2019年人教版八年级数学下册期末测试卷(含答案)

合集下载

2019【人教版】八年级下数学期末考试卷(含答案)

2019【人教版】八年级下数学期末考试卷(含答案)

2019【人教版】八年级下数学期末考试卷(含答案)八年级下学期数学期末检测试题姓名:_______ 总分:_______一、选择题(每小题3分,共30分)1.要使式子有意义,则x的取值范围是()A。

x。

0 B。

x ≥ -2 C。

x ≥ 2 D。

x ≤ 22.矩形具有而菱形不具有的性质是()A。

两组对边分别平行 B。

对角线相等 C。

对角线互相平分 D。

两组对角分别相等3.下列计算正确的是()A。

4 × 2 ÷ 3 = 4 B。

15 + (-3) = -15C。

3 + 4 = 7 D。

3 - 4 = -14.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A。

1 B。

-1 C。

3 D。

-3y 3 px -2 15.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元) 2 000 2 200 2 400 2 600人数(人) 1 3 4 2A。

2400元、2400元 B。

2400元、2300元C。

2200元、2200元 D。

2200元、2300元6.四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A。

AB ∥ DC,AD ∥ BC B。

AB = DC,AD = BCC。

AO = CO,BO = DO D。

AB ∥ DC,AD = BC7.如图,菱形ABCD的两条对角线相交于O,若AC = 6,BD = 4,则菱形ABCD的周长是()A。

24 B。

16 C。

4 D。

28.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长()A。

2 B。

3 C。

4 D。

19.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A。

人教版2019学年八年级下数学期末试卷跟答案(共十套)

人教版2019学年八年级下数学期末试卷跟答案(共十套)

人教版2019学年八年级下数学期末试卷(一)亲爱的同学:1、没有比脚再长的路,没有比人更高的山。

祝贺你完成八年级的学习,欢迎参加本次数学期末考试!你可以尽情地发挥,仔细、仔细、再仔细!祝你成功!, 满分120分,考试时量120分钟。

一、选择题(本大题共10个小题, 每小题3分,满分30分. 每小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填在下表中相应的题号下)1.下列几组数中,能作为直角三角形三边长度的是A. 2,3,4B. 4,5,6C. 6,8,11D. 5,12,132.在平面直角坐标系中,点(—1,2)在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.点P(—2,3)关于y轴的对称点的坐标是A、(2,3 )B、(-2,—3)C、(—2,3)D、(—3,2)4.下列汉字或字母中既是中心对称图形又是轴对称图形的是5.下列命题中,错误的是A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等6.矩形的对角线长为20,两邻边之比为3 : 4,则矩形的面积为A.56 B. 192 C. 20 D. 以上答案都不对7.将直线y=kx-1向上平移2个单位长度,可得直线的解析式为A.y=kx+1 B.y=kx-3 C.y=kx+3 D.y=kx-18.一次函数y=(k-3)x+2,若y随x的增大而增大,则k的值可以是A.1 B.2 C.3 D.49.已知一次函数的图象经过点(0,3)和(-2,0),那么直线必经过点A.(-4,-3) B.(4,6) C.(6,9) D.(-6,6) 10.关于x的一次函数y kx k=+的图象可能是二、填空题(本大题共8个小题, 每小题3分, 满分24分)11.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为________米.12.如图,在四边形ABCD中,已知AB=CD,再添加一个条件(写出一个即可,图形中不再添加助线),则四边形ABCD是平行四边形。

2019年人教版八年级下册数学期末考试试卷及答案

2019年人教版八年级下册数学期末考试试卷及答案

第二学期期末质量监控试卷初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系中,点(2,3)M -在A .第一象限B .第二象限C .第三象限D .第四象限 2.下列图形即是轴对称图形又是中心对称图形的是A .B .C .D .3.若一个多边形的内角和为540°,则这个多边形的边数为 A .4 B. 5 C. 6 D.74.如图,边长为1的方格纸中有一四边形ABCD (A ,B ,C ,D 四点均为格点),则该四边形的面积为A .4B .6C . 12D .24 5.用配方法解方程2470x x --=时,应变形为A .()2211x -= B .()2211x += C . ()2423x -= D .()2423x +=6.某市乘出租车需付车费y (元)与行车里程x (千米)之间函数关系的图象如图所示,那么该市乘出租车超过3千米后,每千米的费用是A .1.5元B .2元C .2.12元D .2.4元 7.如图,在ABCD 中,AB=4,BC =7,∠ABC 的平分线交AD 于点E ,则DE 的长为 A .5B .4C .3D .28.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为 A .(1,3) B .(3,2) C .(0,3) D .(-3,3)9.已知:如图,折叠矩形ABCD ,使点B 落在对角线AC 上的点F 处,若BC=8,AB=6,则线段CE 的长度是A. 3B. 4C.5D.610.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调CD BA查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是①每人乘坐地铁的月均花费最集中的区域在60—80元范围内; ②每人乘坐地铁的月均花费的平均数范围是40—60元范围内; ③每人乘坐地铁的月均花费的中位数在100—120元范围内; ④乘坐地铁的月均花费达到100元以上的人可以享受折扣. A.①④ B ③④ C ①③ D ①② 二、填空题(本题共18分,每小题3分) 11.一元二次方程022=-x x 的解为____________.12.请写出一个过一三象限且与y 轴交与点(0,1)的直线表达式 ____________。

