算法分析与设计总结
算法设计与分析_总结7

第一章:算法定义: 算法是若干指令的有穷序列, 满足性质: (1)输入: 有外部提供的量作为算法的输入。
(2)输出: 算法产生至少一个量作为输出。
1. (3)确定性:组成算法的每条指令是清晰, 无歧义的。
2. (4)有限性:算法中每条指令的执行次数是有限的, 执行每条指令的时间也是有限的。
3. 程序定义: 程序是算法用某种程序设计语言的具体实现。
可以不满足算法的性质(4)。
4. 算法复杂性分为时间复杂性和空间复杂性。
5. 可操作性最好且最有使用价值的是最坏情况下的时间复杂性。
6. O(n)定义: 存在正的常数C 和自然数N0, 当N>=N0时有f(N)<=Cg(N),则称函数f(N)当N 充分大时有上界, 记作f(N)=O(g(n)). 7. Ω(n)定义: 存在正的常数C 和自然数N0, 当N>=N0时有f(N)>=Cg(N),则称函数f(N)当N 充分大时有上界, 记作f(N)=Ω(g(n)). 8. (n)定义:当f(n)=O(g(n))且f(N)=Ω(g(n)), 记作f(N)= (g(n)), 称为同阶。
求下列函数的渐进表达式: 3n2+10n ~~~O(n2) n2/10+2n~~~O(2n) 21+1/n~~~O(1) logn 3~~~O(logn) 10log3n ~~~O(n) 从低到高渐进阶排序: 2 logn n2/3 20n 4n2 3n n!第二章:1. 分治法的设计思想: 将一个难以直接解决的问题, 分割成一些规模较小的相同问题, 以便各个击破分而治之。
2. 例1 Fibonacci 数列 代码(注意边界条件)。
int fibonacci(int n) {if (n <= 1) return 1;return fibonacci(n-1)+fibonacci(n-2);}3. Ackerman 函数双递归。
A(1,1)代入求值。
A(1,1)=A(A(0,1),0)=A(1,0)=24. 全排列的递归算法代码。
算法分析与设计总结

算法分析与设计总结10008148 朱凌峰分析与设计总结算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。
不同的算法可能用不同的时间、空间或效率来完成同样的任务。
一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。
或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:1、有穷性:一个算法必须保证执行有限步之后结束;2、确切性:算法的每一步骤必须有确切的定义;3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。
没有输出的算法是毫无意义的;5、可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
算法复杂度算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。
不同的算法可能用不同的时间、空间或效率来完成同样的任务。
一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。
或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:1、有穷性:一个算法必须保证执行有限步之后结束;2、确切性:算法的每一步骤必须有确切的定义;3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。
算法设计与分析总结

算法设计与分析总结一、算法引论算法:通常人们将算法定义为一个有穷的指令集,这些指令为解决某一特定的任务规定了一个运算序列。
什么是算法?计算机来解决的某一类问题的方法或步骤。
算法是程序的核心。
算法的两个要素:算法是由操作与控制结构两个要素组成。
(1)操作①算术运算:加、减、乘、除等。
