算法设计与分析要点复习
算法设计与分析重点总结

算法设计与分析重点总结考试题型:选择 2* 10个填空2* 10个简答 3* 4个程序分析填空 4* 4个综合(代码)8* 4个第⼀章基础知识1.算法的定义算法就是解决问题的⽅法,是解决某⼀特定问题的⼀组有穷指令的序列,是完成⼀个任务所需要的具体步骤和⽅法2.算法的特征有限性 ⼀个算法总是在执⾏了有穷步的运算之后终⽌确定性:算法的每种运算必须要有确切的定义,不能有⼆义性。
输⼊:每个算法有0个或多个输⼊。
所谓0个输⼊是指算法本⾝定出了初始条件。
输出:⼀个算法产⽣⼀个或多个输出,这些输出是同输⼊有某种特定关系的量可⾏性:算法中有待实现的运算都是基本的运算,原理上每种运算都能由⼈⽤纸和笔在有限的时间内完成。
(实数的算术运算是“不能⾏”的)3.计算过程只满⾜确定性、能⾏性、输⼊、输出四个特性但不⼀定能终⽌的⼀组规则4.算法的有穷性意味着不是所有的计算机程序都是算法5.算法正确性证明数学归纳法,反例:能够使算法运⾏失败的输⼊实例6.算法的好坏:通过数学⽅法进⾏分析,时间复杂度,空间复杂度,循环次数(归并,快排,贪⼼的复杂度)7.算法运⾏中主要影响运⾏时间的语句是基本操作,即占有最多⽐例的语句8.时间复杂度分析:1)确定⽤来表⽰问题规模的变量;2)确定算法的基本操作;3)写出基本操作执⾏次数的函数(运⾏时间函数);4)如果函数依赖输⼊实例,则分情况考虑:最坏情况、最好情况、平均情况;5)只考虑问题的规模充分⼤时函数的增长率,⽤渐近符号O 、Θ、Ω 、o 来表⽰。
6)常⽤O和Θ9.基本操作算法中的某个初等操作,基本操作的选择,必须反映出该操作随着输⼊规模的增加⽽变化的情况第⼆章递归算法1.递归若⼀个对象部分地包含它⾃⼰, 或⽤它⾃⼰给⾃⼰定义, 则称这个对象是递归的;若⼀个过程直接地或间接地调⽤⾃⼰, 则称这个过程是递归的过程。
分为直接递归和间接递归2.特点(1)将问题分解成为形式上更加简单的⼦问题来进⾏求解,递归过程⼀般通过函数或⼦过程来实现(2)问题求解规模缩⼩,把问题转化为规模缩⼩了的同类问题的⼦问题(3)相邻两次重复之间有紧密的联系(4)是否收敛,即终⽌条件3.使⽤递归的三种情况问题的定义数据结构问题求解的过程4.递归模型递归边界(递归的终⽌条件)和递归体5.过程先将整个问题划分为若⼲个⼦问题,通过分别求解⼦问题,最后获得整个问题的解。
算设计与分析复习要点总结

1. 算法定义:算法是解决问题的方法或过程。
算法的性质:输入:一个算法有零个或多个输入。
输出:一个算法有一个或多个输出。
确定性:算法中每一条指令必须有确切的含义,不存在二义性。
可行性:算法中的每条指令执行次数有限,执行时间时间也有限。
2.程序是算法用某种程序设计语言的具体实现,程序可以满足算法的有限性。
最基本的运算有:赋值运算,算数运算,逻辑运算,关系运算。
3. 数据分为,对象数据,结果数据,他们可以是所有类型中的任何一种类型。
表示方式有集合(枚举),结构体,指针。
数据类型分为:boolean,byte,char,double,float,int,long,short.4. 描述算法的几种方式:自然语言方式,表格方式,图标(流程图),伪码语言(类程序设计语言)。
5. 算法的复杂性:是该算法所需要的计算机资源的多少,时间资源的量称为时间复杂性和空间资源的量称为空间复杂性。
用n,i,a表示算法要解的问题的规模,算法的输入,算法本身,而且c表示复杂性,应该有c=f(n,i,a)。
5.递归:直接或间接的调用本身的算法成为递归算法。
用函数自身给出定义的函数成为递归函数。
阶乘函数;n!={1 n=0;n(n-1)!n>0;}Public static int factorial(int n){If (n==0)return 1;Return n* factorial (n-1);}斐波那契(Fibonacci)数列F(n)= 1 n==0,1; F(n-1)+F(n-2) n>1;Public static int fib(int n){ if (n<=1) return 0;if (n>1) return fib(n-1)+fib(n-2);}排列问题:Public static void perm (obejt[]list,int k,int m){If (k==m){For (int i=0;i<=m;i++)System.out.print(list[i])System.out.println() }ElseFor (int i=k;i<=m;i++){mymath.swap(list ,k,i);Perm(list,k+1,m);Mymath.swap(list ,k,i); }}整数划分问题Public static int q(int n ,int m ){if ((n<1)||(m<1))return 0;If((n==1)||(m==1))return 1;If(n<m)return q(n,m-1)+1;Return q(n,m-1)+q(n-m,m);}6.系统需要在运行调用算法前先完成3件事情:1.为所有实参指针,返回地址等信息给被调用算法。