2019人教版数学初二下册期末考试试题及答案

2019人教版数学初二下册期末考试试题及答案

八年级(下)期末考试数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若式子23xx--有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠32.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A.a=2,b=3,c=5B.a=1.5,b=2,c=3C.a=6,b=8,c=10 D.a=3,b=4,c=53.下列计算错误的是()A.3+22=52B.÷2=2C.2×3=D.2=2 4.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.85.若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为()A.22B.42C.4 D.86.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40°B.50°C.60°D.80°7.小刚与小华本学期都参加5次数学考试(总分都为120分),数学老师想判断这两个同学的数学成绩谁更稳定,在做统计分析时,老师需要比较这两个人5次数学成绩的()A.方差B.平均数C.众数D.中位数8.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,平行四边形ABCD是菱形B.当AC⊥BD时,平行四边形ABCD是菱形C.当AC=BD时,平行四边形ABCD是正方形D.当∠ABC=90°时,平行四边形ABCD是矩形9.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<010.如图,菱形ABCD中,AB=2,∠B=120°,点M是AD的中点,点P由点A 出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P 经过的路程x之间的函数关系的图象大致是()二、填空题(共6小题,每小题4分,满分24分)11.比较大小:﹣2﹣3(填“<”或“=”或“>”)12.将正比例函数y=﹣2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是.13.在平面直角坐标系中,A(﹣4,3),点O为坐标原点,则线段OA的长为.14.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=9,则EF的长为.15.如图,在△ABC中,∠ACB=90°,AC=6,AB=10,AB的垂直平分线DE 交AB于点D,交BC于点E,则CE的长等于.16.如图,在平面直角坐标系中有一个边长为1的正方形OABC,边OA,OC 分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,…,照此规律作下去,则点B6的坐标为.三、解答题(共3小题,满分18分)17.(6分)计算:+(﹣1)﹣30﹣|﹣2|.18.(6分)先化简,再求值:(1﹣)•,其中a=﹣1.19.(6分)如图,在平行四边形ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.四、简答题20.(7分)已知:x=2+,y=2﹣.(1)求代数式:x2+3xy+y2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?21.(7分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(1)在如图中,“7分”所在扇形的圆心角等于°.(2)请你将如图的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.22.(7分)已知直线y=kx+5交x轴于A,交y轴于B且A坐标为(5,0),直线y=2x﹣4与x轴于D,与直线AB相交于点C.(1)求点C的坐标;(2)根据图象,写出关于x的不等式2x﹣4>kx+5的解集;(3)求△ADC的面积.五、简答题23.(9分)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费49元;2月份用水22吨,交水费56元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?24.(9分)已知如图1,P为正方形ABCD的边BC上任意一点,BE⊥AP于点E,在AP的延长线上取点F,使EF=AE,连接BF,∠CBF的平分线交AF 于点G.(1)求证:BF=BC;(2)求证:△BEG是等腰直角三角形;(3)如图2,若正方形ABCD的边长为4,连接CG,当P点为BC的中点时,求CG的长.25.(9分)如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在y轴上,点B的坐标为(﹣4,﹣4),点E是BC的中点,现将矩形折叠,折痕为EF,点F为折痕与y轴的交点,EF交x轴于G且使∠CEF=60°.(1)求证:△EFC≌△GFO;(2)求点D 的坐标;(3)若点P (x ,y )是线段EG 上的一点,设△PAF 的面积为s ,求s 与x 的函数关系式并写出x 的取值范围.一、选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案DBACCBACDB二、填空题(每小题4分,共24分)11.>12 .y =-2x +5 .13.5.14. 2 .15.____________.16.(8,-8). 三、解答题(每小题6分,共18分)17.解:原式……………4分 ……………6分18.解:原式74342-31-3-334=++=21(1)(1)1=313-1=3+1-13-3=3a a a a a a a -=⨯+-=+-当a 时原式……………6分19.解:(1)如图AE 就是所要求的角平分线。

2019年人教版八年级下期末数学试卷(含答案解析)

2019年人教版八年级下期末数学试卷(含答案解析)

