分形微积分算子的定义及其应用
分形的概念和应用

起源:分形概念起源于1975年,由数学家Benoit Mandelbrot提出
概念:分形是指具有自相似性的几何形状,即无论放大或缩小,其形状保持不变
应用:分形在数学、物理学、生物学、经济学等领域都有广泛的应用
发展:分形概念的发展推动了许多学科的研究,如混沌理论、复杂系统等
生物学:分形理论在生物学பைடு நூலகம்的应用,如分形生物学、分形生态学等
计算机科学:分形理论在计算机科学中的应用,如分形图像处理、分形建模等
数学:分形理论在数学中的广泛应用,如分形几何、分形分析等
物理学:分形理论在物理学中的应用,如分形物理学、分形宇宙学等
分形渲染:利用分形算法进行3D渲染,提高渲染效率和效果
分形建模:利用分形原理进行3D建模,如分形城市、分形建筑等
平面设计:分形图案在平面设计中的应用,如海报、广告、包装等
艺术创作:分形图案在艺术创作中的应用,如绘画、雕塑、装置艺术等
汇率市场:分形理论可以用来预测汇率市场的波动和趋势
金融风险管理:分形理论可以用来评估和管理金融风险
股票市场:分形理论可以用来预测股票市场的波动和趋势
经济周期:分形理论可以用来解释经济周期的波动和规律
生成纹理:为3D模型添加分形纹理,增强视觉效果
生成动画:制作分形动画,如分形爆炸、分形生长等
生成自然景观:模拟山脉、河流、树木等自然景观
生成艺术作品:创作分形艺术作品,如分形图案、分形动画等
数学:分形理论在数学中的广泛应用,如分形几何、分形分析等
计算机科学:分形理论在计算机科学中的广泛应用,如分形算法、分形图像处理等
分形市场假说:描述金融市场的复杂性和不可预测性
分形时间序列分析:用于分析金融数据的时间序列特征
分形几何学的基本概念与应用

分形几何学的基本概念与应用分形几何学是一门研究复杂、自相似结构的几何学科。
它的研究对象包括自然界中的许多现象和图形,如云朵、山脉、植物的分枝结构等。
分形几何学的出现和发展,为我们认识自然界的复杂性提供了新的视角。
本文将介绍分形几何学的基本概念,并重点探讨其在科学研究和实际应用中的价值。
一、分形几何学的基本概念分形几何学最核心的概念是“分形”。
分形是指具有自相似性质或统计尺度不变性的几何图形或物体。
它具备以下特点:1. 自相似性:分形的一部分与整体的形状非常相似,即具有自我重复的特性。
无论从整体还是局部的角度观察,其形状和结构都保持不变。
2. 统计尺度不变性:无论在什么尺度上观察分形,都能发现相似的图形和结构。
分形具有无标度的特性,不受空间尺度的限制。
3. 复杂性和碎形维度:分形体现了自然界中复杂系统的普遍性和多样性。
通过碎形维度的衡量,我们可以描述分形的几何形态。
二、分形几何学的应用领域分形几何学的研究成果,对科学研究和实际应用有着广泛的影响和应用价值。
1. 自然科学领域在物理学、化学、天文学等自然科学领域,分形几何学的应用已经取得了许多重要的突破。
例如,在物质表面的研究中,分形维度可以帮助我们更好地理解物质的分布和表面形态;在流体力学领域,分形几何学可以用来描述复杂流体的运动和传输现象。
2. 生命科学领域分形几何学在生物学、医学和生态学等领域的应用也日益增多。
在生物进化研究中,利用分形模型可以揭示物种的分支进化和形态演化;在生物医学图像处理领域,分形分析可以用于肿瘤和病变的诊断。
3. 技术工程领域在工程学、计算机科学和通信领域,分形几何学为我们提供了一些创新的解决方案。
例如,在图像压缩和数据传输中,可以利用分形编码来提高传输效率和图像质量;在通信网络设计中,采用分形结构可以提高网络的可靠性和稳定性。
4. 艺术与设计领域分形几何学的美学价值也不可忽视。
许多艺术家和设计师利用分形几何学的原理和方法创作出具有独特美感的艺术作品和设计。
分形原理及其应用

