静态应力-应变测量实验指导
静态应变仪实验报告

静态应变仪实验报告静态应变仪实验报告引言:静态应变仪是一种常用的实验仪器,用于测量材料在受力或变形过程中的应变情况。
本实验旨在通过使用静态应变仪来测量不同材料的应变特性,并分析其应变-应力曲线。
实验步骤:1. 实验准备在进行实验之前,首先需要准备好实验所需的材料和仪器。
材料可以选择不同类型的金属或塑料,以便进行比较分析。
仪器包括静态应变仪、力传感器和数据采集系统等。
2. 样品制备根据实验要求,将材料样品切割成适当的尺寸和形状。
确保样品表面光滑,以减小误差。
3. 实验设置将样品夹持在静态应变仪上,并将力传感器与样品连接。
调整仪器使其处于合适的工作状态,并确保力传感器与样品之间没有松动或摩擦。
4. 施加力通过施加适当的力,使样品发生变形。
可以使用手动或自动控制力的大小和施加速度。
5. 数据采集使用数据采集系统记录下力传感器所测得的力和静态应变仪所测得的应变数据。
确保数据采集过程准确无误。
6. 数据分析将采集到的数据导入计算机软件进行分析。
绘制应变-应力曲线,通过曲线斜率计算材料的弹性模量和屈服强度等参数。
实验结果:根据实验数据分析,我们可以得出以下结论:1. 不同材料的应变特性存在差异。
金属材料通常具有较高的弹性模量和屈服强度,而塑料材料的弹性模量和屈服强度较低。
2. 弹性模量是衡量材料抗弯曲能力的重要指标。
弹性模量越高,材料的刚性越大,抗弯曲能力越强。
3. 屈服强度是材料在受力过程中发生塑性变形的临界点。
屈服强度越高,材料的抗拉能力越强。
4. 应变-应力曲线的形状可以反映材料的应变特性。
在弹性阶段,应变随应力的增加呈线性关系;在屈服点之后,应变会迅速增加,材料开始发生塑性变形。
结论:通过本次实验,我们深入了解了静态应变仪的使用方法和原理,并成功测量了不同材料的应变特性。
实验结果表明,静态应变仪是一种可靠且有效的实验仪器,可以用于材料力学性能的研究和分析。
通过进一步研究不同材料的应变特性,我们可以为工程设计和材料选择提供有力的支持和参考。
应力应变测量实验报告

应力应变测量实验报告实验名称:应力应变测量实验。
实验目的:1.熟悉应变计的使用方法和原理,了解应力应变测量的基本原理。
2.掌握金属材料的应力应变特性,以及不同材料的性能差异。
3.学会分析实验结果,提高实验数据的处理能力。
实验器材:1.应变计。
2.电子秤。
3.轴向夹持装置。
4.辅助器材:力计、千分尺、卷尺等。
实验原理:1.应变计的原理。
应变计是一种用于测量物体应变的传感器,是利用金属材料的电阻值随应变而发生变化的特性进行测量。
当材料发生应变时,应变计中导电性材料发生形变,从而改变应变计电阻值,这种变化可以通过内置电路进行测量,转换成应变数据。
2.应力应变特性的原理。
应力与应变之间为线性关系。
应力为物体受力情况下承受压力的大小;应变为受力物体在一定形变下所产生的伸长或缩短的程度。
当物体在一定的应力下发生变形时,它的应变就可以被测量到。
实验步骤:1.确定试样:从材料样品中选取原料,并对其进行加工,制作成标准试样。
2.安装应变计:将应变计安装在试样上,注意按照应变计说明书的规定进行固定、连接当前和测量其电阻值。
3.测量:将样品固定在轴向夹持装置上,并在应变计电路进行校准后进行测试。
期间应注意掌握试样的质量和任何可能会影响测试结果的因素。
4.计算与处理:将测试结果转化成应力应变曲线,并进行分析,根据公式计算出试验数据并总结分析。
实验结果与分析:样品材料:钢。