八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数x的取值范围是()A.x≥0B.x≠5C.x≥5D.x>52.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.3.(3分)下列函数中,正比例函数是()A.y=B.y=2x2C.y=D.y=2x+14.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是()A.85,90B.85,87.5C.90,85D.95,907.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A.9米B.15米C.5米D.8米9.(3分)把直线y=3x沿着y轴平移后得到直线AB,直线AB经过点(p,q),且3p=q+2,则直线AB的解析式是()A.y=3x﹣2B.y=﹣3x+2C.y=﹣3x﹣2D.y=3x+210.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.30二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+=.12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是.13.(3分)若等边△ABC的边长为6,那么△ABC的面积是.14.(3分)已知:一次函数y1=x+2与函数y2=|x﹣1|在同一平面直角坐标系中,若y2>y1,则x的取值范围是.15.(3分)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD的面积为.16.(3分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B1,B2,B3,B4,…,则B2018的坐标为.三、解答题(共8题,共72分) 17.(8分)计算: (1)×﹣÷(2)(+2)218.(8分)一次函数y =kx +b 经过点(﹣4,﹣2)和点(2,4),求一次函数y =kx +b 的解析式19.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180° (1)求证:四边形ABCD 是矩形;(2)若DE ⊥AC 交BC 于E ,∠ADB :∠CDB =2:3,则∠BDE 的度数是多少?20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(1)计算该同学本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩x 至少为多少分才能保证达到总评成绩90分的最低目标?21.(8分)如图,直线AB :y =kx +2k 交x 轴于点A ,交y 轴正半轴于点B ,且S △OAB =3(1)求A、B两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机x台,这120台手机全部销售的销售总利润为y元.①直接写出y关于x的函数关系式,x的取值范围是.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a 元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在x轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到x 轴的距离不大于3,直接写出m的取值范围(无需解答过程).八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数x的取值范围是()A.x≥0B.x≠5C.x≥5D.x>5【解答】解:由题意可知:x﹣5≥0,∴x≥5故选:C.2.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含能开得尽方的因数或因式,故D错误;故选:C.3.(3分)下列函数中,正比例函数是()A.y=B.y=2x2C.y=D.y=2x+1【解答】解:A、符合正比例函数的含义,故本选项正确;B、自变量次数不为1,故本选项错误;C、是反比例函数,故本选项错误;D、是一次函数,故本选项错误.故选:A.4.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD【解答】解:A、∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,正确,不符合题意;C、∵四边形ABCD是平行四边形,∴CD=AB,正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意;故选:D.5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形【解答】解:A、两组对边分别平行的四边形是平行四边形,正确,不合题意;B、对角线互相垂直的平行四边形是菱形,正确,不合题意;C、有一个角是直角的平行四边形是矩形,正确,不合题意;D、两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,符合题意.故选:D.6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是()A.85,90B.85,87.5C.90,85D.95,90【解答】解:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选:B.7.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),故选:D.8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A.9米B.15米C.5米D.8米【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故选:D.9.(3分)把直线y=3x沿着y轴平移后得到直线AB,直线AB经过点(p,q),且3p=q+2,则直线AB的解析式是()A.y=3x﹣2B.y=﹣3x+2C.y=﹣3x﹣2D.y=3x+2【解答】解:设直线y=3x沿着y轴平移后得到直线AB,则直线AB的解析式可设为y=3x+k,把点(p,q)代入得q=3p+k,则,解得k=﹣2.∴直线AB的解析式可设为y=3x﹣2.故选:A.10.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.30【解答】解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+=3.【解答】解:=2+=3.故答案为:3.12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是10.【解答】解:这组数据的极差是:9﹣(﹣1)=10;故答案为:10.13.(3分)若等边△ABC的边长为6,那么△ABC的面积是9.【解答】解:如图,过A作AD⊥BC于点D,∵△ABC为等边三角形,∴BD=CD=BC=3,且AB=6,在Rt△ABD中,由勾股定理可得AD===3,∴S=BC•AD=×6×3=9,△ABC故答案为:9.14.(3分)已知:一次函数y1=x+2与函数y2=|x﹣1|在同一平面直角坐标系中,若y2>y1,则x的取值范围是x<﹣或x>6.【解答】解:∵y2>y1∴|x ﹣1|>x +2∴x ﹣1x +2或﹣x +1x +2∴x >6或x <﹣故答案为x >6或x <﹣15.(3分)如图,四边形ABCD 中,∠A =∠C =90°,∠ABC =135°,CD =6,AB =2,则四边形ABCD 的面积为 16 .【解答】解:延长AB 和DC ,两线交于O , ∵∠C =90°,∠ABC =135°, ∴∠OBC =45°,∠BCO =90°, ∴∠O =45°, ∵∠A =90°, ∴∠D =45°,则OB =BC ,OD =OA ,OA =AD ,BC =OC ,设BC =OC =x ,则BO =x ,∵CD =6,AB =2,∴6+x =(x +2), 解得:x =6﹣2,∴OB =x =6﹣4,BC =OC =6﹣2,OA =AD =2+6﹣4=6﹣2,∴四边形ABCD 的面积S =S △OAD ﹣S △OBC =×OA ×AD ﹣=×(6﹣2)×﹣=16,故答案为:16.16.