②关系运算:大于、大于等于、小于、小于等于、等于、不等于等。
③逻辑运算:与、或、非等。
④数据传送:输入、输出、赋值等。
(2)控制结构各操作之间的执行顺序:顺序结构、选择结构、循环结构,称为算法的三种基本结构一个算法应当具有以下特性:1、输入。
一个算法必须有0个或多个输入。
它们是算法开始运算前给予算法的量。
2、输出。
一个算法应有一个或多个输出,输出量是算法计算的结果。
3、确定性。
算法的每一步都应确切地、无歧义的定义,对于每一种情况,需要执行的动作都应严格的,清晰的规定。
4、有穷性。
一个算法无论在什么情况下都应在执行有穷步后结束。
5、有效性。
算法中每一条运算都必须是足够基本的。
原则上都能够被精确的执行。
6、一个问题可以有多个解决的算法。
程序可以不满足条件4。
计算机程序是算法的实例,是算法采用编程语言的具体实现。
算法的分类:(1)数值计算算法(2)非数值计算算法算法的表示:1、自然语言2、传统流程图3、N-S流程图4、伪代码5、计算机语言计算机程序设计中有两个核心目标:1、算法必须是易于理解,编码和调试的2、设计的算法能够最有效的使用计算机的资源。
目标1是软件工程的概念 ;目标2是数据结构和算法设计的概念 ;判断一个算法的优劣,主要有以下标准:1、正确性:要求算法能够正确的执行预先规定的功能和性能要求。
2、可使用性:要求算法能够很方便的使用。
3、可读性:算法应当是可读的,这是理解、测试和修改算法的需要。
4、效率:算法的效率主要指算法执行时计算机资源的消耗,包括存储和运行时间的开销。
5、健壮性:要求在算法中对输入参数、打开文件、读文件记录、子程序调用状态进行自动检错、报错并通过与用户对话来纠错的功能,也叫作容错性或例外处理。
算法分析与设计知识点

算法分析与设计知识点算法是计算机科学中非常重要的一个概念,它是解决问题的有效方法和步骤的描述。
在实际的软件开发过程中,算法的设计和分析是必不可少的环节。
本文将介绍一些算法分析与设计的知识点,帮助读者更好地理解和运用算法。
一、算法分析的重要性在计算机科学中,算法的分析是一项关键任务。
通过对算法进行深入分析,我们可以评估其效率和性能,并选择最优算法来解决特定问题。
算法分析的重要性体现在以下几个方面:1. 时间复杂度:算法的时间复杂度描述了算法在输入规模增大时所需要的时间。
通过对算法的时间复杂度进行分析,我们可以预估算法的运行时间,从而选择更加高效的算法。
2. 空间复杂度:算法的空间复杂度描述了算法在运行过程中所需要的额外空间。
通过对算法的空间复杂度进行分析,我们可以评估算法对内存的消耗,避免出现内存溢出等问题。
3. 算法效率:通过算法分析,我们可以比较不同算法的效率和性能,选择合适的算法来解决问题。
高效的算法可以减少计算时间和资源消耗,提高程序的运行速度。
4. 问题复杂度:算法分析还可以帮助我们理解和评估问题的复杂度。
对问题的复杂度进行分析,有助于判断是否存在多项式时间解决问题的算法,并帮助我们进一步优化算法。
二、常见算法设计方法在算法设计中,有许多常见的设计方法可以帮助我们解决不同类型的问题。
以下是几种常见的算法设计方法:1. 贪心算法:贪心算法是一种简单而高效的算法设计方法。
在每个步骤中,贪心算法总是选择当前最优解,而不考虑未来可能带来的影响。
贪心算法通常用于求解一些最优化问题,如背包问题和最小生成树问题。
2. 动态规划:动态规划是一种将复杂问题分解成较小子问题的方法。
通过记忆已解决的子问题的解,动态规划可以避免重复计算,并提高算法的效率。
动态规划常用于求解最短路径问题、最长公共子序列等。
3. 分治算法:分治算法是一种将大问题分解成相互独立的小问题,并逐个解决的方法。
通过将问题分解为多个子问题,分治算法可以简化问题的求解过程。
算法分析与设计

算法分析与设计在计算机科学领域,算法是解决问题的一种方法或步骤。
对于任何给定的问题,可能有许多不同的算法可用于解决。
算法的效率直接影响着计算机程序的性能,在实践中,我们通常需要进行算法分析和设计来确保程序的高效性和可靠性。
算法分析算法分析是用来评估算法性能的过程。