试样直径:5mm。
试样长度:20mm。
应变计响应系数:2.1。
电压:1V。
测试结果:荷重(N)应变(微米/毫米)。
00。
1004。
2008。
30012。
40016。
50020。
根据实验结果计算得出钢的应力应变曲线如下:应力(MPa)应变。
00。
204。
408。
6012。
8016。
10020。
通过实验数据可以看出,钢材的应力应变特性在一定载荷下逐渐确认出来,且具有较好的线性关系,即应力与应变成正比。
由于不同材料的应力应变关系存在差异,通过本次实验可以更加深入的研究材料特性,进一步了解各种材料的物理特征与性能表现。
4-5静态应变测量

0 0
1 1 H
( L H B )
90
0
1 1 H
( B H L )
0 L
0
1 H 0 H 90 0) ( 0 2 1 H
90
0
1 H 0 H 0 0 ) B ( 90 2 1 H
直角应变花计算主应变的修正公式
(1)预定粘贴方位与主方向的夹角 越大,则角偏差造成的误差亦越大
所以在贴片时应尽量使应变片的粘贴方位与主方向重合。 对于主方向大致知道的情况,一般用三片 450 应变花,让 00 和 900
的两个应变片尽量与主方向重合。
对于主方向未知的情况,一般用三片 600 应变花,因这种应变花的 三个应变片等角排列,各片与主方向的最大可能的夹角为 300。 (2)角偏差 越大,应变测量的误差也越大。
T
N M
(3)弯矩M引起圆轴沿轴线方向的最大线应变
1、考虑扭矩T单独作用的效果,消除掉弯矩M和轴力N的影响 沿正负 450 方向各贴一片 ------ 半桥。 1 2
由轴力N引起的圆轴内任意一点的应力状态是单向应力状态。 由弯矩M引起的圆轴内任意一点的应力状态也是单向应力状态。
0 N
M
四、电阻应变片横向效应的修正
应变片横向效应对应变读数的影响 (1)对于单向应力状态的测点,即使应变片横向效应系数达5%, 所得的应变读数误差也不大于1%,一般不用修正。
(2)对于平面应力状态的测点,由于横向效应系数引起的应变读
数误差比较大,一般需要修正。 那么平面应力状态的测点对应变读数误差如何进行修正呢?
N A
0 M
My Iz
因为轴力N和弯矩M引起的圆轴内任意一点的应力状态是单向应力状态。
实验方法:应力与应变曲线的测定

真实应力-真实应变曲线的测定一、实验目的1、学会真实应力-真实应变曲线的实验测定和绘制2、加深对真实应力-真实应变曲线的物理意义的认识二、实验内容真实应力-真实应变曲线反映了试样随塑性变形程度增加而流动应力不断上升,因而它又称为硬化曲线。
主要与材料的化学成份、组织结构、变形温度、变形速度等因素有关。
现在我们把一些影响因素固定下来,既定室温条件下拉伸退火的中碳钢材料标准试样,由拉力传感器行程仪及有关仪器记录下拉力-行程曲线。
实测瞬间时载荷下试验的瞬间直径。
特别注意缩颈开始的载荷及形成,缩颈后断面瞬时直径的测量,然后计算真实应力-真实应变曲线。
σ真=f(ε)=B·εn三、试样器材及设备1、60吨万能材料试验机2、拉力传感器3、位移传感器4、Y6D-2动态应变仪5、X-Y函数记录仪6、游标卡尺、千分卡尺7、中碳钢试样四、推荐的原始数据记录表格五、实验报告内容除了通常的要求(目的,过程……)外,还要求以下内容:1、硬化曲线的绘制(1)从实测的P瞬、d瞬作出第一类硬化曲线(σ-ε)(2)由工程应力应变曲线换算出真实应力-真实应变曲线(3) 求出材料常数B 值和n 值,根据B 值作出真实应力-真实应变近似理论硬化曲线。