算法设计与分析复习要点

·算法是指解决问题的方法和过程。
算法是由若干条指令组成的有穷序列。
·算法特性:输入、输出、确定性、有限性(执行时间和执行次数)(有五个空再加上可行性)。
·程序是算法用某种程序设计语言的具体实现,程序可不满足有限性的特性。
·程序调试只能证明程序有错,不能证明程序无错误!·算法复杂性= 算法所需要的计算机资源。
·算法的复杂性取决于:(1)求解问题的规模N;(2)具体的输入数据I;(3)算法本身的设计A。
·可操作性最好且最有实际价值的是最坏情况下的时间复杂性。
第二章递归与分治策略二分搜索技术:O(logn)大整数乘法:O(n log3)=O(n1.59)Strassen矩阵乘法:O(n log7)=O(n2.81) 棋盘覆盖:O(4k)合并排序和快排:O(nlogn)线性时间选择:O(n)最接近点对问题:O(nlogn) 循环赛日程表:O(n2)·分治法思想:将一个难以解决的问题分割成一些规模较小的相同问题,以便逐个击破,分而治之。
边界条件与递归方程是递归函数的两大要素。
递归优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。
·分治法时间复杂度分析:T(n)<= O(1) n=n0aT(n/b)+f(n) n>n0若递归方式为减法:T(n) = O(a n)若递归方式为除法:f(n)为合并为原问题的开销:f(n)为常数c时:T(n)=O(n p)f(n)为线性函数:O(n) a<ba是子问题个数,b是递减的步长T(n)= O(nlog b n) a=bO(n p) a>b,p=log b af(n)为幂函数n x时:O(n x) a<f(b)T(n)= O(n p log b n) a=f(b)O(n p) a>f(b),p=log b a·证明算法的正确性:部分正确性、终止性。
!算法设计与分析总复习

!算法设计与分析总复习算法设计与分析是计算机科学中非常重要的一个领域,它涉及到了算法的设计、性能分析和优化等方面。
在准备考试之前,我们需要对算法设计与分析的基本概念和常用算法进行全面复习。
一、算法设计与分析基本概念1.算法的定义:算法是一系列解决特定问题的有限步骤。
2.算法的特性:算法具有明确性、有限性、确定性和输入/输出。
3.算法的正确性:算法必须能够解决问题,并得到正确的答案。
4.算法的效率:算法的时间复杂度和空间复杂度是衡量算法效率的重要指标。
二、常用算法1.排序算法:常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
需要了解每种排序算法的思想、时间复杂度和空间复杂度,并能够对其进行实现和优化。
2.查找算法:常用的查找算法包括顺序查找、二分查找、哈希查找等。
需要了解每种查找算法的思想和时间复杂度,并能够对其进行实现和应用。
3. 图算法:图算法包括深度优先(DFS)、广度优先(BFS)、最短路径算法(Dijkstra算法、Floyd算法)等。
需要了解这些算法的思想、时间复杂度和应用场景,并能够对其进行实现和应用。
4.动态规划算法:动态规划算法适用于具有重叠子问题和具有最优子结构性质的问题。
需要了解动态规划算法的基本思想、时间复杂度和应用场景,并能够对具体问题进行动态规划的设计和实现。
5.贪心算法:贪心算法常用于解决最优化问题,每一步都选择当前最优解,以期最终达到全局最优解。
需要了解贪心算法的基本思想、时间复杂度和应用场景,并能够对具体问题进行贪心算法的设计和实现。
三、算法的时间复杂度和空间复杂度1. 时间复杂度:算法的时间复杂度表示算法的执行时间和输入数据规模之间的关系。
常见的时间复杂度有O(1)、O(logn)、O(n)、O(nlogn)、O(n^2)等。
需要掌握各种时间复杂度的计算方法和复杂度的比较。
2.空间复杂度:算法的空间复杂度表示算法的内存消耗和输入数据规模之间的关系。
算法分析与设计基本知识点复习

2.重叠子问题 动态规划应用于组合优化问题的第二个特征是问 题自身具有重叠子问题。 动态规划算法的运行时间取决于两个因素的乘积: 备忘录方法(64) 自顶向下的动态规划方法具有如下特点: · 它是一种对自然问题求解的机械转换。 · 方法自身可以确定计算子问题的顺序。 · 可能不需要计算出所有子问题的解。
