基于PID控制器的温度控制系统设计

合集下载

基于单片机的pid温度控制系统设计

基于单片机的pid温度控制系统设计

一、概述单片机PID温度控制系统是一种利用单片机对温度进行控制的智能系统。

在工业和日常生活中,温度控制是非常重要的,可以用来控制加热、冷却等过程。

PID控制器是一种利用比例、积分、微分三个调节参数来控制系统的控制器,它具有稳定性好、调节快等优点。

本文将介绍基于单片机的PID温度控制系统设计的相关原理、硬件设计、软件设计等内容。

二、基本原理1. PID控制器原理PID控制器是一种以比例、积分、微分三个控制参数为基础的控制系统。

比例项负责根据误差大小来控制输出;积分项用来修正系统长期稳态误差;微分项主要用来抑制系统的瞬时波动。

PID控制器将这三个项进行线性组合,通过调节比例、积分、微分这三个参数来实现对系统的控制。

2. 温度传感器原理温度传感器是将温度变化转化为电信号输出的器件。

常见的温度传感器有热电偶、热敏电阻、半导体温度传感器等。

在温度控制系统中,温度传感器负责将环境温度转化为电信号,以便控制系统进行监测和调节。

三、硬件设计1. 单片机选择单片机是整个温度控制系统的核心部件。

在设计单片机PID温度控制系统时,需要选择合适的单片机。

常见的单片机有STC89C52、AT89S52等,选型时需要考虑单片机的性能、价格、外设接口等因素。

2. 温度传感器接口设计温度传感器与单片机之间需要进行接口设计。

常见的温度传感器接口有模拟接口和数字接口两种。

模拟接口需要通过模数转换器将模拟信号转化为数字信号,而数字接口则可以直接将数字信号输入到单片机中。

3. 输出控制接口设计温度控制系统通常需要通过继电器、半导体元件等控制输出。

在硬件设计中,需要考虑输出接口的类型、电流、电压等参数,以及单片机与输出接口的连接方式。

四、软件设计1. PID算法实现在单片机中,需要通过程序实现PID控制算法。

常见的PID算法包括位置式PID和增量式PID。

在设计时需要考虑控制周期、控制精度等因素。

2. 温度采集和显示单片机需要通过程序对温度传感器进行数据采集,然后进行数据处理和显示。

基于PID的温度控制系统设计

基于PID的温度控制系统设计

基于PID的温度控制系统设计PID(比例-积分-微分)控制系统是一种常见的温度控制方法。

它通过测量实际温度和设定温度之间的差异,并相应调整加热器或冷却器的输出来控制温度。

在本文中,将介绍PID控制系统的基本原理、设计步骤和实施细节,以实现一个基于PID的温度控制系统。

一、基本原理PID控制系统是一种反馈控制系统,其核心思想是将实际温度值与设定温度值进行比较,并根据差异进行调整。

PID控制器由三个部分组成:比例控制器(P),积分控制器(I)和微分控制器(D)。

比例控制器(P):根据实际温度与设定温度之间的差异,产生一个与该差异成正比的输出量。

比例控制器的作用是与误差成正比,以减小温度偏差。

积分控制器(I):积分控制器是一个与误差积分成比例的系统。

它通过将误差累加起来来减小持续存在的静态误差。

积分控制器的作用是消除稳态误差,对于不稳定的温度系统非常有效。

微分控制器(D):微分控制器根据温度变化速率对输出进行调整。

它通过计算误差的变化率来预测未来的误差,并相应地调整控制器的输出。

微分控制器的作用是使温度系统更加稳定,减小温度变化速率。

二、设计步骤1.系统建模:根据实际温度控制系统的特点建立数学模型。

这可以通过使用控制理论或系统辨识技术来完成。

将得到的模型表示为一个差分方程,包含输入(控制输入)和输出(测量温度)。

2.参数调整:PID控制器有三个参数:比例增益(Kp)、积分时间(Ti)和微分时间(Td)。

通过试验和调整,找到最佳的参数组合,以使系统能够快速稳定地响应温度变化。

3.控制算法:根据系统模型和参数,计算控制器的输出。

控制器的输出应是一个与实际温度偏差有关的控制信号,通过改变加热器或冷却器的输入来调整温度。

4.硬件实施:将控制算法实施到硬件平台上。

这可以通过使用微控制器或其他可编程控制器来实现。

将传感器(用于测量实际温度)和执行器(用于控制加热器或冷却器)与控制器连接起来。

5.调试和测试:在实际应用中,进行系统调试和测试。

基于PID调节的锅炉温度串级控制系统设计

基于PID调节的锅炉温度串级控制系统设计
《 工业控制计算机) 2 0 1 6年第 2 9卷第 1 2期
6 9
基于 P I D调节的锅炉温度串级控制系统设计