分形原理及其应用
分形原理,也称为分形几何原理,是由波兰数学家曼德尔布罗特于1975年首次提出的。
分形原理指的是存在于自然界和人
造物体中的重复模式,这些模式在不同的尺度上都呈现出相似的结构和特征。
换句话说,分形是一种具有自相似性的形态。
分形原理的应用十分广泛,下面列举几个主要领域:
1. 自然科学领域:生物学、地理学、气象学、天文学等都能从分形原理中获得启示。
例如,树叶、花瓣和岩石都具有分形结构,通过分析这些结构可以揭示它们的生长和形成规律。
2. 数学与计算机图形学:分形理论为图形图像的生成、压缩和渲染提供了新的思路和方法。
通过分形原理,可以生成具有逼真效果的山水画、云彩图等。
3. 经济学和金融学:金融市场中的价格变动往往呈现出分形特征,通过分析分形模式可以帮助预测市场走势和制定投资策略。
4. 艺术设计:分形原理在艺术设计中被广泛应用。
通过将分形结构应用到艺术作品中,可以创造出独特而美丽的图案和形态。
5. 计算机网络和通信:分形技术可以用于改进数据传输的效率和可靠性。
通过在网络中应用分形压缩算法,可以减少数据传输的带宽需求,提高网络性能。
综上所述,分形原理作为一种有着广泛应用价值的理论,已经
渗透到了各个学科和领域中,为科学研究和技术创新提供了新的思路和方法。
分形理论及其应用

X 1 : ( x1,x2,,xm )
X X
2 3
:
(
x
,
2
x
3,,
x
m
1
)
:
(
x
,
3
x
4,,
x
m
2
)
X
4
:
(
x
,
4
x5,,
x
m
3
)
把相点X1,X2,…,Xi,…,依次连起来就是一 条轨线。因为点与点之间的距空间共生成
个相点X1,X2,…,XN,给定一个数r,检查有 多少点对(Xi,Xj)之间的距离|Xi-Xj|小于r,把距离 小于r的点对数占总点对数N2的比例记作C(r),
•分形理论及其应用
Cantor集合 ,考虑多重分形,把同样的均匀质量棒
从其左端3/5处一分为二,然后把左段压缩为长度
r1=1/4,其质量P1=3/5,而右段保持原长度r2=2/5,其
质量P2=2/5;第二步按着上述的比例对两段分别进行
同样的变换就得到4段,左两段的长度分别为 r12 r1r2
质量分别为 P12 ,P1 P2 ,右两段的长度分别为 , r2 r1 r22 ,
质量分别为
, P2 P1
P
2 2
;如此操作下去就会得到一个不
均匀的Cantor集合。在这个集合中分布着众多长宽相
同的线条集合,它们构成单分形子集合。对每一个
单分形子集合,其标度指数为α,分维为f(α)。
•分形理论及其应用
最后每段线条的质量相当于二项式 (P1 P2)n展开中的
一项, n。因此可以用P1的q阶矩 Piq 取代单分形 i
分形概念及应用

对分形理论的综述一、分行理论产生的背景二、分形理论的概念三、分形理论的应用一、分型理论产生的背景长期以来,自然科学工作者,尤其是物理学家和数学家,由于受欧几里得几何学及纯数学方法的影响,习惯于对复杂的研究对象进行简化和抽象,建立起各种理想模型,把问题纳入可以解决的范畴。
线性近似方法在许多学科得到广泛的应用,解决了许多理论问题和实际问题,推动了各学科的发展。
但是,在复杂的动力学系统中,简单的线性近似方法不可能认识与非线性有关的特性,如流体中的湍流、对流等等。
而分形则是直接从非线性复杂系统的本身入手,从未简化和抽象的研究对象本身去认识其内在的规律性,这是分形理论与线形近似处理本质上的区别。
从理论上讲,它是数学思想的新发展,是人类对于维数、点集等概念的理解的深化与推广,所以人们把它称为是一种新的几何学—分形几何学。
然而,它又与现实的物理世界紧密相连,成为研究混沌(chaos)现象的重要工具。
众所周知,对混沌现象的研究正是现代理论物理学的前沿和热点之一。
