微分算子法典型例题讲解
微分算子法

高阶常微分方程的微分算子法撰写摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。
但是有一个例外:常系数线性微分方程。
我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐次方程的特解。
本节主要讨论微分算子法。
1.求方程230y y y ''''''--=的通解. 解 记()n n yD y =,将方程写成32230D y D y Dy --=或32(23)0D D D y --=我们熟知,其实首先要解特征方程32230D D D --=得0,1,3D =-故知方程有三特解31,,x xe e -,由于此三特解为线性无关,故立得通解3123x xy C C e C e -=++注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是1111()()()()()n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=L 其中系数1(),,()n a x a x L 是某区间(,)a b 上的连续函数,上述方程又可写成11()(()())n n n L y D a x D a x y -≡+++L()f x =可以把上面括号整体看作一种运算,常称为线性微分算子。
本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。
2.求解 61160y y y y ''''''-+-=解 写成 32(6116)0D D D y -+-=从特征方程3206116D D D =-+-(1)(2)(3)D D D =---解得 1,2,3D =共三实根,故可立即写成特解23123x x xy C e C e C e =++3.求解 39130y y y y ''''''-++=解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根1,23D i =-±,故对应的特解是x e -,2cos3xe x ,2sin 3x e x 从而通解是22123cos3sin 3x x xy C e C e x C e x -=++4.求(4)45440yy y y y ''''''-+-+=之通解.解 写成432(4544)0D D D D y -+-+=或 22(2)(1)0D D y -+=特征根是2,2,D i =±,对应的特解应是22,,cos ,sin x x e xe x x ,故写成通解21234()()cos sin x y x e C C x C x C x =+++5.求1(cos )y y x -''+=的通解解 本题为非齐次方程,先求出对应的齐次方程0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+设原方程有特解形为*12()cos ()sin y C x x C x x =+其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组12112()cos ()sin 0()(cos )()(sin )(cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''''+=⎪⎩或12112()cos ()sin 0()sin ()cos (cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''-+=⎪⎩(方程组右端为原方程非齐次项1(cos )x -),解得1sin ()cos xC x x'=-,2()1C x '=或 1()ln cos C x x =,2()C x x =最后得通解为1*()()()y x y x y x =+12cos sin cos ln cos sin C x C x x x x x=+++ 注 对常系数方程,在应用上,不常运用常数变异法,对于特殊非齐次项的常系数方程,下文将提供更简捷的办法。
微分方程的算子算法【精选】

(1) P(D)( f1( x) f2 ( x)) P(D) f1(x) P(D) f2 (x)
(2) [P1(D) p2 (D)] f ( x) P1(D) f ( x) p2 (D) f ( x)
(3) P(D) P1(D)P2 (D),则
P(D) f (x) P1(D)[P2 (D) f (x)] P2 (D)[P1(D) f (x)]
10
常系数线性微分方程的算子解法
1
9.算子 P ( D)的基本性质及运算法则
(1)
1 (
P(D)
f1( x)
f2 ( x))
1 P(D)
f1( x)
1 P(D)
f2 ( x)
(2) P(D) P1(D)P2 (D),则
1 f ( x) 1 [ 1 f ( x)] 1 [ 1 f ( x)]
, D2
d2 dx 2
,L
, Dn
DDn1
dn dx n
P(D) Dn p1Dn1
P(D) y 0
3
常系数线性微分方程的算子解法
2.解的结构
线性算子 P(D)( y1 y2 ) P(D) y1 P(D) y2 定理1 方程(1)的通解为:y y(x) y *(x) ,其中y(x)
cos x
cos x P(2 )
(P(2 )
0)
12
常系数线性微分方程的算子解法
1
10.算子 P ( D) 的运算公式
(4)
1 [exv( x)] ex 1 v( x)
P(D)
P( D)
(5) 设fk ( x) b0 b1x L bk xk , P(0) pn 0,则
微分算子法例题

微分算子法例题
微分算子法是微积分中的一种常用方法,用于求解微分方程和函数的导数。