De s i g n o f Bo i l e r T e mp e r a t u r e Ca s c a d e Co n t r o l Sy s t e m B a s e d o n PI D Co n t r o l
c u s e d t h e p a p e r a n a l y s e s t h e c h a r a c t e r i s t i c s o f t h e p r o c e s s . t h e s e l e c t e d b o i l e r t a n k t e mp e r a t u r e a s c o n t ol r 0 b i e t。 c t h e b o i l e r
K e y wo r d s : b o i l e r t e mp e r a t u r e . P I D a l g o r i t h m. c a s c a d e c o n t r o l s y s t e m, t h e d e p u y t o b j e c t s
李红梅
( 雅化集 团攀枝花恒泰4 b - T - 有限公 司, 四川 攀枝花 6 1 7 0 0 0 )
摘要 : 基 于锅 炉 的 生 产 工 艺进 行 分 析 和设 计 , 旨在 实现 锅 炉 温度 的 良好 控 制 , 以 确 保产 品质 量 的优 良。通 过 对 被 控 对 象 模 型和 被 控 过 程 特 性 的 分 析 , 选 定 锅 炉 内胆 温度 为 主控 对 象 , 锅 炉 冷 却 水 流 量 为 副控 对 象 , 在S i mu l i n k中设 计 并 建 立 相 应 的 串级 控 制 系统 模 型 , 通 过 控 制 冷 却 水 的 流 量 来 实现 对锅 炉 温度 的控 制 ,其 作 用 是 消 除 系统 在 控 制 过 程 中受 到 的 二 次 干 扰, 使 系统 能 在 一 个稳 定 的 状 态 下工 作 , 提 高控 制 精 度 , 同时 , 设 计 采 用 两 步 整 定 法 对 所 建 立 的 串级 控 制 系统 模 型 进 行 P I D

基于数字PID的电加热炉温度控制系统设计

基于数字PID的电加热炉温度控制系统设计

计算机控制技术课程设计报告题目基于数字PID的电加热炉温度控制系统设计授课教师盖宁学生姓名学号专业教学单位完成时间目录摘要 (1)第1章课程设计方案 (1)1.1系统组成中体结构 (1)第2章控制系统的建模和数字控制器设计 (1)2.1 数字PID控制算法 (1)第3章硬件设计 (4)3.1 温度检测及功率放大电路 (4)3.2 AD574A模/数转换电路 (4)3.3执行机构 (5)3.4 报警电路设计 (6)3.5 设计输入输出通道 (7)第4章软件设计 (8)4.1 系统程序流程图 (8)4.1.1 系统主程序框图 (8)4.1.2 A/D转换子程序流程图 (9)4.1.3 LED显示流程图 (10)4.1.4 报警程序流程图 (11)4.1.5数字控制算法子程序流程图 (12)第5章总结以及电路图 (12)5.1系统电路图 (12)参考文献 (14)基于数字PID的电加热炉温度控制系统设计摘要:电加热炉控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。

本设计采用PID算法进行温度控制,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节相串联来实现温度的较为精确的控制。

电加热炉加热温度的改变是由上、下两组炉丝的供电功率来调节的,它们分别由两套晶闸管调功器供电。

调功器的输出功率由改变过零触发器的给定电压来调节,本设计以AT89C51单片机为控制核心,输入通道使用AD590传感器检测温度,测量变送传给ADC0809进行A/D转换,输出通道驱动执行结构过零触发器,从而加热电炉丝。

本系统PID算法,将温度控制在50~350℃范围内,并能够实时显示当前温度值。

关键词:电加热炉;PID ;功率;温度控制;一.课程设计方案1.1 系统组成中体结构电加热炉温度控制系统原理图如下,主要由温度检测电路、A/D转换电路、驱动执行电路、显示电路及按键电路等组成。

(完整版)基于单片机的PID温度控制毕业设计论文

(完整版)基于单片机的PID温度控制毕业设计论文

前言温度是表征物体冷热程度的物理量。

在很多生产过程中,特别是在冶金、化工、建材、食品、机械、石油等工业中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。