主要关注的是算法的效率和资源消耗。
常见的算法分析方法包括时间复杂度和空间复杂度。
时间复杂度时间复杂度描述了算法运行时间随输入规模增加而增加的趋势。
通常用大O符号表示,比如O(n)、O(log n)等。
时间复杂度越低,算法执行速度越快。
空间复杂度空间复杂度描述了算法在运行过程中所需的内存空间大小。
同样用大O符号表示。
空间复杂度越低,算法消耗的内存越少。
算法设计算法设计是指为了解决特定问题而创造新的算法的过程。
常见的算法设计方法包括贪心算法、分治法、动态规划等。
贪心算法贪心算法是一种在每一步选择当前状态下最优解的算法。
虽然贪心算法并不总是能得到全局最优解,但它的简单性和高效性使其在实际应用中很受欢迎。
分治法分治法将复杂问题分解为子问题来求解,然后将子问题的解合并起来得到原问题的解。
典型的应用有归并排序和快速排序等。
动态规划动态规划是一种将问题分解为重叠子问题、并存储子问题解的方法。
通过利用已解决的子问题来解决更大规模的问题,动态规划能够显著提高算法的效率。
结语算法分析和设计是计算机科学中至关重要的一部分,它帮助我们理解算法的效率和性能,并指导我们选择合适的算法来解决问题。
通过不断学习和实践,我们可以不断提升自己在算法领域的能力,为创造更高效、更可靠的计算机程序做出贡献。
算法设计与分析实训课程学习总结

算法设计与分析实训课程学习总结在算法设计与分析实训课程的学习过程中,我深入了解了算法的设计原理、分析方法和实际应用,并通过实际操作和实践来进一步提升了自己的算法设计与分析能力。
下面将对我在这门课上所学到的知识和经验进行总结。
一、课程简介算法设计与分析实训课程是计算机科学与技术专业中的一门重要课程,旨在培养学生解决实际问题的能力。
本课程内容涵盖了基本的算法设计与分析方法,包括贪心算法、动态规划、回溯算法等。
通过实际案例和练习题的训练,学生可以学习到如何应用这些算法来解决实际问题,并提高算法的效率和优化。
二、课程收获1. 算法设计原理在课程中,我学习到了不同种类的算法设计原理,如贪心算法、动态规划、分治算法等。
这些原理对于解决不同类型的问题提供了思路和方法。
我学会了根据问题的特性选择合适的算法设计原理,并进行相应的实现和优化。
2. 算法分析方法在课程中,我学习到了如何对算法进行分析和评估,了解了时间复杂度和空间复杂度的计算方法。
通过学习和实践,我对算法的效率有了更深入的认识,并且能够根据问题的规模和要求来选择合适的算法,以提高程序的运行效率。
3. 实际应用通过实际案例和练习题的训练,我学会了将所学的算法应用于实际问题的解决。
例如,在图论中,我学会了如何使用深度优先搜索和广度优先搜索来求解最短路径和最小生成树问题;在动态规划中,我学会了如何通过建立状态转移方程来解决背包问题和最长公共子序列问题;在贪心算法中,我学会了如何选择局部最优解以达到全局最优解。
这些实际应用的训练,增强了我的实际问题解决能力和算法设计思维。
三、学习心得与体会1. 善用工具在课程学习中,我发现利用合适的编程工具,如IDE、调试器等,能够提高算法设计与分析的效率和准确性。
同时,我也学会了如何利用在线资源、论坛和社区来解决在算法实现过程中遇到的问题和困难,这对于自己的学习和成长非常有帮助。
2. 实践与总结算法设计与分析实训课程注重实践操作和实际问题的解决,而不仅仅是理论知识的学习。
算法设计与分析期末总结

算法设计与分析期末总结一、课程概述算法设计与分析是计算机科学与技术专业核心课程之一,主要讲解算法的设计与分析方法。
通过学习该课程,我对算法设计和分析的基本概念、方法和工具有了深入的了解和掌握。
以下是我在该课程中的学习心得与总结。
二、学习内容1. 算法设计与分析的基本概念:学习了算法的定义、算法的设计、算法的复杂度等基本概念,了解了算法在计算中的重要性。
2. 分治法与递归法:学习了分治法与递归法的基本思想与原理,并运用分治法与递归法设计了一些典型的算法,如归并排序、快速排序等。
3. 动态规划:学习了动态规划的基本思想与原理,并通过实例学习了如何应用动态规划解决实际问题,如最长公共子序列问题、背包问题等。