以下是一个微分算子法的例题:
例题:使用微分算子法求解微分方程 y'' - y = 0。
解答:
首先,我们定义微分算子 D 为导数运算,即 D(y) = y',D^2(y) = y''。
将微分方程 y'' - y = 0 重写为 D^2(y) - y = 0。
现在我们假设 y 的形式为 y = e^(rx),其中 r 是待定系数。
对 y 进行两次导数得到:
D^2(y) = D^2(e^(rx)) = r^2e^(rx)。
将 D^2(y) 和 y 代入初始微分方程,得到:
r^2e^(rx) - e^(rx) = 0。
将 e^(rx) 提取出来,得到:
e^(rx) * (r^2 - 1) = 0。
根据零乘法则,得到两个解:
e^(rx) = 0 或者 r^2 - 1 = 0。
可以发现,e^(rx) = 0 没有实数解,所以我们只关注第二个解:
r^2 - 1 = 0。
解这个二次方程,得到两个解:
r = 1 或者 r = -1。
根据假设的 y 的形式,我们可以得到两个特解:
y1 = e^x,y2 = e^(-x)。
由于微分方程是线性的,所以通解可以通过特解的线性组合得到:
y = C1 * e^x + C2 * e^(-x),
其中 C1 和 C2 是任意常数。
这就是微分算子法求解微分方程 y'' - y = 0 的过程和结果。
微分方程算子法总结

=(1-D )(x2-x+2)=x2-x
5
dy d2y 2 -x +2y=x 例 9、 2 +2 dx dx
e ,则(D +2D+2)y=x2e-x
2
特解 y
*
= ( D + 1) 2 + 1 x2e
-x
1
-x
=e-x ( D -1 + 1)
(1-D )x
2
1
2
2 x +1 2
=e D 2 1 x2=e +
2 2
e2x D1
2
x
2
=
1 4 2x x 12
e
(性质二)
x
-3 ddxy +3 dy dx
*
y=e ,则(D3-3D2+3D-1)y=e
x x
x
特解 y
= 3 3 e =e (D -1 ) (D +1-1 )
x
1
1
•
1
=e D 3
d3y 例 5、 3 dx
1 •
1=
3
1 3 x x (性质二) 6
2
1 1 sin(ax)= sin(ax) F(-a 2 ) F(D 2 )
1 1 cos(ax) 2 cos(ax)= F(-a 2 ) F(D )
若 F(-a )= 0 , 则按 i.进行求解, 或者设-a 为 F(-a )
2 2 2
的 m 重根,则
1 1 m sin(ax)=x sin(ax) F(m) (D2 ) F(D 2 )
1
ix e = -1
4
1 d2y * 2 例 6、 2 +y=cosx ,则(D +1)y=cosx ,特解 y = 2 cosx D +1 dx
关于非齐次线性常系数微分方程特解的微分子解法的若干示例

关于非齐次线性常系数微分方程特解的微分算子解法的若干示例一、表示符号把某函数对于自变量x 的导数写成D ,即D=dxd 。
例如,函数y 对x 的一阶导数为y dxdy '=,可以表示成Dy ,同理,y ''可以写成2D y ,三阶、四阶….以此类推D1则代表着求积分,如D1x ,就是⎰xdx ,参看复习指导二、 微分方程的表示如果非齐次方程按降阶写成:)x (f y a y a ya y a n 1n )1n (1)n (0=+'+++-- (1)当然,你也可以写成:)x (f y p y p y p y n 1n )1n (1)n (=+'+++-- ,本质都一样,这种形式相当于(1)方程两边同时除以a 0(0≠)。
这里我们以(1)式为准。
用微分子形式表示方程(1):)x (f y a Dy a y D a y D a n 1n 1n 1n 0=++++-- 方程左边把公因子y 提出来:f(x))y a D a D a D (a n 1n 1n 1n 0=++++--上式中,把)a D a Da D (a n 1n 1n 1n0++++-- 看作关于D 的一个函数表达式,表示成F (D )即F (D )=)a D a Da D (a n 1n 1n 1n 0++++--则方程(1)最终可以写成:F (D )y=f (x )三、 相关结论 F (D )kxe=kxe·F (k )甲也可以写成:)F(k ee )D (F 1kxkx=,(分母不为零时),若分母为零,参见指导书表格内的公式证明:F (D )kxe =kxn 1n 1n 1n0)ea D a Da D (a ++++--=)(ea )(ea )(ea )(ea kxn kx1n )1n (kx1)n (kx0+'+++--=kxn kx1n kx1-n 1kxn 0ea kea eka e k a ++++-kxn 1n 1-n 1n0-kx=F (k )kxe甲注意此处方程左右两端的写法,表达的意义是不一样的,左边F (D )是求导,具体来说左边是kxn 1n 1n 1n0)ea D a D a D (a ++++-- ,即)(ea )(e a )(ea )(ea kxn kx1n )1n (kx1)n (kx0+'+++-- ,而方程右边则是)(ekx乘于多项式F (k )其中,左边的带下划线的部分的函数形式与F (D )一样,因此写成F (k )形式,只是字母 是常数k ,而不是求导了,意义也就不同了,它只是个关于k 的多项式了。
微分方程的求解方法应用与实例

微分方程的求解方法应用与实例微分方程是数学中的重要分支之一,广泛应用于各个领域,如物理、工程、经济等。
解微分方程是研究微分方程的核心问题之一,掌握微分方程的求解方法对于解决实际问题至关重要。
本文将介绍微分方程的求解方法,并结合实例进行详细说明。
一、初等解法初等解法是解微分方程最常用的方法之一,主要包括分离变量法、参数法、齐次法和常系数线性齐次微分方程方法等。