除了理论上的意义之外,在实际应用中,分形也显示了巨大的潜力。
从气象、生态,直到图形压缩、城市规划,在许多相距甚远的领域里,都发现了分形的概念与方法的用武之地。
人们惊奇地发现,分形现象在自然界是普遍地、大量地存在着。
分形概念的产生与发展,进一步拓宽了我们的视野,使人类的科学思想登上了一个新的台阶。
二、分形理论的概念分形是一个新的概念,不同的专家有不同的定义方法。
当然,不同的说法所描述的还是同一件事物,只是强调其不同的侧面,不同的属性而已。
从直观上来看,所谓分形是指一些无法用常规的、传统的几何方法描述的图形。
例如天空的云彩、曲折的江河和海岸线、树叶、山峰等。
它们不同于正方形、圆、直线等规则的几何图形,表现出某种混乱和不规则。
通常的度量概念,如长度、面积等,对它们来说,不仅很难计算,而且有时根本是无法计算的。
例如,曾有科学家提出了这样一个似乎荒谬的命题:“英国的海岸线的长度是无穷大。
数学的分形几何

数学的分形几何分形几何是一门独特而迷人的数学领域,它研究的是自相似的结构和形态。
分形几何的概念由波蒂亚·曼德博(Benoit Mandelbrot)在1975年首次提出,之后得到了广泛应用和发展。
本文将介绍分形几何的基本概念和应用领域,旨在帮助读者更好地了解这一令人着迷的学科。
一、分形几何的基本概念分形(fractal)是一种非几何形状,具有自相似的特点。
简单来说,分形就是在各个尺度上都具有相似性的图形。
与传统的几何图形相比,分形图形更加复杂、细致,其形状常常无法用传统的几何方法进行描述。
分形几何的基本概念包括分形维度、分形特征和分形生成等。
1. 分形维度分形维度是分形几何中的重要概念之一。
传统的几何图形维度一般为整数,如直线的维度为1,平面的维度为2,而分形图形的维度可以是非整数。
分形维度能够描述分形的复杂程度和空间占据情况,是衡量分形图形特性的重要指标。
2. 分形特征分形几何的分形特征是指分形图形所具有的一些独特性质。
其中最著名的就是自相似性,即分形图形在不同尺度上具有相似的形态和结构。
此外,分形图形还具有无限的细节,无论放大多少倍都能够找到相似的结构。
3. 分形生成分形图形的生成是分形几何中的关键问题之一。
分形图形可以通过递归、迭代等方式进行生成,比如著名的分形集合——曼德博集合就是通过迭代运算得到的。
分形生成的过程常常需要计算机的辅助,对于不同的分形形状,生成算法也有所不同。
二、分形几何的应用领域分形几何的独特性质使其在许多领域中得到广泛应用。
以下列举了几个典型的应用领域。
1. 自然科学分形几何在自然科学中有着广泛的应用。
例如,分形理论可以用来研究自然界中的地形、云雾形态等。
通过分形几何的方法,我们能够更好地理解和描述自然界的复杂性,揭示出隐藏在表面之下的规律。
2. 经济金融分形几何在经济金融领域也有着重要的应用。
金融市场的价格走势往往具有分形特征,通过分形几何的方法可以更好地预测未来的市场走势和波动。
分形理论及其应用

分形理论及其应⽤分形⼏何及其在城市研究中的应⽤⼀、分形概述1975年,著名科学家曼德布罗特(B.B.Mandelbrot)发表了其专著《分形:形态、机遇和维数》,这标志着分形⼏何学的诞⽣。
分形⼏何学是相对于传统欧⽒⼏何学的不⾜⽽建⽴的,由此发展起来的分形理论是现代⾮线性科学研究中的⼀门新兴数学分⽀,在众多学科领域中有着⼴泛的应⽤。
普通的⼏何对象,具有整数维数。
零维的点、⼀维的线、⼆维的⾯、三维的体、四维的时空等。
⽽分形则是具有⾮整数的分维的⼏何对象。
其主要的价值是在极端有序和极端混沌之间提供了⼀种可能性。
其显著的特征是:看来⼗分复杂的事物,事实上⼤多数均可⽤公含很少参数的简单公式来表达。
1、科赫曲线分形⼏何学的研究对象是不光滑的、不规则的,甚⾄⽀离破碎的空间⼏何形态。