4. 贪心算法:学习了贪心算法的基本思想与原理,并运用贪心算法解决了一些经典问题,如活动选择问题、霍夫曼编码问题等。
5. 图算法:学习了图的基本概念与遍历算法,了解了图的存储结构与遍历算法的实现,掌握了图的广度优先搜索与深度优先搜索算法。
6. NP完全问题与近似算法:学习了NP完全问题的定义与判定方法,了解了NP完全问题的困难性,学习了近似算法的设计与分析方法,并运用近似算法解决了一些实际问题。
三、学习方法1. 阅读教材与参考书籍:在课程学习过程中,我认真阅读了教材和相关参考书籍,对于课上讲解的概念和算法有了更深入的理解。
2. 完成编程作业:课程布置了一些编程作业,通过编写代码实现算法,我进一步理解了算法的具体实现细节。
3. 解题训练与思考:课程中也布置了一些习题和思考题,通过解题训练和思考,我进一步巩固了算法设计与分析的基本概念和方法。
四、学习收获1. 对算法设计与分析的基本概念与方法有了深入了解和掌握。
2. 对算法的复杂度分析方法和技巧有了更清晰的认识。
3. 加强了问题抽象和建模的能力,能够将实际问题转化为算法设计与分析的问题。
4. 提高了编程能力和算法实现的技巧,能够编写高效、优雅的代码。
5. 培养了思考和解决问题的能力,对于复杂的问题能够进行分析、拆解和解决。
计算机科学与技术课程总结模板算法设计与分析

计算机科学与技术课程总结模板算法设计与分析算法设计与分析总结在计算机科学与技术课程中,算法设计与分析是一个重要的模块。
通过学习这一模块,我对算法的设计原理和分析方法有了更深入的认识。
本文将对我的学习经验进行总结,并分享一些关于算法设计与分析的模板。
一、算法设计在算法设计中,我们需要考虑如何以有效的方式解决问题。
以下是一些常用的算法设计策略:1. 贪心算法贪心算法通常采取局部最优的策略,在每个阶段都做出当前状态下最好的选择。
这种算法设计策略适用于一些优化问题,但在其他问题上可能无法得到最优解。
2. 动态规划动态规划通过将问题分解成子问题来解决。
它通常用于那些具有重叠子问题和最优子结构性质的问题。
通过记忆化搜索或自底向上的方式,可以避免重复计算,提高算法效率。
3. 分治算法分治算法将问题划分成多个相互独立的子问题,并对这些子问题进行递归求解。
最后,将子问题的解合并得到原问题的解。
快速排序和归并排序是分治算法的经典例子。
4. 回溯算法回溯算法通过不断试探和回退来搜索所有的解空间。
它通常用于解决组合、排列和搜索问题。
在解空间树中进行深度优先搜索,当发现当前分支不满足条件时,回溯到上一步进行下一种可能的尝试。
二、算法分析在算法设计的过程中,我们需要对算法的性能进行分析,以评估其在不同情况下的表现。
以下是一些常用的算法分析方法:1. 时间复杂度时间复杂度描述了算法执行时间随输入规模增长的变化趋势。
通过统计算法中的基本操作数量,可以得到算法的时间复杂度。
常见的时间复杂度有O(1)、O(n)、O(n^2)等。
2. 空间复杂度空间复杂度描述算法在执行过程中所需的内存空间。
通过统计算法中使用的额外空间大小,可以得到算法的空间复杂度。
常见的空间复杂度有O(1)、O(n)等。
3. 最优化准则最优化准则通常指算法在解决问题中所考虑的最优性标准。
根据问题的具体要求,我们可以选择不同的最优化准则来设计和评估算法。
一些常见的最优化准则包括最小时间、最小空间、最大利润等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章算法概述1.算法:解决问题的一种方法或过程;由若干条指令组成的有穷指令。