(3分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B1,B2,B3,B4,…,则B2018的坐标为(1346,0).【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2018=336×6+2,∴点B2向右平移1344(即336×4)到点B2018.∵B2的坐标为(2,0),∴B2018的坐标为(2+1344,0),∴B2018的坐标为(1346,0).故答案为:(1346,0);三、解答题(共8题,共72分)17.(8分)计算:(1)×﹣÷(2)(+2)2【解答】解:(1)×﹣÷==2=;(2)(+2)2=3+4+4=7+4.18.(8分)一次函数y=kx+b经过点(﹣4,﹣2)和点(2,4),求一次函数y=kx+b的解析式【解答】解:∵一次函数y=kx+b经过点(﹣4,﹣2)和点(2,4),∴代入得:,解得:k=1,b=2,∴一次函数y=kx+b的解析式是y=x+2.19.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少?【解答】解:(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)∵∠ADC =90°,∠ADB :∠CDB =2:3,∴∠ADB =36°∵四边形ABCD 是矩形,∴OA =OD ,∴∠OAD =∠ADB =36°,∴∠DOC =72°.∵DE ⊥AC ,∴∠BDE =90°﹣∠DOC =18°.20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(1)计算该同学本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩x 至少为多少分才能保证达到总评成绩90分的最低目标?【解答】解:(1)该学期的平时平均成绩为:(88+70+96+86)÷4=85(分).(2)按照如图所示的权重,依题意得:85×10%+85×30%+60% x ≥90.解得:x ≥93.33,又∵成绩均取整数,∴x ≥94.答:期末考试成绩至少需要94分.21.(8分)如图,直线AB :y =kx +2k 交x 轴于点A ,交y 轴正半轴于点B ,且S △OAB =3 (1)求A 、B 两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.【解答】解:(1)∵直线AB:y=kx+2k,令x=0,则y=2k,即B(0,2k),令y=0,则x=﹣2,即A(﹣2,0),=3,∵S△OAB∴×2×2k=3,∴2k=3,∴A、B两点的坐标为(﹣2,0)、(0,3);(2)如图,过点B作BD⊥BA,交AC的延长线于点D,过点D作DH⊥y轴于H.∵∠BAC=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵∠AOB=∠BHD=90°,∴∠ABO=∠BDH,∴△ABO≌△BDH,∴DH=BO=3,BH=AO=2,∴HO=3﹣2=1,∴D(3,1),设直线AC的解析式为y=ax+b,由A、D两点的坐标可得,解得,∴AC的解析式为y=x+.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机x台,这120台手机全部销售的销售总利润为y元.①直接写出y关于x的函数关系式y=60x+12000,x的取值范围是0<x≤40且x为正整数.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a 元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.【解答】解:(1)设每台甲手机的利润为x元,每台乙手机的利润为y元,由题意得:,解得∴每台甲手机的利润为160元,每台乙手机的利润为100元.(2)①y=60x+12000,0<x≤40且x为正整数故答案为:y=60x+12000;0<x≤40且x为正整数②∵y=60x+12000,0<x≤40且x为正整数,∴k=60>0,y随x的增大而增大,∴当x=40时,y=60×40+12000=14400最大.即该商店购进40台A手机,80台B手机才能使销售总利润最大.(3)有这种可能性,理由如下:由题意可知:y=60x+12000﹣ax,0<x≤40且x为正整数,∴y=(60﹣a)x+12000,当60﹣a=0,即a=60时利润y=12000元与进货方案无关.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).【解答】(1)解:如图1,过点B作BH⊥AD于H,在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH=,∴S▱ABCD=AD×BH=AF×BH=4;(2)证明:如图2,连接AC.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=∠EAF=60°,∴∠BAD=120°,在▱ABCD中,AB=BC,∴▱ABCD是菱形,∵AC是菱形对角线,∴∠ACD=∠BAC=60°=∠B,∴AB=AC,∴∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF为等边三角形;(3)解:如图3,延长AE交DC延长线于P,过点F作FG⊥AP与G.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C=∠ECP,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE,∴AE=PE,PC=AB=CD=3,CF=2DF,∴CF=2,∴PF=5,在Rt△AFG中,AF=4,∠EAF=60°,∴∠AFG=30°,∴AG=2,FG=2.在Rt△PFG中,PF=5,FG=2,根据勾股定理得,PG=.∴AP=AG+PG=2+,∴AE=PE=AP=.24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在x轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到x 轴的距离不大于3,直接写出m的取值范围(无需解答过程).【解答】(1)解.由点A(0,5),点P(m,5)可知PA⊥y轴,∵OP=6,OA=5,由勾股定理可求PA==,∴m=﹣;(2)证明:方法一:如图2,取CP、OP中点M、N,连接DM、DN、BM、AN.∵D、M、N分别为OC、PC、PO的中点,∴DM∥PO,DN∥PC,∴四边形PMDN是平行四边形,∴PM=DN,DM=PN,∠PMD=∠PND,又M、N分别为Rt△PBC、Rt△PAO斜边的中点,∴BM=MP,AN=PN,∵∠BPC=∠APO∴∠BMP=∠ANP,∴∠BMP+∠PMD=∠ANP+∠PND,∴∠DNA=∠BMD,∴△DNA≌△BMD,∴AD=BD.方法二:如图3,延长CB至M,使BM=BC,在y轴上面取点N使AN=OA,连接PM,PN,CN,OM.∵∠BPC=∠APO∴∠BPM=∠APN∴∠CPN=∠MPO∴△PCN≌△PMO,∴CN=OM.∵D、A、B分别为OC、ON、CM的中点,∴BD=OM,AD=CN,∴AD=BD.(3)由条件可知点E的纵坐标大于或等于﹣3小于或等于3.①当点E的纵坐标为3时,如图4,过点E作ES⊥x轴于S,交直线AP于R,在Rt△OES中,OE=OA=5,ES=3,可求OS=AR=4,RE=2,∵PA=PE=﹣m,PR=4+m,在Rt△PRE中,由22+(4+m)2=(﹣m)2,解得:m=﹣;②当点E的纵坐标为﹣3时,如图5,过点E作ES⊥x轴于S,交直线AP于R,在Rt△OES中,OE=OA=5,ES=3,∴OS=AR=4,∴PR=10﹣4=6由勾股定理得:RE==8,∵PA=PE=﹣m,PR=﹣4﹣m,在Rt△△PRE中,由82+(4+m)2=(﹣m)2,解得:m=﹣10;综上所述:当﹣10≤m≤﹣时,点E到x轴的距离不大于3.。