分离变量法适用于可分离变量的微分方程。
通过将方程中的变量分离并进行分别积分的方式,最终得到微分方程的解。
参数法适用于可以利用某些特定的参数化代换将微分方程化简的情况。
通过给定参数化代换,将原微分方程转化为更简单的形式,并求解得到解。
齐次法适用于齐次线性微分方程。
通过将微分方程中的变量进行替换,使之变为齐次线性微分方程,并通过相应的解法求解得到原微分方程的解。
常系数线性齐次微分方程方法适用于常系数线性齐次微分方程。
通过特征方程的求解,找到微分方程的通解。
二、变量分离法变量分离法是解微分方程常用的方法之一,适用于将微分方程中的未知函数和自变量分离的情况。
以一阶可分离变量的形式为例,设微分方程为dy/dx=f(x)g(y),其中f(x)和g(y)是关于x和y的函数。
首先将方程两边同时乘以dx和1/g(y),得到dy/g(y)=f(x)dx。
之后对方程两边同时积分,得到∫dy/g(y)=∫f(x)dx。
最后将等式两边积分得到微分方程的解。
三、常微分方程的解法常微分方程是微分方程中的一种重要类型,是指微分方程中未知函数与变量的最高导数只有一阶,没有更高阶的情况。
常微分方程的解法多种多样,如一阶常微分方程、二阶常微分方程等。
以一阶常微分方程为例,设方程为dy/dx=f(x,y),其中f(x,y)是已知函数。
可以通过变量分离、齐次、恰当微分方程以及一些特殊的解法等方法求解常微分方程。
四、实例分析下面通过一个实例来详细说明微分方程的求解方法。
假设有一辆汽车的速度满足以下条件:在0时刻,汽车的初速度为10m/s,经过1小时,汽车的速度下降到5m/s。
微分方程例题选解

微分方程例题选解1. 求解微分方程3ln (ln )0,|2x e x xdy y x dx y =+-==。
解:原方程化为x y x x dx dy 1ln 1=+, 通解为 ⎰+⎰⎰=-]1[ln 1ln 1C dx e xe y dx x x dx x x⎰+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11ln ln 2y x x =+。
2. 求解微分方程22'0x y xy y -+=。
解:令ux y =,u x u y '+=',原方程化为 2u u u x u -='+,分离变量得 dx x udu 12=-, 积分得C x u+=ln 1, 原方程的通解为 ln xy x C=+。
3. 求解微分方程dy y y x dx xy x )()(3223+=-。
解:此题为全微分方程。
下面利用“凑微分”的方法求解。
原方程化为 03223=---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3223---42222441)(2141dy dy x dx y dx -+-=)2(414224y y x x d --=, 得 0)2(4224=--y y x x d ,原方程的通解为 C y y x x =--42242。
注:此题也为齐次方程。
4. 求解微分方程2''1(')y y =+。
解:设y p '=,则dx dp y ='',原方程化为21p dxdp+=, 分离变量得dx p dp=+21,积分得 1arctan C x p +=,于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。
5. 求解微分方程''2'20y y y -+=。
微积分习题讲解与答案

习题8.11.指出下列微分方程的阶数,并指出哪些方程是线性微分方程: (1)02)(2=+'-'xy y y y x (2) 02=+'-y y x y x (3)0)(sin 42=+''+'''y x y y x (4)θθ2sin d d =+p p解 (1) 1阶 非线性 (2) 1阶 线性 (3) 3阶 线性 (4) 1阶 线性2.验证下列函数是否是所给微分方程的解 (1) xxy x y y x sin ,cos ==+' (2) 2212,2)1(x C y x xy y x -+==+'- (C 为任意常数) (3) xCe y y y y ==+'-'',02 (C 为任意常数) (4) x xe C eC y y y y 21212121,0)(λλλλλλ+==+'+-'' (C 1 ,C 2为任意常数)(5) C y xy x y x y y x =+--='-22,2)2( (C 为任意常数) (6) )ln(,02)(2xy y y y y y x y x xy =='-'+'+''- 解 (1) 是,左=x x xx x x x xcos sin sin cos 2=+-=右(2) 是,左=x x C x x Cx x 2)12(1)1(222=-++---=右(3) 是,左=02=+-xxxCe Ce Ce =右 (4) 是,左=0)())(()(2121212121221121222211=++++-+x x x x x xe C e C e C e C eC e C λλλλλλλλλλλλλλ =右(5) 是,左==-=---y x yx yx y x 222)2(右(6) 是,左=x xy yx xy y y x xy y x x xy xy xy xy x xy ---+-+----2)()(22)(22332=0)())(2()()(222222232=---+-+---x xy x xy y y x xy xy x xy xy xy xy = 右3.