因此,温度的测量与控制在国民经济各个领域中均受到了相当程度的重视。

单片机系统的开发应用给现代工业测控领域带来了一次新的技术革命,自动化、智能化均离不开单片机的应用。

将单片机控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。

现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。

但随之而来的是巨额的成本。

在很多的小型系统中,处理机的成本占了系统成本的比例高达20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用成本低廉的单片机控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。

随着电子技术以及应用需求的发展,单片机技术得到了迅速的发展,在高集成度,高速度,低功耗以及高性能方面取得了很大的进展。

现在完全可以运用单片机和电子温度传感器对某处进行温度检测,而且可以很容易地做到多点的温度检测,如果对此原理图稍加改进,还可以进行不同地点的实时温度检测和控制。

1绪论1.1研究的目的和意义温度是工业生产中主要被控参数之一,温度控制自然是生产的重要控制过程。

工业生产中温度很难控制,对于要求严格的的场合,温度过高或过低将严重影响工业生产的产质量及生产效率,降低生产效益。

这就需要设计一个良好温度控制器,随时向用户显示温度,而且能够较好控制。

单片机具有和普通计算机类似的强大数据处理能力,结合PID,程序控制可大大提高控制效力,提高生产效益[9]。

基于PID控制算法的温室温度控制系统设计与优化

基于PID控制算法的温室温度控制系统设计与优化

基于PID控制算法的温室温度控制系统设计与优化温室温度对于植物的生长发育起着至关重要的作用。

然而,在不同季节或气候条件下,温室内的温度往往难以保持在理想范围内,这就需要一个高效可靠的温室温度控制系统来实现温室内的温度调节。

本文将介绍基于PID控制算法的温室温度控制系统的设计与优化。

PID控制算法,即比例-积分-微分控制算法,是一种经典的控制算法,广泛应用于工业过程控制中。

它通过根据系统当前状态和期望状态之间的差异,计算出一个控制信号来调节输出,以保持系统的稳定性和准确性。

温室温度控制系统的设计主要包括传感器、执行器和控制器三个部分。

传感器用于实时采集温室内的温度数据,执行器用于调节温室内的温度,而控制器则根据传感器采集的数据和设定的目标温度,计算出执行器的控制信号。

在PID控制算法中,比例项用于根据当前温度与目标温度的差异来计算控制信号的大小,积分项用于根据温度偏差的累积误差来消除静差,微分项用于根据温度变化的速率来预测未来的温度变化趋势。

通过调节PID控制算法中的三个参数,即比例系数、积分时间和微分时间,可以实现对温室温度的精确控制。

在设计温室温度控制系统时,首先需要选择合适的传感器和执行器。

温度传感器应具有高精度和快速响应的特点,以便能够准确测量温室内的温度变化。

执行器可以选择电热器、风扇或冷却设备等,根据温室的大小和温度变化幅度来确定。

接下来是PID控制器的参数调节。

常见的方法是进行试错调整法,通过不断调整比例系数、积分时间和微分时间,观察温室温度的变化情况,逐步优化控制效果。

比例项的增大会使控制器对温度差异更敏感,但可能会引起震荡;积分项的增大可以消除静差,但可能会导致超调和温度震荡;微分项用于预测未来的温度变化趋势,使控制器更加稳定。

除了PID控制算法的参数调节,还可以考虑采用模糊逻辑控制、遗传算法等优化方法来进一步提高温室温度控制系统的性能。

模糊逻辑控制通过将温度误差与设定的规则进行模糊化,利用专家经验和模糊推理算法来计算控制信号。

基于PLC的PID温度控制系统设计(附程序代码)

基于PLC的PID温度控制系统设计(附程序代码)

基于PLC的PID温度控制系统设计(附程序代码)摘要自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。

随着PLC技术的飞速发展,通过PLC对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。

温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统。

而温度控制在许多领域中也有广泛的应用。

这方面的应用大多是基于单片机进行PID 控制, 然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 然而PLC 在这方面却是公认的最佳选择。

根据大滞后、大惯性、时变性的特点,一般采用PID调节进行控制。

随着PLC功能的扩充,在许多PLC 控制器中都扩充了PID 控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。