2、把真实应力-真实应变曲线与近似理论曲线比较,求出最大误差值。
3、实验体会六、实验预习思考题1、 什么是硬化曲线?硬化曲线有何用途?2、 真实应力-真实应变曲线和工程应力应变曲线的相互换算。
3、 怎样测定硬化曲线?测量中的主要误差是什么?怎样尽量减少误差?附:真实应力-真实应变曲线的计算机数据处理一、 目的初步掌握实验数据的线性回归方法,进一步熟悉计算机的操作和应用。
二、 内容一般材料的真实应力-真实应变都是呈指数型,即σ=B εn 。
如把方程的二边取对数:ln σ=lnB+nln ε,令 y =ln σ;a =lnB ;x =ln ε 则上式可写成y =a+bx成为一线性方程。
在真实应力-真实应变曲线试验过程中,一般可得到许多σ和ε的数据,经换算后,既有许多的y 和x 值,在众多的数值中如何合理的确定a 和b 值使大多数实验数据都在线上,这可用最小二乘法来处理。
第五章应力应变测试

应力、应变电测法原理
电阻的相对变化量由两方面因素决定: 1)对于金属材料,电阻的变化主要由金属丝几何尺寸的改变引起; 电阻丝灵敏度系数(dR/R)/ ε 为(1+2μ )。 2)对于半导体材料,其工作原理基于半导体的压阻效应,材料受力 后, 材料的电阻率发生变化。其灵敏度系数为(dR/R)/ ε 为λ E。
电阻应变片的特性及应用
绝缘电阻
应变片绝缘电阻是指已粘贴的应变片的引线与被测件之间的 电阻值Rm。通常要求Rm在50~100 MΩ以上。绝缘电阻过低, 会造成应变片与试件之间漏电,使应变片的指示应变产生误差。 Rm取决于粘结剂及基底材料的种类及固化工艺。在常温使用条 件下要采取必要的防潮措施,而在中温或高温条件下,要注意选 取电绝缘性能良好的粘结剂和基底材料。
电阻应变片的信号调理电路
半桥单臂电路
——半桥单臂
上式对另外三臂也适用。 分母中有微小电阻,存在一定非线性。
电阻应变片的信号调理电路
半桥双臂电路
当有对称应变点
可用
两片应变片
灵敏度提高一倍 线性度改善了,分母中无微小电阻。
电阻应变片的信号调理电路
全桥电路
图2-9为一应变片直流电桥,其中E=4V,
第五章应力应变测试
本章主要内容
应力、应变测试方法 应力、应变测试原理 电阻应变片的特性及应用 电阻应变片的信号调理电路 电阻应变仪
应力、应变测试方法
测量应力、应变的目的
为了研究机械结构、桥梁、建筑等某构件在工作状态下的受力 、变形情况,通过测试测得构件的拉、压应力、扭矩及弯矩,为结 构设计、应力校核或构件破坏的预测等提供可靠的测试数据。
采取的措施:为了减小应变片的机械滞后个测量结
果带来的误 差,可对新粘贴应变片的试件反复加
应力和应变的测量

17
18
X射线深层光刻技术制造的节圆直径1.4 mm、厚度0.2 mm的直齿轮
19
半导体应变片是用半导体材料制成的, 其工作 原理是基于半导体材料的压阻效应。
所谓压阻效应,是指半导体材料在某一轴向受 外力作用时, 其电阻率ρ发生变化的现象。
20
半导体应变片受轴向力作用时, 其电阻相对变化为
15
薄膜应变片是采用真空蒸发或真空沉淀等方法在薄的绝缘基片上形 成0.1μm以下的金属电阻薄膜的敏感栅, 最后再加上保护层。它的优点是 应变灵敏度系数大, 允许电流密度大, 工作范围广。
箔式应变片是利用光刻、腐蚀等工艺制成的一种很薄的金属箔栅, 其 厚度一般在0.003~0.01mm。其优点是散热条件好, 允许通过的电流较大, 可制成各种所需的形状, 便于批量生产。 (光刻技术)