2019年人教版本初中八年级数学下册的期末试卷习题含答案

2019年人教版本初中八年级数学下册的期末试卷习题含答案

期末测试(时间:90分钟满分:120分)题号一二三总分合分人复分人得分一、选择题(每题3分,共30分)1.以下式子中,属于最简二次根式的是()A.12B.2C. D.7 32.?ABCD中,∠A=40°,则∠C=()A.40°B.50°C.130°D.140°3.以下计算错误的选项是()A.3+22=52 B.8÷2=2×3=6-2=24.(重庆中考)某校将举办一场“中国汉字听写大赛”,要求每班选举一名同学参加竞赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是,乙的成绩的方差是,依照以上数据,以下说法正确的选项是()A.甲的成绩比乙的成绩牢固B.乙的成绩比甲的成绩牢固C.甲、乙两人的成绩相同牢固D.无法确定甲、乙的成绩谁更牢固5.以下各组数不能够作为直角三角形三边长的是(),4,5B.3,4,5 C.,,D.30,40,506.函数y=x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.矩形、菱形、正方形都拥有的性质是()A.对角线相等B.对角线互相均分C.对角线互相垂直D.对角线均分对角8.2019年,某市发生了严重干旱,该市政府号召居民节约用水.为认识居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.则关于这10户家庭的月用水量,以下说法错误的选项是()A.众数是6B.中位数是6C.平均数是6D.方差是49.(孝感中考)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为()A.-1B.-5C.-4D.-310.(牡丹江中考)如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则以下结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB∶OE=3∶2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(每题4分,共24分)11.二次根式x-2有意义,则x的取值范围是.12.将正比率函数y=-2x的图象向上平移3个单位,则平移后所得图象的剖析式是.13.已知菱形的两条对角线长分别为1和4,则菱形的面积为____________.2x+y=b,x=-1,14.若已知方程组的解是则直线y=-2x+b与直线y=x-a的交点坐标是__________.x-y=a y=3.15.如图,在△MBN中,已知BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是.16.如图,在矩形ABCD中,AC,BD订交于点O,AE均分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为____________.三、解答题(共66分)17.(8分)计算:3( 2-3)-24-|6-3|.18.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=10cm,AB=8cm,求EF的长.19.(8分)已知,一次函数y=kx+3的图象经过点A(1,4).求这个一次函数的剖析式;试判断点B(-1,5),C(0,3),D(2,1)可否在这个一次函数的图象上.20.(8分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.求证:AB=EF;连接AF,BE,猜想四边形ABEF的形状,并说明原由.21.(10分)某校要从小王和小李两名同学中优选一人参加全市知识竞赛,在近来的五次选拔测试中,他俩的成绩分别以下表:第1次第2次第3次第4次第5次小王60751009075小李70901008080依照上表解答以下问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差小王807575190小李在这五次测试中,成绩比较牢固的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届竞赛表示,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加竞赛比较合适?说明你的原由.22.(12分)(潜江中考同的白杨树苗可供选择)为改进生态环境,防范水土流失,某村计划在汉江堤坡种植白杨树,其详尽销售方案以下:,现甲、乙两家林场有相甲林场购树苗数量不高出1000棵时高出1000棵的部分销售单价4元/棵元/棵乙林场购树苗数量不高出2000棵时高出2000棵的部分销售单价4元/棵元/棵设购买白杨树苗x棵,到两家林场购买所需花销分别为y甲(元),y乙(元).(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需花销为____________元,若都在乙林场购买所需花销为____________元;(2)分别求出y甲,y乙与x之间的函数关系式;若是你是该村的负责人,应入选择到哪家林场购买树苗合算,为什么?(1)23.(12分)以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.当四边形ABCD为正方形时(如图1),EB和FD的数量关系是EB=FD;当四边形ABCD为矩形时(如图2),EB和FD拥有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD可否发生变化?若是改变若是不变,请在图3中求出∠EGD的度数.,请说明原由;参照答案1.D2.A 3.A4.A)5.A6.B7.B8.D9.D10.C提示:①③④正确,②错误.11.x≥212.y=-2x+313.214.(-1,3)15.1316.75°17.原式=6-3-26-(3-6)=-6.18.由条件知AF=AD=BC=10cm,在Rt△ABF中,BF=AF2-AB2=102-82=6(cm),∴FC=BC-BF=106=4(cm).设EF=xcm,则DE=EF=x,CE=8-x,在Rt△CEF中,EF2=CE2+FC2,即x2=(8-x)2+42.解得x=5,即EF=5cm.19.(1)由题意,得k+3=4,解得k=1,∴该一次函数的剖析式是y=x+3.(2)由(1)知,一次函数的剖析式是y=x+3.当x=-1时,y=2,即点B(-1,5)不在该一次函数图象上;当x=0时,y=3,即点C(0,3)在该一次函数图象上;当x=2时,y=5,即点D(2,1)不在该一次函数图象上.20.(1)证明:∵AC∥DE,∴∠ACD=∠EDF.∵BD=CF,∴BD+DC=CF+DC,即BC=DF.又∵∠A=∠E,∴ABC≌△EFD(AAS).∴AB=EF.猜想:四边形ABEF为平行四边形,原由以下:由(1)知△ABC≌△EFD,∴∠B=∠F.∴AB∥EF.又∵AB=EF,∴四边形ABEF为平行四边形.21.(1)8480 801042(2)因为小王的方差是 190,小李的方差是104,而104<190,因此小李成绩较牢固.小王的优秀率为5×100%=40%,小李的优秀率为4×100%=80%.(3)5因为小李的成绩较小王牢固,且优秀率比小王的高,因此选小李参加竞赛比较合适.22.(1)59006000(2)y甲=4x(0≤x≤1000且x为整数),+200(x>1000且x为整数);y乙=4x(0≤x≤2000且x为整数),+800(x>2000且x为整数).(3)①当0≤x≤1000时,两家林场单价相同,因此到两林场购买所需要花销都相同;②当1000<x≤2000时,甲林场有优惠而乙林场无优惠,∴当1000<x≤2000时,到甲林场购买合算;③当x>2000时,y甲=+200,y乙=+800,y甲-y乙=+200-+800)=-600.(ⅰ)当y甲=y乙时,-600=0,解得x=3000.∴当x=3000时,到两林场购买所需要花销都相同;(ⅱ)当y甲<y乙时,-600<0,解得x<3000.∴当2000<x<000时,到甲林场购买合算;(ⅲ)当y甲>y乙时,-600>0,解得x>3000.∴当x>3000时,到乙林场购买合算.综上所述,当0≤x≤1000或x=3000时,到两林场购买所需要花销都相同;当1000<x<3000时,到甲林场购买合算;当x>3000时,到乙林场购买合算.23.(2)EB=FD.证明:∵△AFB 为等边三角形,∴AF=AB,∠FAB=60°.∵△ADE为等边三角形,∴AD=AE,∠EAD=60°.∴∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE.∴△FAD≌△BAE.∴EB=FD.(3)∠EGD不发生变化.∵△ADE为等边三角形,∴∠AED=∠EDA=60°.∵△ABF,△AED均为等边三角形,AB=AF,∠FAB=60°,AE=AD,∠EAD=60°.∴∠FAD=∠BAE.∴△FAD≌△BAE.∴∠AEB=∠ADF.设∠AEB为x°,则∠ADF也为x°,于是有∠BED为(60-x)°,∠EDF为(60+x)°,∴∠EGD=180°-∠BED-∠EDF=180°-(60-x)°-(60+x)°=60°.。