本设计是利用西门子S7-200PLC来控制温度系统。

首先研究了温度的PID调节控制,提出了PID的模糊自整定的设计方案,结合MCGS监控软件控制得以实现控制温度目的。

关键词:PLC;PID;温度控制沈阳理工大学课程设计论文目录1 引言...................................................................... (1)1.1 温度控制系统的意义...................................................................... .. (1)1.2 温度控制系统背景...................................................................... .................. 1 1.3 研究技术介绍...................................................................... .. (1)1.3.1 传感技术...................................................................... (1)1.3.2PLC .................................................................... . (2)上位机...................................................................... ............................1.3.3 31.3.4 组态软件...................................................................... ........................ 3 1.4 本文研究对象...................................................................... .. (4)2 温度PID控制硬件设计...................................................................... (5)2.1 控制要求...................................................................... .................................. 5 2.2 系统整体设计方案...................................................................... .................. 5 2.3 硬件配置...................................................................... . (6)2.3.1 西门子S7-200CUP224 ................................................................. .. (6)2.3.2 传感器...................................................................... . (6)2.3.3 EM235模拟量输入模块.....................................................................72.3.4 温度检测和控制模块...................................................................... .... 8 2.4 I/O分配表 ..................................................................... ................................ 8 2.5 I/O接线图 ..................................................................... .. (8)3 控制算法设计...................................................................... .. (9)3.1 P-I-D控制...................................................................... .............................. 9 3.2 PID回路指令 ..................................................................... .. (11)3.2.1 PID算法 ..................................................................... .. (11)3.2.2 PID回路指令 ..................................................................... (14)3.2.3 回路输入输出变量的数值转换 (16)3.2.4 PID参数整定 ..................................................................... (17)4 程序设计...................................................................... .. (19)4.1 程序流程图...................................................................... .............................. 19 4.2 梯形图...................................................................... .. (19)I沈阳理工大学课程设计论文5 调试...................................................................... . (23)5.1 程序调试...................................................................... .. (23)5.2 硬件调试...................................................................... .. (23)结束语...................................................................... .................................................... 24 附录程序代码...................................................................... ........................................ 25 参考文献...................................................................... (27)II沈阳理工大学课程设计论文1引言1.1 温度控制系统的意义温度及湿度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。

基于PID算法的恒温控制系统设计

基于PID算法的恒温控制系统设计

基于PID算法的恒温控制系统设计一、引言恒温控制系统是指通过对温度进行实时监测和反馈调节,使得系统内的温度能够稳定在设定的目标温度上。

PID控制是一种常用的控制策略,它将比例控制、积分控制和微分控制三种控制方式相结合,能够快速、精确地调节系统的动态响应和稳定性。

本文将介绍基于PID算法的恒温控制系统的设计流程和关键技术。

二、系统设计1.系统结构PID控制系统由传感器、控制器和执行器三部分组成。

传感器负责实时监测系统内的温度值,并将监测结果反馈给控制器。

控制器根据温度的反馈值与设定的目标温度之间的差异,通过比例、积分和微分三个环节,计算出控制信号,并将控制信号发送给执行器。

执行器根据控制信号的大小,调节加热或制冷设备的功率,以使系统的温度稳定在设定的目标温度上。

2.PID算法PID控制算法使用控制器计算出的控制信号uc,其计算公式如下所示:uc = Kp * e + Ki * ∫e + Kd * △e/dt其中,uc为控制信号,Kp、Ki和Kd分别为比例、积分和微分环节的增益系数,e为设定目标温度与反馈温度的差值,∫e为差值的积分值,△e/dt为差值的微分值。

通过调节这三个环节的增益系数,可以实现对温度控制系统的动态响应和稳定性的调节。

3.系统实现系统实现的关键技术包括传感器的选择与接口设计、控制器的算法实现、执行器的选择和驱动电路设计等。

传感器应具有高精度、快速响应和稳定性好的特性,能够实时监测温度值并将监测结果传递给控制器。

控制器应具有高计算性能和稳定性,能够准确计算出控制信号。

执行器应根据控制信号的大小调节加热或制冷设备的功率,以使系统温度稳定在目标温度上。

三、系统优化为进一步提高恒温控制系统的性能,可以通过以下几个方面进行优化。

1.增益系数的选择根据实际系统的特性,通过试验和调整,优化比例、积分和微分环节的增益系数。

比例增益系数的增加可以提高系统的响应速度,但也容易引起系统的振荡;积分增益系数的增加可以减小系统的稳态误差,但也会增加系统的超调量和调节时间;微分增益系数的增加可以改善系统的过渡过程,但也容易引起系统的噪声干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于PID控制器的温度控制系统设计
随着现代工业的快速发展,各种自动控制系统也得到了广泛应用。