分形的典型例⼦,科赫曲线(Koch Curve)便是以初等数学⽅法构造的⼀类处处不可导。
构造过程如下图:取长度为1的直线段,称为初始元(initiator),将该线段的中间1/3⽤⼀个隆起等边三⾓形的另两边替代,得到⼀条由四个等长直线段构成的折线,称为⽣成元(generator)。
再将⽣成元中的四个直线段中的每⼀个,都⽤⼀个缩⼩为1/3的⽣成元代替,从⾯形成了⼀条有次级隆起的折线。
这样⼀直进⾏下去,得到科赫曲线。
显然,科赫曲线的“内部”结构与整体相似。
2.⾃相似性与标度不变性如果⼏何对象的⼀个局部放⼤后与其整体相似,这种性质称为⾃相似性,⽐如树。
地质现象的描述离不开标度,在地质上,对⼀些地质现象拍照时,⼀定要放上⼀个能表⽰尺度⼤⼩的物体,如⼀枚硬币,⼀把锤⼦等。
因为,如果没有这些东西,就很难在确定这些照⽚是反映什么尺度范围内的现象,可能是10⽶还是10公⾥等。
当观测标度变化时,⼏何体的许多性质保持不变,称为标度不变性。
具有⾃相似性或标度不变性的⼏何对象,我们说它们是分形的。
3.分形的定义1.部分以某种形式与整体相似的形状叫做分形。
(B.B.Mandelbrot)2.分形集合是这样⼀种集合,它⽐传统⼏何学研究的所有集合更加的不规则,⽆论是放⼤还是缩⼩,这种集合的不规则性仍然是明显的。
分形的意义及应用

分形的意义及应用摘要分形理论提供了一种发现秩序和结构的新方法,不仅标志着人类历史上又一次重大的科学进步,而且正在大大地改变人们观察和认识客观世界的思维方式。
本文介绍了分形的来源,分析了其意义,并着重阐述了分形的实际应用。
关键词分形;意义;模拟金融;应用医学1 分形的介绍1.1 定义分形(Fractal)是指具有自相似特性的现象、图像或者物理过程等。
分形学诞生于1970年代中期,属于现代数学中的一个分支。
分形一般有以下特质:1)分形有无限精细的结构,即有任意小比例的细节;2)分形从传统的几何观点看如此不规则,以至于难以用传统的几何语言来描述;3)分形有统计的或近似的自相似的形式;4)分形的维数(可以有多种定义)大于其拓扑维数;5)分形可以由简单的方法定义,例如迭代。
1.2 来源fractal一词源于拉丁文形容词fractus,对应的拉丁文动词是frangere(“破碎”、“产生无规碎片”)。
此外,与英文的fraction(“碎片”、“分数”)及fragment(“碎片”)具有相同的词根。
在70年代中期以前,曼德勃罗一直使用英文fractional一词来表示他的分形思想。
因此,取拉丁词之头,撷英文之尾的fractal,本意是不规则的、破碎的、分数的。
曼德勃罗是想用此词来描述自然界中传统欧几里德几何学所不能描述的一大类复杂无规的几何对象。
例如,弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花僚乱的满天繁星等。
它们的特点是,极不规则或极不光滑。
直观而粗略地说,这些对象都是分形。
1.3分形的种类逃逸时间系统:复迭代的收敛限界。
例如:Mandelbrot集合、Julia集合、BurningShip分形迭代函数系统:这些形状一般可以用简单的几何“替换”来实现。
例如:康托集合、Koch雪花、谢尔宾斯基三角形、Peano曲线等等。
吸引子:点在迭代的作用下得到的结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分形微积分算子的定义及其应用
现代计算科学主要是建立在微积分方程概念和建模方法基础上的,特别是连续介质力学问题的描述离不开微积分方程建模方法,但对于复杂分形结构材料和系统,经典的微积分方程方法面临着巨大的困难.一般的应用策略是直接拓广经典连续介质力学模型,运用非线性项描述分形介质中的复杂力学行为,因此模型中往往含有多个经验参数,且部分人为参数缺乏物理意义.