求下列微分方程的解(1) 2d d =x y; (2) x xy cos d d 22=;(3) 0d )1(d )1(=--+y y x y (4) yx x y y )1()1(22++=' 解 (1) C x y x y +==⎰⎰2,d 2d (2) 1sin ,d cos d C x y x x x y +='=''⎰⎰211cos ,d )(sin d Cx C x y x C x x y ++-=+='⎰⎰(3)⎰⎰=+-x y y y d d 11 ⎰⎰=+++-x y y y d d 12)1(解得 ⎰⎰⎰=++-x y y y d d 12d即 C x y y +=++-|1|ln 2(4)⎰⎰+=+dx x xdy y y )1(122解得 2122)1ln()1ln(C x y ++=+整理得 22211C xy =++ 4.已知曲线)(x f y =经过原点,并且它在点),(y x 处的切线的斜率等于22x ,试求这条曲线的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高阶常微分方程的微分算子法1(n a x -+,()n a x 是某区间(,)a b 上的连续函数,上述方程又可写成1()())n a x Da x y ++)x可以把上面括号整体看作一种运算,常称为线性微分()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。
0y =3.求解 39130y y y y ''''''-++=解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根1,23D i =-±,故对应的特解是x e -,2cos3xe x ,2sin 3x e x 从而通解是22123cos3sin 3x x xy C e C e x C e x -=++4.求(4)45440yy y y y ''''''-+-+=之通解.解 写成432(4544)0D D D D y -+-+= 或 22(2)(1)0D D y -+=特征根是2,2,D i =±,对应的特解应是22,,cos ,sin x x e xe x x ,故写成通解21234()()cos sin x y x e C C x C x C x =+++5.求1(cos )y y x -''+=的通解解 本题为非齐次方程,先求出对应的齐次方程0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+设原方程有特解形为*12()cos ()sin y C x x C x x =+其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组12112()cos ()sin 0()(cos )()(sin )(cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''''+=⎪⎩或12112()cos ()sin 0()sin ()cos (cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''-+=⎪⎩(方程组右端为原方程非齐次项1(cos )x -),解得1sin ()cos xC x x'=-,2()1C x '=或 1()ln cos C x x =,2()C x x =最后得通解为1*()()()y x y x y x =+12cos sin cos ln cos sin C x C x x x x x=+++ 注 对常系数方程,在应用上,不常运用常数变异法,对于特殊非齐次项的常系数方程,下文将提供更简捷的办法。
6.求解下列方程 (1)(4)24250yy y y y ''''''++--=(2)4850y y y '''-+=解 (1)12x xy C e C e -=+34(cos 2sin 2)xe C x C x -++(2)12(cossin )22xx x y e C C =+ 7.求解下列cauchy 问题(1)330;y y y y ''''''-+-=(0)1,(0)2,(0)3y y y '''===(2)0;(0)1,(0)0,(0)1y y y y y ''''''''+====解 (1) (1)xy e x =+(2) xy x e -=+8.求解非齐次方程21(0)y y y x x x'''++=≠ 解 本题不是常系数方程,为求通解需先知道齐次方程20y y y x'''++=的两个线性无关的特解。
现设用观察法得到两个特解 12sin cos ,x xy y x x== 令12sin cos ()()()x xy x C x C x x x=+ 考虑方程组1212sin cos ()()0sin cos 1()()()()x x C x C x x xx x C x C x x x x ⎧''+=⎪⎪⎨⎪''''+=⎪⎩最后解得1()sin C x x =,2()cos C x x = 故原方程的通解为 12sin cos 1()x x y x C C x x x=++ 注 我们说过,高阶方程中最重要、研究得最彻底的是线性方程,因此我们就从它开始。
因为有了常数变易法,所以重点似乎应放在齐次方程的求解,但是,齐次常系数线性方程的求解来的太容易(只需要解代数方程),这就构成了这一单元的特点:我们着力于求解具有特殊右端(物理学中称此种项为强迫项)的任意高阶非齐次常系数线性方程。