找最大值与最小值分治算法
算法思想 如果我们将分治策略用于此问题,每次将 问题分成大致相等的两部分,分别在这两部分 中找出最大值与最小值,再将这两个子问题的 解组合成原问题的解,就可得到该问题的分治 算法。
归并排序算法(P28) 归并排序的关键操作是归并两个已排序的子序 列的过程。
归并排序最坏情况下的时间复杂度Θ(n lb n)要优 于冒泡排序最坏情况下的时间复杂度Θ(n2)。
渐近表示(P8)
渐进表示:是方便地表示算法的最坏情况下,计算的复杂度。 三个定义,三例题。 定义1.1如果存在三个正常数
第2章 分 治 法
递归(P13) 递归程序可被简单地定义为对自己的调用。 递归程序要求必须有终止条件。 斐波那契(Fibonacci)序列。 • 替换方法(P16) • 用替换方法解某个递归方程时,分为两步。首 先猜测问题解的某个界限,然后用数学归纳法证明 所猜测解的正确性。 • 主方法(P18) 主定理(三种情况,三个例题)
分治法的基本思想 (p20) 分治法在每一层递归上由三个步骤组成: (1)划分(divide):将原问题分解为若干规模较小、 相互独立、与原问题形式相同的子问题。 (2)解决(conquer):若子问题规模较小,则直接求 解;否则递归求解各子问题。 (3)合并(combine):将各子问题的解合并为原问题 的解。
循环不变式具有以下三个性质: 初始:在循环的第一次迭代之前,循环不变式为 真。 维持:如果在循环的某次迭代之前循环不变式为 真,那么在下一次迭代之前,循环不变式仍然为真。 终止:当循环终止时,循环不变式给出有用性质, 这个性质可以用于证明算法的正确性
算法设计与分析考试重点归纳

算法设计考试重点整理题型:一选择题(10*2=20 分)二简答题(4*5=20 分)三应用题(3*10=30 分)四算法题(3*10=30 分)第一、二章算法的定义:解某一特定问题的一组有穷规则的集合(对特定问题求解步骤的一种描述,是指令的有限序列)算法的特征:1)有限性 2)确定性 3)输入 4)输出 5)能行性算法分析的目的:基本数据结构:线性结构(元素之间是一对一的关系)用顺序存储结构存储的线性表称为顺序表用链式存储结构存储的线性表称为链表。
树形结构(元素之间是一对多的关系)图(网)状结构(元素之间是多对多的关系)栈:是一种只允许在表的一端进行插入或删除操作的线性表。
允许进行插入、删除操作的一端称为栈顶,另一端称为栈底。
当栈中没有数据元素时,称之为空栈。
栈的插入操作称为进压栈,删除操作称为出栈。
队列:只允许在一端进行插入操作,在另一端进行删除操作的线性表。
允许进行插入操作的一端称为队尾。
允许进行删除操作的一端称为队头。
当队列中没有数据元素时,称之为空队列。
队列的插入操作称为进队或入队。
队列的删除操作称为退队或出队。
树:树型结构是一种非线性结构,它用于描述数据元素之间的层次关系图图:G=(V,E)是一个二元组其中:V是图G中数据元素(顶点)的非空有限集集合E是图G中关系的有限集合由表达式求渐进表达式:例:(n2+n)/4 n2/4(增长速率最快的那一项)时间复杂度的计算:(P23)性能的比较:O(1) < O(log2n) < O(n) < O(nlog2n) =O(nlogn)< O(n2) < O(n3) < O(n k) < O(2n)第三章算法思想、稳定性、时间复杂度、应用、排序的移动次数:希尔排序(数据结构P265):先将待排序列分割为若干个子序列分别进行直接插入排序;待整个序列基本有序时,再对全体记录进行一次直接插入排序。
也称缩小增量的直接插入排序。
算法设计与分析复习要点

算法设计与分析的复习要点第一章:算法问题求解基础算法是对特定问题求解步骤的一种描述,它是指令的有限序列。
一.算法的五个特征:1.输入:算法有零个或多个输入量;2.输出:算法至少产生一个输出量;3.确定性:算法的每一条指令都有确切的定义,没有二义性;4.可行性:算法的每一条指令必须足够基本,它们可以通过已经实现的基本运算执行有限次来实现;5.有穷性:算法必须总能在执行有限步之后终止。
二.什么是算法?程序与算法的区别1.笼统地说,算法是求解一类问题的任意一种特殊的方法;较严格地说,算法是对特定问题求解步骤的一种描述,它是指令的有限序列。
2.程序是算法用某种程序设计语言的具体实现;算法必须可终止,程序却没有这一限制;即:程序可以不满足算法的第5个性质“有穷性”。
三.一个问题求解过程包括:理解问题、设计方案、实现方案、回顾复查。
四.系统生命周期或软件生命周期分为:开发期:分析、设计、编码、测试;运行期:维护。
五.算法描述方法:自然语言、流程图、伪代码、程序设计语言等。
六.算法分析:是指对算法的执行时间和所需空间的估算。