系, 得到应力值σ
σ=E·ε
式中 : σ——试件的应力; ε——试件的应变; E——试件材料的弹性模量。
(3 - 9)
由此可知, 应力值σ正比于应变ε, 而试件应变ε正比于 电阻值的变化, 所以应力σ正比于电阻值的变化, 这就是利用 应变片测量应力的基本原理。
14
1.2 电阻应变片特性
一、 电阻应变片的种类
R (1 2)
R
(3-10)
式中Δρ/ρ为半导体应变片的电阻率相对变化量, 其值与半导体 敏感元件在轴向所受的应变力关系为
E
(3-11)
式中: π——半导体材料的压阻系数。
将式(3 - 11)代入式(3 - 10)中得
对金属材料电阻丝来说, 灵敏度系数表达式中(1+2μ)的值要比 ((Δρ/ρ)/ε)大得多, 而半导体材料的((Δρ/ρ)/ε)项的 值比(1+2μ)大得多。 大量实验证明, 在电阻丝拉伸极限内, 电阻的 相对变化与应变成正比, 即K为常数。
静态应变测量原理实验

静态应变测量原理实验
实验原理:静态应变测量是通过应变仪器对材料或结构体在外力作用下引起的微小形变进行测量的过程。
静态应变测量的原理基于材料或结构在外力作用下会发生形变,形变会导致测点上的应变发生变化,应变仪器可以通过测量这种变化来确定外力的大小。
静态应变测量通常使用光学、电阻、电容或压电等传感器来测量应变的变化。
具体实验过程中,可以采用电阻应变计来进行静态应变的测量。
电阻应变计是一种电阻元件,通过改变电阻值来测量材料或结构体的应变变化。
电阻应变计的工作原理是利用材料或结构体的应变导致电阻值的变化,通过测量电阻值的变化可以得到应变的大小。
电阻应变计通常由两个被连接成电桥的电阻片组成,当外力作用于材料或结构体时,引起电桥中的一个或多个电阻值发生变化,通过测量电桥的不平衡电压或电流的大小来确定应变的值。
在进行实验时,首先需要选择适当的电阻应变计,并根据需要测量的应变范围确定合适的电桥电源和测量仪器。
然后,将电阻应变计粘贴或固定在待测材料或结构体的表面,并进行校准以确保测量的准确性。
在施加外力后,通过测量电桥的输出信号来确定应变的大小。
实验中需要注意的是,应保持测量环境的稳定,并避免外界干扰因素对测量结果的影响。
另外,在使用电阻应变计进行测量时,需要注意电阻应变计的灵敏度和线性度等参数,以及对测量结果进行及时的校正和修正。
总之,通过静态应变测量原理的实验,可以准确地测量材料或结构体在外力作用下的应变变化,为工程领域的设计和研究提供重要的数据支持。
静态应力应变测量

2 = (ε 1 ε 2 ) sin(2 + ) sin
ε = ε ' ε =
ε1 ε 2
单向应力状态: 单向应力状态:
应变计沿主应力方向粘贴, 应变计沿主应力方向粘贴,=0,ε2=-ε1, 则ε1-ε2=(1+)ε1有:ε=(1+)ε1sin2 相对误差e 为: e=ε/ε1=(1+)sin2 =0.3 , ≤5° , e≤1%
1 RK 1 0.04 εK = = × = 167 ε K R 2 120
可见, 可见,这种接法对接 触电阻的变化是相当 敏感的. 敏感的.
全桥切换
均接在桥臂之外,输出与负载串接, Rk均接在桥臂之外,输出与负载串接,负载电阻很 所以可以忽略. 大,所以可以忽略.Rk2,Rk2, Rk4,Rk4串接在输 入端上,它与电桥的等效电阻相比,也很小,可忽略. 入端上,它与电桥的等效电阻相比,也很小,可忽略. 因此,全桥切换可避免接触电阻变化的影响. 因此,全桥切换可避免接触电阻变化的影响.