人教版2019学年八年级下册数学期末试卷含答案(共十套)

人教版2019学年八年级下册数学期末试卷含答案(共十套)

人教版2019学年八年级下数学期末试卷(一)一、填空题(共8小题,每小题3分,满分24分)1.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别甲=82分,乙=82分,S甲2=245分,S乙2=90分.那么成绩较为整齐的是班(填“甲”或“乙”).2.如图,字母A所代表的正方形面积为.3.若x,y为实数,且|x+2|+=0,则()2016=.4.将直线y=2x+6向下平移4个单位长度得到的直线为.5.如图,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F的值为度.6.如图,y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是.7.如图,已知正方形ABCD的对角线长为,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为.8.在平面直角坐标系中,点A,B,C的坐标分别是(0,0),(5,0),(2,3),若以点A,B,C,D为顶点的四边形是平行四边形,则符合条件的D点有个.二、选择题(共8小题,每小题4分,满分32分)9.要调查昆明市民喜欢看的电视节目,应关注的是哪个数据的代表()A.众数 B.中位数C.平均数D.加权平均数10.函数y=的自变量x的取值范围是()A.x>6 B.x<6 C.x≥6 D.x≤611.下列式子中,属于最简二次根式的是()A.B.C. D.12.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分13.能够判定一个四边形是菱形的条件是()A.对角线互相垂直平分B.对角线互相平分且相等C.对角线相等且互相垂直 D.对角线互相垂直14.一次函数y=﹣5x+3不经过第()象限.A.一B.二C.三D.四15.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,且DF=1,连接AF,CF,若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.1516.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.三、解答题(共9小题,满分64分)17.计算:(1)﹣()0+;(2)(3﹣2+)÷2;(3)(2+)(2﹣)﹣(+1)2.18.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8cm,BD=6cm,DH ⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.19.如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE ∥DF.20.今年6月南博会在我市成功举办,吸引了众多的国内外人士,期间,对六家大宾馆、饭店中游客的年龄(年龄取整数)进行了抽样统计,经整理后分成六组,并绘制成条形统计图,如图所示,请结合图形回答下列问题:(1)这次抽样的总人数是人;(2)样本中年龄的中位数落在第小组内(只要求写出答案);(3)这天的游客约有600000人,请估计在20.5﹣50.5年龄段的游客约有多少人?21.为迎接南博会,要在会场周围的一块四边形空地上种植草坪进行绿化,经测量∠B=90°,AB=7米,BC=24米,CD=15米,AD=20米,求这块四边形草坪ABCD的面积.22.甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示.(1)请根据图象回答:甲先出发小时后,乙才出发;在甲出发小时后,两人相遇,这时他们离A地千米;(2)乙的行驶速度是千米/小时;(3)分别求出表示甲、乙的路程y(千米)与时间x(小时)之间的函数表达式(不要求写出自变量的取值范围).23.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC,∠BAN=90°,求证:四边形ADCN是矩形.24.六一儿童节,某学习用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.其中,书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y1,y2(元)与所买水性笔支数x(支)的函数解析式(请化简函数解析式),并写出自变量x的取值范围;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜.25.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)求菱形ABCO边长;(2)求直线AC的解析式;(3)动点P从点A出发,沿折线ABC的方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式.人教版2019学年八年级下数学期末试卷(二)一、选择题(本大题共8小题,每小题3分,共24分)1.以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a< b C.4﹣a>4﹣b D.a﹣4>b﹣43.一个多边形的内角和等于1800°,则这个多边形的边数是()A.8 B.10 C.12 D.144.已知等腰三角形两边长为3和7,则周长为()A.13 B.17 C.13或17 D.115.下列多项式中不能用公式法分解因式的是()A.﹣x2﹣y2+2xy B.a2+a+C.﹣m2+49n2D.﹣a2﹣b26.下列等式中不恒成立的是()A.=B.=C.=D.=7.如图,□ABCD中,O为对角线AC的中点,AC⊥AB,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.37°B.53°C.127°D.143°8.如图,∠A=50°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.50°C.60°D.70°二、填空题(本大题共8小题,每小题3分,共24分)9.多项式a2+4a分解因式的结果是.10.命题“如a2>b2,则a>b”的逆命题是命题(填“真”或“假”).11.若分式的值为0,则x的值为.12.在△ABC中,AB=12,AC=5,AD平分∠BAC,则△ABD与△ACD的面积之比是.13.已知函数y=ax+b与y=cx+d的图象如图所示,则关于x的不等式ax+b≥cx+d的解集是.14.如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=.15.在□ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.16.在平面直角坐标系中,已知点A(0,4),B(8,0),点C在x轴上,且在点B的左侧,若△ABC是等腰三角形,则点C的坐标是.三、解答题(本大题共2小题,每小题5分,共10分)17.分解因式:(9x2+y2)2﹣36x2y2.18.先化简,再求值:(1+),其中x=0.四、解答题(本大题共2小题,每小题5分,共10分)19.求解下面的不等式组,并将解集画在数轴上..20.解分式方程: +=1.五、解答题(本大题共2小题,每小题7分,共14分)21.如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是;(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是;(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是.22.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?六、解答题(本大题共2小题,第23小题8分,第24小题10分,共18分)23.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF= BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.24.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.人教版2019学年八年级下数学期末试卷(三)一、选择题(每题3分)1.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥12.一次函数y=6x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,64.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13 B.17 C.20 D.265.某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差s2如表所示,如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是()8A.甲B.乙C.丙D.丁6.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +17.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分8.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4 B.4C.4D.289.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.10.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1) C.(0,2) D.(0,3)二、填空题(每题3分)11.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).12.某射击运动员在一次射击训练中,共射击了6次,所得成绩(单位:环)为:6、8、7、7、8、9,这组数据的中位数是.13.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.14.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.15.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.三、解答题16.计算:×(﹣)+|﹣2|+()﹣3﹣(π﹣3.14)0.17.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC 上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?18.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.19.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.20.我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.21.在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.22.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.人教版2019学年八年级下数学期末试卷(四)一、选择题(每小题3分,共48分)1.下列计算正确的是()A.B.C.D.2.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.43.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.644.一次函数y=2x+4交y轴于点A,则点A的坐标为()A.(0,4) B.(4,0) C.(﹣2,0)D.(0,﹣2)5.一次函数y=kx+b的图象如图所示,则k、b的值为()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.如图,在平行四边形ABCD中,连接对角线AC、BD,图中的全等三角形的对数()A.1对 B.2对 C.3对 D.4对7.下列命题中:①两条对角线互相平分且相等的四边形是正方形;②菱形的一条对角线平分一组对角;③顺次连结四边形各边中点所得的四边形是平行四边形;④两条对角线互相平分的四边形是矩形;⑤平行四边形对角线相等.真命题的个数是()A.1 B.2 C.3 D.48.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm9.