2.算法的性质:1)输入:有零个或多个输入2)输出:有至少一个输出3)确定性:每条指令是清晰的、无歧义的4)有限性:每条指令的执行次数和时间都是有限的3.算法与程序的区别➢程序是算法用某种程序设计语言的具体实现➢程序可以不满足算法的有限性4.算法复杂性分析1)算法的复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要空间资源的量称为空间复杂性2)三种时间复杂性:最坏情况、最好情况、平均情况3)可操作性最好且最有实际价值的是最坏情况下的时间复杂性第二章递归与分支策略1.递归概念:直接或间接调用自身的算法2.递归函数:用函数自身给出定义的函数3.递归要素:边界条件、递归方程4.递归的应用✧汉诺塔问题void Hanuo(int n,int a,int b,int c){if(n==1) return;Hanuo(n-1,a,c,b);move(a,b)Hanuo(n-1,c,b,a);}✧全排列问题void Perm(Type list[],int k,int m){ //产生list[k,m]的所有排列if(k == m){for(int i = 0;I <= m;i++) cout<<list[i];cout<<endl;}else{for(int i = j; i<=m;i++){Swap(list[k],list[i]);Perm(list,k+1;m);Swap(list[k],list[i])}}}5.分治法的基本思想:将一个规模较大的问题分成若干个规模较小的子问题,这些子问题互相独立且与原问题相同。
6.分治法的使用条件:✓问题的规模缩小到一定程度可以容易地解决✓问题可以分解为若干个规模较小的相同问题✓利用原问题分解出的子问题的解可以合并为原问题的解✓各个子问题是相互独立的7.分治法的时间复杂度8.分治法的应用二分搜索1)时间复杂度 O(logn)2)参考算法快速排序1)快排的运行时间与划分是否对称有关2)时间复杂度O(nlogn)合并排序1)基本思想:将待排元素分成大小大致相同的两个子集合,分别对两个子集合进行排序,最总将排序好的子集合合并成所要求的排序好的集合。
2)时间复杂度O(nlogn)棋盘覆盖大整数乘法Strassen矩阵乘法第三章动态规划1.基本思想:将待求解问题分解成若干个子问题,先求解子问题,再从这些子问题的解得到原问题的解。
2.动态规划与分治法的区别:与分治法不同,适合于动态规划求解的问题,经分解得到的子问题往往是不独立的。
3.动态规划算法求解步骤1)找出最优解性质,并刻画其结构特征2)递归地定义最优值3)自底向上求最优值4)构造最优解4.基本要素:➢最优子结构性质:问题的最优解包含子问题的最优解➢子问题重叠性质:在递归法自顶向下求解问题时,每次产生的子问题并不总是新的问题,有些子问题被反复计算多次。
5.动态规划、递归、备忘录的区别✧备忘录的递归方式是自顶向下的,动态规划的递归方式是自底向上的✧备忘录与直接递归的控制结构相同,区别在于备忘录给子问题的解建立了备忘录,以备查看。
6.算法应用矩阵连乘最大字段和最大公共子序列0-1背包第四章贪心算法1.基本思想:总是做出当前看来最好的选择即使贪心算法不能得到整体最优解,但最终结果却是最优解的很好的近似解2.基本要素贪心选择性质所求问题的整体最优解可以通过一系列局部最优解的选择即贪心选择来达到。
✧最优子结构性质一个问题的最优解包括子问题的最优解。
3.分治、贪心和动态规划➢动态规划以自底向上的方式求解,贪心选择以自顶向下方式求解➢贪心和动态规划都有最优子结构性质分治动态规划贪心算法适用类型通用问题优化问题优化问题只有一个子问题子问题结构每个子问题不同很多子问题重复(不独立)最优子结构不需要必须满足必须满足子问题数全部子问题都要解决全部子问题都要解决只要解决一个子问题子问题在最优解里全部部分部分选择与求解次序先选择后解决子问题先解决子问题后选择先选择后解决子问题4.算法应用活动安排问题结束时间早的优先背包问题为什么0-1背包用贪心算法不能求得最优解?主要原因在于无法保证最终能将背包装满,部分闲置的背包空间使每公斤背包空间的价值降低了。
事实上,在考虑0-1背包问题时,应比较选择该物品和不选择该物品所导致的最终方案,然后再作出最好选择。
由此就导出许多互相重叠的子问题。
这正是该问题可用动态规划算法求解的另一重要特征。
最优装载问题哈夫曼编码问题计算平均码长单源最短路径问题最小生成树问题Prim和Kruskal算法多机调度问题第五章回溯法1.基本思想:以深度优先方式系统搜索问题解的算法2.解题步骤:1)针对所给问题,定义问题解空间2)确定解空间结构3)以深度优先搜索解空间,并在搜索过程中剪枝3.回溯法是一个既带有系统性又带有跳跃性的搜索算法。