算法的效率通过算法分析来确定。
七.递归定义:是一种直接或间接引用自身的定义方法。
一个合法的递归定义包括两部分:基础情况和递归部分;基础情况:以直接形式明确列举新事物的若干简单对象;递归部分:有简单或较简单对象定义新对象的条件和方法八.常见的程序正确性证明方法:1.归纳法:由基础情况和归纳步骤组成。
归纳法是证明递归算法正确性和进行算法分析的强有力工具;2.反证法。
第二章:算法分析基础一.会计算程序步的执行次数(如书中例题程序2-1,2-2,2-3的总程序步数的计算)。
二.会证明5个渐近记法。
(如书中P22-25例2-1至例2-9)三.会计算递推式的显式。
(迭代法、代换法,主方法)四.会用主定理求T(n)=aT(n/b)+f(n)。
(主定理见P29,如例2-15至例2-18)五.一个好的算法应具备的4个重要特征:1.正确性:算法的执行结果应当满足预先规定的功能和性能要求;2.简明性:算法应思路清晰、层次分明、容易理解、利于编码和调试;3.效率:算法应有效使用存储空间,并具有高的时间效率;4.最优性:算法的执行时间已达到求解该类问题所需时间的下界。
算法设计与分析复习资料

1.什么是算法?算法是一系列解决问题的指令,对符合规范的输入,能在有限时间内获得预期的输出。
2.算法的特点?有穷性-有限步内完成;确定性-每一步是确定的,不能有二义性;可行性-每一步有意义,每一步能求解;输入-须检查输入值值域合法性;输出-输出问题的解,无输出的算法没有意义。
补:排序算法的特点:稳定性,在位性。
稳定性:如果一个排序算法保留了等值元素在输入中的相对顺序,他被称为是稳定的。
换句话说,如果一个输入列表包含两个相等的元素,他们的位置分别是i和j。
i<j。
而在排好序的列表中,他们的位置分别是i`和j`,那么i`<j`肯定成立。
在位性:如果一个算法不需要额外的存储空间(除了个别存储单元外),我们称它是在位的。
3.求最大公约数的伪码?Euclid(m,n)//计算m和n最大公约数的欧式算法//输入:两个不全为0的非负整数m>=n//输出:m和n的最大公约数while n≠0 do{r←m mod nm←nn←r}return m4.问题求解过程理解问题;了解设备性能选择计算方法,精确或近似接法高效的数据结构算法的设计技术;设计算法;正确性证明;分析算法;编程实现算法。
1-2-3-4-5-6.4-3,4-2,5-3,5-2(理解问题;决定:计算方法:精确或近似方法:数据结构:算法设计技术;设计算法;正确性证明;分析算法;根据算法写代码.)5.算法分析主要步骤(框架)算法的运行效率也称为计算复杂性(计算复杂度);计算复杂性:时间复杂性(时间效率)空间复杂性(空间效率)时间效率-算法运行所耗费的时间。
空间效率-算法运行所需的存储空间。
输入规模事实:几乎所有算法对更大规模的输入都要耗费更长的时间!即算法耗时随输入规模增大而增大;增长函数定义为输入规模的函数,用它来研究算法;输入规模的选择它的选择比较直接容易。
6.n元列表查找最大值-数组实现列表MaxElement(A[0..n-1])maxval←0for i←1 to n-1 doif A[i]>maxvalmaxval←A[i]return maxval7.检查数组元素是否唯一UniqueElement(A[0..n-1])for i←0 to n-2 dofor j←i+1 to n-1 doif A[i]=A[j] return falsereturn true8.计算方阵A B的矩阵乘积MatrixMultiplication(A[0..n-1][0..n-1],B[0..n-1][0..n-1])for i←0 to n-1 do//行循环for j←0 to n-1 do//列循环M[i][j]←0.0 //积矩阵初始化for k←0 to n-1 do//用变量k表示变化的脚标M[i][j]←M[i][j]+A[i][k]*B[k][j]return M9.计算十进制正整数n的二进制位数b算法的时间复杂性分析Binary(n)count←1while n>1 docount++n←「n/2「return count10.求m,n最大公约数gcd(int m,int n)//求m,n最大公约数的欧式递归版本//输入:两个正整数m≥n//输出:最大公约数{if(n=0)//递归出口,结束递归write(M);//输出结果elsegcd(n,m mod n);}11.选择排序(每次从数组中选取最小的按顺序插入) SelectionSort(A[1..n]){for i←1 to n-1 domin←ifor j←i+1 to n doif(A[j]<A[min])min←jA[i]↔A[min]}12.