0x ,则s i n x x x -,其图象位于y x =下方;当(,2)x ππ∈时,
sin 0x ,sin x x x -,其图象位于y x =上方。
所以只有选D 。
这种方法属于小题大作。
解法2 结合直觉法逐一验证。
显然,面积()f x 不是弧长x 的一次函数,排除A ;当x 从很小的值逐渐增大时,()f x 的增长不会太快,排除B ;只要x π则必然有面积()f x π,排除C ,选D 。
事实上,直觉好的学生完全可以直接选D )
【练习3】、若椭圆的中心点为E (-1,0),它的一个焦点为F (-3,0),相应于焦点的准线方程是72
x =-,则这个椭圆的方程是( )
A 、222(1)21213x y -+=
B 、222(1)21213x y ++=
C 、2
2(1)15
x y -+= D 、2
2(1)15x y ++= (提示:椭圆中心为(-1,0),排除A 、C ,椭圆相当于向左平移
了1个单位长度,故c=2,2712
a c --=-,∴25a =,选D ) 【练习4】、不等式2
21x x ++的解集是( )
A 、(1,0)(1,)-+∞
B 、(,1)(0,1)-∞-
C 、(1,0)(0,1)-
D 、(,1)(1,)-∞-+∞
(提示:如果直接解,差不多相当于一道大题!取2x =,代入原不等式,成立,排除B 、C ;取2x =-,排除D ,选A )
【练习5】、某地一年内的气温
Q (t )(℃)与时间t 已知该年的平均气温为10℃。
令C (t )表示时间段[0,t]的平均气温,C (t )与t 之间的函数关系
如下图,则正确的应该是( )
A 、
B 、
C 、
D 、
(提示:由图可以发现,t=6时,C (t )=0,排除C ;t=12时,
C (t )=10,排除
D ;t >6时的某一段气温超过10℃,排除B ,选A 。
)
【练习6】、集合{}(21)|M n n Z π=+∈与集合{}(41)|N k k Z π=±∈之间
的关系是( )
A 、M N ⊂
B 、M N ⊃
C 、M N =
D 、M N ≠
(提示:C 、D 是矛盾对立关系,必有一真,所以A 、B 均假; 21n +表示全体奇数,41k ±也表示奇数,故M N ⊇且B 假,只有C 真,选C 。
此法扣住了概念之间矛盾对立的逻辑关系。
当然,此题用现场操作法来解也是可以的,即令k=0,±1,±2,±3,然后观察两个集合的关系就知道答案了。
)
【练习7】、当[]4,0x ∈-时,413
a x +≤+恒成立,则a 的一个可能的值是( )
A 、5
B 、53
C 、53-
D 、5-
(提示:若选项A 正确,则B 、C 、D 也正确;若选项B 正确,则
C 、
D 也正确;若选项C 正确,则D 也正确。
选D )
【练习8】、对于抛物线24y x =上任意一点Q ,点P (a ,0)都满足PQ a ≥,则a 的取值范围是( ) A 、(),0-∞ B 、(,2]-∞ C 、[0,2] D 、(0,2) (提示:用逻辑排除法。
画出草图,知a <0符合条件,则排除C 、D ;又取1a =,则P 是焦点,记点Q 到准线的距离为d ,则由抛物线定义知道,此时a <d <|PQ|,即表明1a =符合条件,排除A ,选B 。
另外,很多资料上解此题是用的直接法,照录如下,供“不放心”的读者比较——
设点Q 的坐标为200(,)4y y ,由PQ a ≥,得222200()4
y y a a +-≥,整理得
2200(168)0y y a +-≥,
∵ 2
00y ≥,∴20
1680y a +-≥,即2028y a ≤+恒成立,而2028y +的最小值是2,∴2a ≤,选B )
【练习9】、函数22()cos cos 2x f x x =-的一个单调增区间是( )
A 、2,33ππ⎛⎫ ⎪⎝⎭
B 、,62ππ⎛⎫ ⎪⎝⎭
C 、0,3π⎛⎫ ⎪⎝⎭
D 、,66ππ
⎛⎫- ⎪⎝⎭ (提示:“标准”答案是用直接法通过求导数解不等式组,再结合图象解得的,选A 。
建议你用代入验证法进行筛选:因为函数是连续的,选项里面的各个端点值其实是可以取到的,由()()66f f ππ
-=,显然直接排除D ,在A 、B 、C 中只要计算两个即可,因为B 中代入6π会出现12π,所以最好只算A 、C 、现在就验算A ,有2()()3
3f f ππ,符合,选A )。