近年来,分数阶微积分方程建模方法引起广泛关注,成为描述复杂物理力学问题的一个有竞争力的建模方法.由于分数阶模型仍然是线性的,能够较好地刻画系统的历史和路径依赖特征,应用在某些问题上比非线性方法有一定的优越性.但是,分数阶微积分和分形几何的数学联系至今还不是很清楚,已有的研究多是定性讨论.
分形几何方法在描述复杂系统的几何特征、统计行为、数据结果的幂律特征等方面取得很多有意义的成果,但其对应的微积分建模方法至今没有完整地建立起来.这极大地限制分形方法在科学和工程问题中的应
用.CHEN等首次定义分形维α上分形导数的概念为dg(t)dtα=limt′→tg (t)-g(t′)tα-(t′)α(1)式中:g(t)为所考察的物理量;t为自变量;α为任意实数分形维.
此后,分形导数建模在反常扩散等问题上取得一些有意义的结果.分形导数是局部导数,不同于全域定义的分数阶微积分,因而计算量和内存需求大大减少,但分形导数微分方程的应用目前很不成熟,在多维问题中
的应用还很少.
针对多维分形空间问题,本文进一步发展分形导数的概念,定义分形维上的微积分算子.这项研究的关键创新点是拓广经典微分算子的基本解,提出分形维上微分算子基本解的概念.运用陈文等提出的隐式微积分建模方法,根据分形维上的基本解“隐式”地定义分形微积分算子.分形微积分算子可以方便地数值计算和使用,但不一定具有显式表达式或其显示表达式难以得到.
本文以分形维上的拉普拉斯算子为例,详细介绍分形微积分算子的概念和具体应用,主要数值求解技术是奇异边界法.该方法以距离为基本变量,不依赖于问题的维数,本质上是格无数值积分方法,编程容易,能够计算高维复杂几何形状问题.
首先,引入分形维上微分算子基本解的概念.以拉普拉斯算子为例,比较分形和分数阶导数2种拉普拉斯算子基本解的区别与联系;然后,采用隐式微积分方程建模方法定义分形微积分算子,并给出分形维上拉普拉斯算子、亥姆霍兹算子、修正亥姆霍兹算子、扩散算子的定义;再次,以分形拉普拉斯算子方程为例,采用奇异边界法数值模拟二维和三维分形拉普拉斯算子方程,并对数值结果进行讨论和分析;最后,总结分形微积分算子的特点和建模方法的优势,以及若干有待深入研究解决的问题.
1分形维上微分算子的基本解
为不失一般性,以整数维上的整数阶拉普拉斯方程为例,其数学形式为Δu(x)=0,x∈Rn(2)式中:Δ为Rn上的拉普拉斯算子;n为整数阶空间维数(二维n=2得到的是平凡基本解);u为待求势函数.相应的基
本解为u*n(r)=1(n-2)Sn(1)r2-n(3)式中:Sn(1)=2πn/2/Γ(n/2);r=||xξ||为点x和ξ的欧氏距离.近年来引起广泛关注的分数阶拉普拉斯算子(-Δ)s/2能够表征物理力学系统的空间非局部性.采用隐式微积分建模方法,从其Riesz分数阶势出发,直接构造出分数阶拉普拉斯算子的基本解为u*s(r)=1(d-s)Sd(1)rs-d(4)式中:s为分数阶数是0~2范围内的任意实数.经典整数阶拉普拉斯算子是一个特例,即s=2;这里s表征材料的非局部性,刻画幂律特征.
推广式(3)和(4)得到整数阶拉普拉斯算子在分形维d上的基本解为u*d(r)=1(d-2)Sd(1)r2-d(5)这里d可以是任意实数.
以三维空间问题为例,比较讨论分形维上的拉普拉斯基本解与分数阶拉普拉斯算子基本解的区别和联系.大部分三维空间问题的分形维在(2,3]范围内,相应的分形维拉普拉斯算子的距离变量指数(2-d)在[-1,0)范围内;分数阶拉普拉斯算子基本解的距离变量指数(s-3)在(-3,-1]范围内.由此可见,分形和分数阶拉普拉斯算子有各自不同的适用对象和范围,经典的整数阶拉普拉斯算子基本解1/r是两者的极端特例.
2分形微分算子的定义
根据隐式微积分建模方法,可以用基本解定义微分方程模型,不需要微分方程的显式表达式.基于此,本节运用分形维上的算子基本解,定义分形维上的4类典型微分算子方程.