这样做既是为了避免使用繁复的常数变易法,也是为了让解题者掌握一种最实用的技巧——微分算子法9.求解256y y y x '''++=解 写成 2(2)(3)D D y x ++=故对应齐次方程(2)(3)0D D y ++=的通解为23112()x xy x C e C e --=+今用下法求原方程的一个特解*()y x ,显然*()y x 满足*2(2)(3)D D y x ++=今用下法求出*()y x*21()(2)(3)y x x D D =++222222222222222222222211()23112311112311231(1)2241(1)31(1)2241(1)3111(()())224111(()())33911122()()223391561x D D x x D D x x D DD D x D D x D D x D D xx x x x x x x x x x x =-++=-++=-++=-+---+-=-+--+'''=-+'''--+=-+--+=- 39 39 198108x +通解为*123212()()()1519618108xxy x y x y x C eC ex x --=+=++-+注 本题所用的方法即微分算子法,此法核心内容是1恢复其运算功能。
至此,积分微分方程问题已变为求导问题。
上述方法有其严密的理论根据,但本法早在年代已在工程师中间广为流传,年代初才完成。
1n a D -++,)n 为常数次导数的函数()g x ,得到唯一的函数()f x =())()f x g x = (())g x f =m a +,则11))m nL L =111)()k D D ρλλ--是方程()0n L y =的特解,则有())(())n x L g x f ==1()x 直接从定义推出;(4)从(3)以及定义推出()0k ≠+1n a λ-++()kx kx f x e =())kx kxm e f x e =为偶次多项式,F 1sin ()kx kx F ik =也有类似公式特别,对一般的()n L D ,当1)()1)(1()n n kxD D e F k ρρ---= )()kxe g x ρ()())()()()kx kx g x e g x e Dg x k g x D k ρρρ'+-+-+-,代入上式得2)()D k -故一般公式由上式逐步推出 还有另一性质,我们述而不论:11())m n nmm m x b a D a b b -+++++++++ 0=时,此时宜用cos sin kx i +以上两题旨在建立我们算子法的理论基础由于我们仍然不能做到完全严格,所以对于只求解题技巧来说,可以不必追求细节。
求下面方程的特解111()g x =,则2()1D g x =,即可知212x =故最后可得22()xy x x =也可以直接安照文登考研书的解法即 222222221()24412(2)122xx x xy x e D D e D x e x e =-+=-== 14.解xy y e ''-=解 2111()1(1)(1)x x y x e e D D D ==--+ 1111112122x x x e e xe D D ===-得通解为 121()2xx x y x xe C e C e -=++ 15.求下面方程特解2552y y x x '''-=-+解 221()(52)5y x x x D D =-+- 2222222311(52)5111()(52)51511()[1()](52)555111()[52(102)551(10)]2511()[5]5113x x D D x x DD D Dx x D x x x D x D x x D =-+-=--+-=-++-+=--++-++-=--== 16.求26535x y y y e x '''-+=-+ 解 显然12()()()y x y x y x =+其中121()(3)65x y x e D D =--+1(3)(1)(5)x e D D --- 221()(5)(1)(5)y x x D D =-- 今有如不懂,可参看我在豆丁上陈文登考研数学一里面的微分算子法的推导》11111()(3)(3)15115x xy x e e D D D =-=-----3131314144x x x e e xe D D ===- 22111()()(5)415y x x D D =-+--222221111()(5)415111(1(1))(5)455256212255x D D D D D D x x x =---=++--+=++ 最后得236212()4255x y x xe x x =+++ 17.求6cos23sin 2y y x x ''+=+的特解 解 12()()()y x y x y x =+2222116cos 23sin 211116cos 23sin 2(2)1(2)12cos 2sin 2x x D D x x i i x x=+++=+++=-- 18.求下面方程的特解13sin 2y y y x '''++=- 解21()(13sin 2)1y x x D D =-++ 22224224221[()1]()11(13)sin 211[1](13)sin 211(13)(1)sin 2(2)(2)1(1)sin 23sin 22cos 2D D D D xD D D D x D D D D x i i D D x x x=--+--+⨯-++=-+-++=--+++=--+=+ 19.求下面方程的特解44cos 2y y y x '''++=解 2()[(2)]y x D =-+2211cos (2)(2)x D D -++2221(2)cos 2(4)D x D =-- 2111]1()11111]21]2]ix ix ix e D i e D i D e x D ix -----+---- 虚部,今1ix e x x (1)1cos )2i x x x xe -=+ )x= 表示复数z 故可写成(1)()Re()i x y x x += (1)(1)211(1)1i x i x e x e x D i ++=-++- 12(1)(21)x i D i ++-红色部分是怎么来的,可以豆丁网上传的《陈文登考研12(2)5xx i ++。