甲乙两人在跳远练习中,6次成绩分别为(单位:米):甲:3.8 3.8 3.9 3.9 4.0 4.0;乙:3.8 3.9 3.9 3.9 3.9 4.0.则这次跳远练习中,甲乙两人成绩方差的大小关系是()A.>B.<C.=D.无法确定10.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数B.中位数C.众数D.方差11.匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A.B.C.D.12.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5 B.k<5 C.k>﹣5 D.k<﹣513.直线l的解析式是y=kx+2,其中k是不等式组的解,则直线l的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.15.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为()cm2.A.4 B.8 C.12 D.1616.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8) C.(0,8)D.(0,16)二、填空题(每空2分,共8分)17.计算:=.18.如图:阴影部分(阴影部分为正方形)的面积是.19.如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=.20.如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是.三、解答题(共44分)21.计算:(1)﹣﹣+(+1)0(2)(+)2﹣(﹣)2.22.一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?23.如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?24.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是.(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.25.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?26.如图,直角梯形ABCD中,AD∥BC,AB=cm,AD=24cm,BC=26cm,∠B=90°,动点P从A开始沿AD边向D以1cm/s的速度运动,动点Q从点C开始沿CB以3cm/s的速度向点B运动.P、Q同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为ts,问:(1)t=时,四边形PQCD是平行四边形.(2)是否存在一个t值,使PQ把梯形ABCD分成面积相等的两部分?若存在请求出t的值.(3)当t为何值时,四边形PQCD为等腰梯形.(4)连接DQ,是否存在t值使△CDQ为等腰三角形?若存在请直接写出t的值.人教版2019学年八年级下数学期末试卷(五)一、选择题(共12小题,每小题3分,满分36分)1.下列说法错误的是()A.42的算术平方根为4 B.2的算术平方根为C.的算术平方根是D.的算术平方根是92.下列各数:3.14159,0,0.3131131113…(相邻两个3之间1的个数逐次加1),﹣,﹣,其中无理数有()A.1个B.2个C.3个D.4个3.若代数式有意义,则实数x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠3 C.x>﹣1 D.x>﹣1且x≠34.下列各组数的三个数,可作为三边长构成直角三角形的是()A.1,2,3 B.32,42,52C.,,D.,,5.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD6.不等式﹣4x+6≥﹣3x+5的解集在数轴上表示正确的是()A.B.C.D.7.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2 B.﹣2 C.1 D.﹣18.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>39.如图所示,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD 的周长是()A.4 B.8 C.12 D.1610.如图是一次函数y=ax﹣b的图象,则下列判断正确的是()A.a>0,b<0 B.a>0,b>0 C.a<0,b<0 D.a<0,b>011.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1≥y2的x的取值范围为()A.x≥1 B.x≥2 C.x≤1 D.x≤212.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为()A.105°B.112.5°C.120°D.135°二、填空题(共5小题,每小题3分,满分15分)13.一个实数的两个平方根分别是m﹣5和3m+9,则这个实数是.14.通过平移把点A(1,﹣3)移到点A1(3,0),按同样的平移方式把点P(2,3)移到P1,则点P1的坐标是.15.顺次连接平行四边形各边中点所形成的四边形是.16.已知: +|b﹣1|=0,那么(a+b)2016的值为.17.如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交于P,则∠BPD的度数为.三、解答题(共8小题,满分69分)18.化简计算:(1)﹣15++;(2)×﹣4×(1﹣)2.19.(1)解不等式:,并求出它的正整数解.(2)解不等式组:.20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.21.如图,在矩形ABCD中,E是BC上一点,且AE=BC,DF⊥AE,垂足是F,连接DE.求证:(1)DF=AB;(2)DE是∠FDC的平分线.22.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)判定点C(4,﹣2)是否在该函数图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?24.如图,在正方形ABCD中,E是边AD上一点,将△ABE绕点A按逆时针方向旋转90°到△ADF的位置.已知AF=5,BE=13(1)求DE的长度;(2)BE与DF是否垂直?说明你的理由.25.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B 地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(千米)与行驶时间x(小时)之间的函数关系式,并写出(1)求甲车离出发地的距离y甲自变量的取值范围;(千米)(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.人教版2019学年八年级下数学期末试卷(六)一.选择题(本大题共12个小题,每小题三分,共36分,在每小题给出的4个选项中,只有一项,符合题目要求的)1.计算的结果是()A.B.C.2x D.2y2.下列几何图形中,即是中心对称图形又是轴对称图形的是()A.四边形B.等腰三角形C.菱形 D.梯形3.下列多项式中,能运用公式法进行因式分解的是()A.a2+b2B.x2+9 C.m2﹣n2D.x2+2xy+4y24.如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和45.分式﹣可变形为()A.﹣B. C.﹣D.6.如果三角形三个外角度数之比是3:4:5,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定7.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.148.要使分式为零,那么x的值是()A.﹣2 B.2 C.±2 D.09.解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3 D.2﹣(x+2)=3(x ﹣1)10.已知=3,则的值为()A.B.C.D.﹣11.如图,矩形ABCD的面积为10cm2,它的两条对角线交于,点O1以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC n O n的面积为()A.10cm2B.cm2C.cm2D.12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④二.填空题(共7小题)13.分解因式:x2y﹣y3=.14.菱形的周长是40cm,两邻角的比是1:2,则较短的对角线长.15.函数y=中,自变量x的取值范围是.16.已知两个分式:A=,B=,其中x≠±2,则A与B的关系是.17.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.18.若x=3是分式方程=0的根,则a的值是.19.如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有.(把你认为正确的序号都填上)三.解答题(本大题共8小题,共63分,解答应写出文字说明,证明过程,或演算步骤)20.(1)当时,求的值(2)解方程.21.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.22.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.已知:如图所示,E为正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数.25.甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.26.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=.27.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.四、选择题(共1小题,每小题0分,满分0分)28.(2016•满洲里市模拟)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19五、解答题(共2小题,满分0分)29.(2016春•历下区期末)分解因式:4x2+4xy+y2﹣4x﹣2y﹣3.30.(2016春•历下区期末)如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.人教版2019学年八年级下数学期末试卷(七)一、选择题(本题共15小题,每小题3分,共45分)1.下列图形中,不属于中心对称图形的是()A.圆B.等边三角形C.平行四边形D.线段2.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(2015云南)不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<34.化简+的结果是()A.x B.x﹣1 C.﹣x D.x+15.下列多项式中,能用公式法分解因式的是()A.﹣m2+n2B.a2﹣2ab﹣b2C.m2+n2D.﹣a2﹣b26.把分式,,进行通分,它们的最简公分母是()A.x﹣y B.x+y C.x2﹣y2D.(x2﹣y2)7.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2 B.5 C.8 D.108.下列语句:①每一个外角都等于60°的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式有意义的条件是分子为零且分母不为零.其中正确的个数为()A.1 B.2 C.3 D.49.一个多边形的内角和与外角和相等,则这个多边形的边数为()A.6 B.5 C.4 D.810.如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.9 B.10 C.11 D.1211.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b 的解集正确的是()A.x>1 B.x>﹣1 C.x<1 D.x<﹣112.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3 C.4 D.513.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是()。