拉普拉斯方程Δdu(x)=0,x∈Ω(6)亥姆霍兹方程(Δ+k2)du (x)=0,x∈Ω(7)修正亥姆霍兹方程(Δ-k2)du(x)=0,x∈Ω(8)扩散方程αΔdu(x)=u(x)t,x∈Ω,t≥0(9)式(6)~(9)
中:下标d为分形维值为d的微分算子,以区别于经典的整数阶和分数阶微分算子.推广相应整数阶基本解,分形维上亥姆霍兹、修正亥姆霍兹以及扩散算子的基本解定义为u*d(r)=12π-ik2πr(d/2)-1K(d/2)-1(-ikr)(10)
u*d(r)=12πk2πr(d/2)-1K(d/2)-1(kr)(11)
u*d(r)=H(t)(4παt)d/2e-r2/4αt(12)式中:K(d/2)-1为第二类修正贝塞尔函数;H(t)为赫维赛德阶跃函数;t=|t2-t1|为时刻到时刻的时间间隔;α为扩散系数;d为分形维数.分形维上的拉普拉斯算子基本解见式(5).
3分形拉普拉斯势问题的数值模拟
拉普拉斯算子是最重要的椭圆型算子,在物理和力学中有着广泛而重要的应用.本节以拉普拉斯方程为例,数值考察分形维微分算子方程的行为特征.
奇异边界法是一种边界型径向基函数配点法,以基本解作为插值基函数,能够无网格、无数值积分求解高维复杂几何域问题,不需要微分方程的具体表达式.本节基于分形维上拉普拉斯算子的基本解,采用奇异边界法求解分形维拉普拉斯控制方程和相应边界条件的稳态热传导问题.
首先,考虑一个二维正方形域分形介质中的稳态热传导问题,其边界条件见图1:左右边界绝热,热流量q=0,上边界温度u=0 °C,下边界温度u=10 °C.为考察温度变化与分形维数之间的关系,不同分形维数d情况下沿直线x=1.0温度值变化的数值计算结果见图2.由此可见:二维整数维情况下,温度的变化呈线性减小;相比较而言,分形维时温度变化呈指数
趋势减小,且维数越小温度变化越剧烈.一般情况下,在不知道分形维上拉普拉斯方程的精确解时,可以通过指定与整数维方程相同的边界条件,考察分形维方程的数值解是否逼近于整数维方程的精确解.在本算例中,考察d趋于2时,方程的解是否逼近d=2整数阶拉普拉斯方程的解.从图2中可以看到,当维数d趋近于2时,分形维拉普拉斯方程的解确实单调趋近于整数维2的解.
Fig.4Variation of temperature u on line {(x,y,z)| x=1,
y=1,0≤z≤2}against fractal dimension d由图4可以看出:在完全相同边界条件下维数d趋近于3时,分形维拉普拉斯方程的解单调趋近于整数维为3的解;另外,三维整数维情形下温度的变化呈线性减小,而当材料具有分形特征时,温度变化在底部附近比整数维的变化缓慢,中间部分比整数维的变化剧烈,接近上顶部时温度的减小趋势又变缓.
4结束语
引入分形微积分算子是分形导数概念的进一步发展,可推广连续介质力学微积分建模方法的使用范围,克服现有分形方法局限于几何描述和数据拟合的瓶颈问题,拓广分形方法的应用范围和深度.
本文提出分形维上基本解的概念,基于隐式微积分建模方法,定义分形维上的微积分算子,微分控制方程表达式本身不再是必要的环节和对象.数学、力学建模和数值建模自然成为一体,极大地简化工程仿真的难度.
从数学上看,分形维上微分算子基本解表达式中的维数d甚至可以是复数或负数,但相关的物理力学意义并不清楚.此外,目前也有多种分形
的测量方法和定义,具体到某个应用选择何种定义需要研究.本文提出的分形维微积分算子方法是唯象建模技术,还缺少扎实的数理基础;该方法的适用范围和有效性还有待在科学工程问题中充分验证.
说明:陈文提出本文的基本数学方法和整体研究思路;王发杰负责编程和数值结果整理;杨旭负责收集分形材料的有关数据.。