其中,基于PID控制器的温度控制系统设计广泛应用于化工、制药、冶金等行业。

本文将从基
本原理入手,详细论述基于PID控制器的温度控制系统设计。

一、PID控制器的原理
PID控制器是一种经典的控制器,它采用比例、积分、微分三个控制量的组合,通过对控制量不同比例的组合,实现对被控对象的精确控制。

具体来说,PID控制
器将被控对象的当前状态与期望的目标状态进行比较,计算出误差值,然后对误差值进行P、I、D三个控制量的加权计算,得到控制输出值,通过执行控制动作,
使被控对象达到期望的目标状态。

其中,比例控制P以被控对象的当前状态与期望目标状态之间的误差值为输入,按比例放大输出控制信号,其控制效果主要针对误差量的大小。

积分控制I主要是
针对误差值的积累程度,在误差值持续存在的情况下逐渐加大控制输出的幅度,使被控对象逐渐趋近期望的目标状态。

微分控制D主要是针对误差值的变化速度,
当偏差值增加或减小的速率较快时,将适当增大或减小控制输出量的幅度,以加快误差的消除速度。

综上所述,PID控制器的优点在于能够快速消除误差,避免超调和欠调,稳定
性强,且对于被控对象的性质要求不高。

因此,PID控制器成为了温度控制系统设
计的主要控制器之一。

二、温度传感器的选取
温度控制系统的核心是温度控制器,其中最关键的部分是温度传感器。

良好的
温度传感器应具有温度响应时间短、测量范围广、精度高等特点。

其中最常用的温度传感器是热电偶和热电阻。

热电偶是一种基于热电效应的温度测量传感器,它是利用不同材料所产生的热
电动势的差别测量温度。

热电偶具有灵敏度高、阻抗小、动态响应快等特点,但受到热电对、交流电干扰等因素影响较大,测量过程中容易出现漂移现象。

热电阻是一种利用金属或半导体的电阻随温度变化的特性测量温度的传感器。

热电阻具有较高的精度、长期稳定性好的特点,但响应迟缓,对于超出其量程的高温不可用。

因此,在进行温度控制系统设计时,应考虑被控对象的特性,选取合适的温度
传感器。

如果被控对象的温度范围较宽,则应选取热电偶作为温度传感器;如果被控对象的温度范围较窄,可以选用热电阻。

三、PID控制器参数调节
PID控制器的参数调节对于控制系统的性能影响极大,其中最关键的是控制器
参数的选择。

在进行参数调节时,应根据实际反馈情况进行选择,具体来说应遵循以下原则:
1、比例系数的选择
比例系数直接影响系统的动态性能,如果比例系数过小,则控制速度慢,超调
量大,若过大,则会引起强烈的震荡。

因此,比例系数需要根据实际情况进行选择,在实际控制中,可通过实验方法来选择最佳的比例增益值。

2、积分系数的选择
积分系数主要影响系统的稳态精度,当比例控制器和微分控制器的作用无法消
除误差时,可通过增大积分系数来消除系统的静态误差。

但是,积分系数过大会导致系统产生过调,因此积分系数需要根据实际情况进行逐步增加,直到达到满意的效果即可。

3、微分系数的选择
微分系数能够使控制器对于温度变化率的快速反应,缩短系统的响应时间,但如果微分系数过大,则会引起控制器的不稳定,因此要逐步增加微分系数,直到达到理想效果为止。

四、温度控制系统的实现
在确定合适的温度传感器和PID控制器参数后,温度控制系统即可开始实现,其中关键步骤如下:
1、将温度传感器与控制器的输入端连接。

2、调节PID控制器的比例、积分、微分系数,使得系统能够较快稳定地到达期望温度。

3、设置控制器输出的控制量,将其传递到加热器上,使被控对象的温度得以控制。

4、进行实际控制操作时,应使用实验室温度计等相似仪器进行精确测量,检验控制效果,并根据测量结果进行PID控制器参数的逐步调整,直至达到最佳控制效果。

五、总结
基于PID控制器的温度控制系统设计是现代自动化控制领域的重要应用,具有控制精度高、应用广泛等优点。

在实践中,我们需要根据被控对象的性质,选取合适的温度传感器,以及根据实际情况进行PID控制器参数的调节,才能得到最佳的控制效果。

相关文档
最新文档