冒泡排序(相邻的比较,a<b则交换,最后一位则为最大) BubbleSort(A[1..n]{ for i←1 to n-1 dofor j←1 to n-i doif(A[j]>A[j+1])A[j]↔A[j+1]}13.顺序查找SequentialSearch(A[n..n],k){ A[n]←Ki←0while(A[i]≠k) i←i+1if(i<n)return(i)else return(-1)}14.串匹配BruteForceStringMatch(T[0..n-1],P[0..m-1]){for i←0 to n-m do{ j←0while j<m and P[j]=T[i+j] doj←j+1if i=m return i}return -1}15.最近对BruteForceCloserPoints(Object P[1..n]){ dmin←∞for i←1 to n-1 dofor j←1 to n dod←sqrt((Xi-Xj)2+(Yi-Yj)2)if(d<dmin){dmin←d,index1←i,index2←j}return(index1,index2)}16.分治算法DivideandConquer(s){if(|s|≤t)then adhocery(s)else{ divide s into smaller subset s1,s2,skfor i←1 to k do{Yi←DivideandConquer(Si)}return merge(Y1,Y2,Yk)}}17.分治法查找最大元素DivideandConquerSearchMax(S){ t←2if(|S|≤t)then return max(S1,S2)else{divide S into two smaller subset S1 and S2,|S1|=|S2|}=|S|/2 max1=DivideandConquerSearchMax(S1)max2=DivideandConquerSearchMax(S2)return max(max1,max2)}}18.合并排序之分治算法MergeSort(A[0..n-1]){ if(n>1){copy A[0..」n/2」-1]to B[0..」n/2」-1]copy A[」n/2」..n-1]to C[0..」n/2」]MergeSort(B)MergeSort(C)Merge(B,C,A)}}Merge(B[0..p-1],C[0..q-1],A[0..p+q-1]){i←0,j←0,k←0while i<p and j<q doif(B[i]≤C[j])A[k]←B[i],i←i+1else A[k]←B[j],j←j+1k←k+1if(i=p)copy C[j..q-1]to A[k..p+q-1]else copy B[j..q-1]to A[k..p+q-1]}19.快速排序QuickSort(A[L..R]){ if(L<R)S←Partition(A[L..R])QuickSort(A[L..S-1])QuickSort(A[S+1..R])}Partition(A[l..r])p←A[l] i←l; j←r+1repeatrepeat i←i+1 until A[i]≥prepeat j←j-1 until A[j]≥pswap(A[i],A[j])until i≥jswap(A[i],A[j]swap(A[l],A[j]return j20.两次扫描确定分区算法Partition(A[L..R]){ p←A[L]i←L+1,j←Rwhile(true){ while(A[i]<p)and(i≤R)do i←i+1while(A[j]>q)and(j≥R)do j←j-1if(i≥j)then breakswap(A[i],A[j])}swap(A[L],A[j])return (j)}21.折半查找BinarySearch(A[0..n-1],K){L←0,R←n-1while(L<R) dom←」(L+R)/2」if(K=A[m])return melse if(K<A[m])R←m-1else L←m+1return(-1)}22.