人教版2019学年八年级下册数学期末试卷及答案(共10套)

人教版2019学年八年级下册数学期末试卷及答案(共10套)

3.下列选项中,平行四边形不一定具有的性质是( ).人教版 2019 学年八年级数学期末测试题(一)一、选择题(每题 4 分,12 个题,共 48 分)1.函数 y =1x + 2A . x ≠ -2自变量 x 的取值范围是( ).B . x = -2C . x ≠ 0D . x ≠ 22.在一次期末考试中,某一小组的 5 名同学的数学成绩(单位:分)分别是 130,100,108,110,120,则这组数据的中位数是().A .100B .108C .110D .120...A .两组对边分别平行B .两组对边分别相等C .对角线互相平分D .对角线相等4、下列各式中①;②; ③ a 2 ; ④; ⑤ x 2 - 1 ;⑥ x 2 + 2 x + 1 一定是二次根式的有( )个。

A . 1 个B. 2 个C. 3 个D. 4 个5. 计算:(2a - 1)2 + (1 - 2a )2 的值是()A. 0B. 4a - 2C. 2 - 4aD. 2 - 4a 或 4a - 26.已知,如图长方形 ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点 B 与 点 D 重合,折痕为 △E F ,则 ABE 的面积为( )A .3cm 2C .6cm 2B .4cm 2D .12cm 27.若一个直角三角形的两边长分别是 5 和 12,则第三边长为()(A)13(B)119(C) 13 或 119(D)无法确定8.如图,已知四边形 ABCD 为菱形,AD = 5cm , BD = 6cm ,则此菱形的面积为().□A .12cm 2B .24cm 2C .48cm 2D .96cm 2(第 10 题图)9.如图,矩形 ABCD 中,对角线 AC 、BD 交于点 O .若 AOB 60 ,BD 10 ,则 AB的长为().A . 5 3B . 5C . 4D . 310.如图, ABCD的周长为 40 , BOC 的周长比 AOB 的周长多 10 ,则 AB 为().A .5B .10C .15D .2011.已知一次函数 y=kx+b 的图象如右图所示,当 x <0 时,y 的取值范围是()A.y >0B.y <0 C -2<y <0D y <-2金额(元)y 76 64O 1 x-2O40 50 质量(千克)12.小李以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜后,余下的每千克降价 0.4 元,全部售完。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末测试(时间:90分钟满分:120分) 一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.12B.23 C.0.3 D.72.▱ABCD中,∠A=40°,则∠C=()A.40°B.50°C.130°D.140°3.下列计算错误的是()A.3+22=5 2 B.8÷2= 2C.2×3= 6D.8-2= 24.(重庆中考)某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是(A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.下列各组数不能作为直角三角形三边长的是()A.3,4, 5 B.3,4,5C.0.3,0.4,0.5 D.30,40,506.函数y=x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角8.2016年,某市发生了严重干旱,该市政府号召居民节约用水.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .中位数是6C .平均数是6D .方差是49.(孝感中考)如图,直线y =-x +m 与y =nx +4n(n ≠0)的交点的横坐标为-2,则关于x 的不等式-x +m>nx +4n>0的整数解为( )A .-1B .-5C .-4D .-310.(牡丹江中考)如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( ) A .1 B .2 C .3 D .4二、填空题(每小题4分,共24分)11.二次根式x -2有意义,则x 的取值范围是.12.将正比例函数y =-2x 的图象向上平移3个单位,则平移后所得图象的解析式是. 13.已知菱形的两条对角线长分别为1和4,则菱形的面积为____________.14.若已知方程组⎩⎨⎧2x +y =b ,x -y =a 的解是⎩⎨⎧x =-1,y =3.则直线y =-2x +b 与直线y =x -a 的交点坐标是__________.15.如图,在△MBN 中,已知BM =6,BN =7,MN =10,点A ,C ,D 分别是MB ,NB ,MN 的中点,则四边形ABCD 的周长是.16.如图,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为____________.三、解答题(共66分)17.(8分)计算:3(2-3)-24-|6-3|.18.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=10 cm,AB=8 cm,求EF的长.19.(8分)已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.20.(8分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.(1)求证:AB=EF;(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.21.(10分)某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,第1次第2次第3次第4次第5次小王60 75 100 90 75小李70 90 100 80 80(1)完成下表:姓名平均成绩(分) 中位数(分) 众数(分) 方差小王80 75 75 190小李(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.22.(12分)(潜江中考)为改善生态环境,防止水土流失,某村计划在汉江堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:甲林场购树苗数量销售单价不超过1 000棵时4元/棵超过1 000棵的部分3.8元/棵乙林场购树苗数量销售单价不超过2 000棵时4元/棵超过2 000棵的部分3.6元/棵设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元),y乙(元).(1)该村需要购买1 500棵白杨树苗,若都在甲林场购买所需费用为____________元,若都在乙林场购买所需费用为____________元;(2)分别求出y甲,y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?23.(12分)以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是EB=FD;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.参考答案1.D 2.A 3.A 4.A) 5.A 6.B7.B8.D9.D10.C提示:①③④正确,②错误.11.x≥212.y=-2x+313.214.(-1,3)15.1316.75°17.原式=6-3-26-(3-6)=-6.18.由条件知AF=AD=BC=10 cm,在Rt△ABF中,BF=AF2-AB2=102-82=6(cm),∴FC =BC-BF=10-6=4(cm).设EF=x cm,则DE=EF=x,CE=8-x,在Rt△CEF中,EF2=CE2+FC2,即x2=(8-x)2+42.解得x=5,即EF=5 cm.19.(1)由题意,得k+3=4,解得k=1,∴该一次函数的解析式是y=x+3.(2)由(1)知,一次函数的解析式是y=x+3.当x=-1时,y=2,即点B(-1,5)不在该一次函数图象上;当x =0时,y =3,即点C(0,3)在该一次函数图象上;当x =2时,y =5,即点D(2,1)不在该一次函数图象上.20.(1)证明:∵AC ∥DE ,∴∠ACD =∠EDF.∵BD =CF ,∴BD +DC =CF +DC ,即BC =DF.又∵∠A =∠E ,∴△ABC ≌△EFD(AAS).∴AB =EF.(2)猜想:四边形ABEF 为平行四边形,理由如下:由(1)知△ABC ≌△EFD ,∴∠B =∠F.∴AB ∥EF.又∵AB =EF ,∴四边形ABEF 为平行四边形. 21.(1)84 80 80 104(2)因为小王的方差是190,小李的方差是104,而104<190,所以小李成绩较稳定.小王的优秀率为25×100%=40%,小李的优秀率为45×100%=80%.(3)因为小李的成绩较小王稳定,且优秀率比小王的高,因此选小李参加比赛比较合适. 22.(1)5 900 6 000(2)y 甲=⎩⎨⎧4x (0≤x ≤1 000且x 为整数),3.8x +200(x>1 000且x 为整数);y 乙=⎩⎨⎧4x (0≤x ≤2 000且x 为整数),3.6x +800(x>2 000且x 为整数).(3)①当0≤x ≤1 000时,两家林场单价一样,因此到两林场购买所需要费用都一样;②当1 000<x ≤2 000时,甲林场有优惠而乙林场无优惠,∴当1 000<x ≤2 000时,到甲林场购买合算;③当x >2 000时,y 甲=3.8x +200,y 乙=3.6x +800,y 甲-y 乙=3.8x +200-(3.6x +800)=0.2x -600.(ⅰ)当y 甲=y 乙时,0.2x -600=0,解得x =3 000.∴当x =3 000时,到两林场购买所需要费用都一样;(ⅱ)当y 甲<y乙时,0.2x -600<0,解得x <3 000.∴当2 000<x <3 000时,到甲林场购买合算;(ⅲ)当y 甲>y 乙时,0.2x -600>0,解得x >3 000.∴当x >3 000时,到乙林场购买合算.综上所述,当0≤x ≤1 000或x =3 000时,到两林场购买所需要费用都一样;当1 000<x <3 000时,到甲林场购买合算;当x >3 000时,到乙林场购买合算. 23.(2)EB =FD.证明:∵△AFB 为等边三角形,∴AF =AB ,∠FAB =60°.∵△ADE 为等边三角形,∴AD =AE ,∠EAD =60°.∴∠FAB +∠BAD =∠EAD +∠BAD ,即∠FAD =∠BAE.∴△FAD ≌△BAE.∴EB =FD. (3)∠EGD 不发生变化.∵△ADE 为等边三角形,∴∠AED =∠EDA =60°.∵△ABF ,△AED 均为等边三角形,∴AB=AF,∠FAB=60°,AE=AD,∠EAD=60°.∴∠FAD=∠BAE.∴△FAD≌△BAE.∴∠AEB=∠ADF.设∠AEB为x°,则∠ADF也为x°,于是有∠BED为(60-x)°,∠EDF为(60+x)°,∴∠EGD=180°-∠BED-∠EDF=180°-(60-x)°-(60+x)°=60°.。

相关文档
最新文档