采用同一型号的导线 长度相同 并把他们捆扎在一起 采用同一型号的导线/长度相同 并把他们捆扎在一起, 采用同一型号的导线 长度相同,并把他们捆扎在一起 承受相同温度,起到温度补偿作用 起到温度补偿作用. 承受相同温度 起到温度补偿作用
七,多点测量和接触电阻
切换时, 一般转换开关的接触电阻为Rk=0.01~0.08 ,切换时,其 变化可达10~50%,这种随机变化的接触电阻对不同的 接桥方式.其影响程度是不同的. 接桥方式.其影响程度是不同的. 单臂切换 设RK=0.04 ,则由Rk造成的虚假应变为: 造成的虚假应变为:
当=45o时 有:
ε 45 = (ε1 ε 2 ) sin( + ) sin = (1 + ) sin 2 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验静态应力-应变测量
一、实验目的
1、掌握用电阻应变片组成测量电桥的方法;
2、掌握应变数据采集分析仪的使用方法;
3、验证电桥的和差特性及温度补偿作用;
4、验证测量应变值与理论计算值的一致性。
二、实验原理
1、计算机测试系统:被测信号通过传感器转为电信号(电压或电流信号),通过信号调节环节使输出大小与被测信号大小完全对应。
信号调节环节还设置不同的滤波频率,对干扰谐波进行过滤,使信号调理输出消除杂波影响。
经过调理环节的标准电压接入多路转换器,进入采样保持器及转换芯片进行数字化转换,转换后的数字信号在接口电路里锁存,再进入计算机,经过运算处理后显示、绘图或打印。
2、电桥的和差特性:电桥的输出电压与电阻(或应变)变化的符号有关。
即相邻臂电阻或应变变化,同号相减,异号相加;而相对臂则相反,同号相加,异号相减。
3、利用桥路的和差特性可以提高电桥灵敏度、补偿温度影响,从复杂应力状态中测取某一应力、消除非测量应力。
三、主要仪器及耗材
等强度梁实验台、WS-3811应变数据采集分析仪、计算机、砝码
四、实验内容和步骤
1.了解所采用的静动态应变数据采集仪的正确使用(见附录);
2.接线;(参照附录)
3.组桥方法和顺序,按图(3-1)所示的组桥方法和顺序组成各种测量电桥。
4.测量;
a) 平衡电桥;
b) 加载及卸载:把每一级加载及卸载后的读数值计入表中。
c) 根据(图3-1)的组桥方法和顺序分别加、卸载测量。
并将所测的应变值分别记入
表中,然后将各表(各种组桥方式)的数据进行比较。
五、实验报告要求
1.简叙实验方法,按表列出试验数据;
2.根据试验数据计算机械滞后及非线性。
3.计算在测量载荷下,梁的理论应变值并与实测值相比较。
4.根据试验记录和计算结果说明电桥加减特性。
5、写出实验结果,分析、讨论等部分;
6、说明温度对电阻应变值的影响,应如何消除该影响。
六、思考题
1、利用和差特性,在测量中所起到哪些作用?
2、在测量中为什么要进行温度补偿,进行温度补偿必须满足哪些条件? (附录)WS-3811应变数据采集仪:
WS-3811数字式应变数据采集仪采用最新数字技术,能直接把应变量转换为数字量,能通过网络接口(TCP/IP协议)把数据传输给计算机,克服了常规应变仪只能输出模拟量(还需要另配采集仪)的缺陷,便于试验室和野外测试工作,由于该应变仪采用了网络接口,可实现多台组网操作,方便扩展。
1、测量方式;计算机程控;
2、桥路形式:半桥(公共补偿片),半桥,全桥;
3、桥路电阻:120Ω、240Ω、350Ω、500Ω、1000Ω;
4、灵敏系数:1.00~9.99;
5、采样速率:1点/秒(脱机使用),10点/秒(联机使用);
6、稳定度:±3με/2h. 1με/℃;
7、程控应变量程: ±20000με;
8、线性度:0.1%FS;
9、平衡方式:(程控)自动平衡;
10、漂移:时间零点漂移:≤3me/4小时;
温度漂移:小于1me/℃(工作温度范围内);
11、工作环境:0~40℃;20~85%RH;
12、电源:AC220V/50Hz;DC5V 功率:3W;。