4.特征:在搜索过程中动态产生问题的解空间。
问题的解空间树是虚拟的,并不需要算法运行时构造一个真正的树结构,在任何时刻,算法只保存从根结点到当前扩展结点的路径。
5.扩展结点:一个正在产生儿子的结点。
6.活结点:一个自身已生成但儿子结点还没有全部生成的结点。
7.死结点:不能再向纵深方向移动的扩展结点。
8.避免无效搜索策略——剪枝函数➢约束函数:用约束函数在扩展结点处剪去不满足约束的子树➢限界函数:用限界函数剪去得不到最优解的子树。
9.算法框架➢递归回溯和迭代回溯➢子集树:当从n个元素的集合中找出满足某种性质的子集时,相应的解空间叫子集树。
遍历时间O(2^n)➢排列树:确定n个元素满足某种性质的排列时,相应的解空间树称为排列树。
遍历时间O(n!)10.算法应用装载问题●解空间树:子集树●右儿子剪枝:当前载重量+剩余集装箱重量<=当前最优载重量0-1背包问题●解空间树:子集树●右儿子剪枝:当前结点处上界Bound最大团问题●解空间树:子集树●右儿子剪枝:确认有足够多的可选择顶点使得算法有可能在右子树中找到更大的团。
n后问题●解空间树:完全n叉树图的m着色问题●解空间树:完全m叉树(m为颜色数)旅行售货员问题●解空间树:排列树●递归遍历第六章分支限界法1.基本思想:以广度优先或最小耗费(最大效益)优先的方式搜索解空间树,搜索过程中,每一个活结点只有一次机会称为当前扩展结点。
活结点一旦成为扩展结点,就一次性产生所有儿子结点。
2.回溯法与分支限界法的异同1)求解目标不同:回溯法更适合找出解空间树中满足约束条件的所有解;分支限界法更适合找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。
2)对解空间搜索方式不同:回溯法以深度优先方式搜索解空间树,每个活结点有多个机会成为扩展结点分支限界法以广度优先或最小耗费优先方式搜索解空间树,每个活结点只有一次机会成为扩展结点,一旦成为扩展结点就一次性产生所有儿子结点。
3)都是在问题的解空间上搜索问题解的算法3.分支限界法算法框架➢队列式分支限界法将活结点表组织成一个队列,按队列先进先出的原则选取下一个结点为当前扩展结点。
不搜索已不可行结点为根的子树,因为搜索时结点的处理是跳跃式的,所以无法递归。
➢优先队列式分支限界法将活结点组织成一个优先队列,按优先队列式中规定的结点优先级选取优先级最高的下一个结点成为当前扩展结点。
4.算法应用单源最短路径●最小堆●优先级是结点所对应的当前路长●约束条件:一种是下界不小于当前最短路径则剪去以该节点为根的子树另一种是利用结点间的控制关系进行剪枝。
两条路径到达同一结点,剪去较长路径所对应的树中的结点为根的子树。
装载问题➢队列式●右儿子剪枝:当前结点对应重量+剩余集装箱重量<=当前最优解●搜索到第一个叶结点之前,总有当前最优解为0,上式总成立,右子树测试不起作用。
为确保右子树成功剪枝,应该在算法每一次进入左子树的时侯就更新当前最优值。
➢优先队列式●优先级:从根结点到结点x的路径所相应的载重量再加上剩余集装箱重量之和。
●最小堆●最优解的构造:需要保存已构造出的部分解空间树0-1背包问题●最大堆●优先级:已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。
●上界:背包问题的最优解最大团问题●最大堆●优先级:un(见上界)●上界:用变量cn表示与该结点相应的团的顶点数;level表示结点在子集空间树中所处的层次;cn +n-level+1作为顶点数上界un的值。
●算法的终止条件:遇到子集树中的一个叶结点(即n+1层结点)成为当前扩展结点。
旅行售货员问题●最小堆●优先级:堆中每个结点的子树费用的下界●下界:以剩余的所有顶点最小出边费用和作为依据。
计算图中每个顶点的最小费用出边并用minout记录。
如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法即告结束。