插入排序(比较两个相邻的数,依次从小到大插入) InsertionSort(A[0..n-1]){ for(i←1 to n-1) doj←i-1,V←A[i]while(j≥0 and A[j]>V)A[j+1]←A[j]j←j-1A[j+1]←V}23.DFS递归版DFSRecursion(vertex v){ count←count+1visit(v)Mark[v]←countfor each vertex w adjacent to v doif Mark[w]=0 thenDFSRecursion(w)}非递归:DFS(Graph G,Vertex v){ count←0virst(v)Initialize(S)Push(v)while(isEmpty(S)=FALSE)x←Pop(S)for each vertex w adjacent to x doif Mark[w]=0 thenvirst(w),count←count+1,Mark[w]←countPush(w)}23.BFS非递归算法BFS(Graph G,Vertex v){ count←0 virst(v) Initialize(Q) Enqueue(v)while(isEmpty(Q)=FALSE)x←Dequeue(Q)for each vertex w adjacent to x doif Mark[w]=0 then virst(w),count++,Mark[w]←count Enqueue(w)}24.预排序检验数组中元素唯一性PresortElementUniqueness(A[0..n-1])For i←0 to n-2 doif A[i]=A[i+1]return falsereturn true时间效率蛮力法:2n变治法:T(n)=Tsort(n)+Tscan(n)∈O(nlogn)+O(n)∈O(nlogn)25.变治法预排序蛮力法效率:T(n)=1+…+n-1∈Θ(n*n)变治法预排序:T(n)=n-1PresortMode_1(A[0..N-1])//行程算法,对数组排序i←0,ModeFrequency←0//最大频率while(i≤n-1)runlength←1,runvalue←A[i]while(i+runlength≤n-1 and A[i+runlength]=runvalue)runlength ++if(runlength>ModeFrequency)ModeFrequency←runlength,modeValue←runvaluei←i+runlengthreturn(ModeValue,ModeFrequency26.堆构造的值交换算法HeapValueExchange(H[1..n])For i←」n/2」downto 1 dok←I,v←H[k]heap←FALSEwhile(not heap)and(2*k≤n)doj←2*k if(j+1≤n)if(H[j]<H[j+1])j←j+1if(v≥H[j] heap←TRUEelse{H[k] ←H[j],k←j}H[k] ←v时间效率T(n)=Ε(n=o,h-1)[2(h-k)2k次方]=2hΕ(k=0,h-1)2k次方-2Ε(k=1,h-1)2k次方=2(n-log2(n+1))<2n,n>027.三种贪婪策略解决01背包的过程和结果价值最大:满足约束条件下,每次装入价值最大的物品----不一定能找到最优解(背包称重量消耗过快)重量最小:满足约束条件下,每次装入重量最轻的物品---不一定找到最优解(装入总价值增加太慢)单位价值最大:满足约束条件下,每次装入价值/重量最大的物品---能找到最优解28.连续背包的贪婪算法GreedyKnapsack(n,w[1..n],v[1..n],x[1..n],W,V)X[1..n] ←0 Wo←W V←0MergeSort(v[1..n]/w[1..n])For(i←1 to n)doIf(w[i]<Wo)then x[i]←1Wo←Wo←w[i]V←V+v[i]Else x[i]←Wo/w[i], V←V+x[i]*v[i]BreakReturn V29.贪婪算法Prim算法:PrimMST(G)Vt←{vo}Et←ΦFor(i←1 to|V|-1)do在V-Vt中选与当前树最小距离的边e*=(v*,u*)Vt←Vt∪{u*}Et←Et∪{e*}Return EtDijkstra算法伪码:Dijkstre(G,s)Initialize(Q)For(each vertex v∈V)dv←∞Isert (Q,v,dv)ds←0,Decrease(Q,s,ds)Vt←ΦFor(i←0 to |V|-1)U*←DeleteMin(Q)Vt←Vt∪{u*}For(each vertex u∈(V-Vt)adjacent to u*∈Vt)If(dn*+w(u*,u)<du)du←du*+w(u*,u)Decrease(Q,u,dn)Kruskal算法:Kruskal(G)Et←∅;ecounter←0k←0while ecounter<|V|-1 dok←k+1if Et∪{Eik}无回路ET←Et∪{Eik};ecounter←ecounter+1Return Eta.设计一个蛮力算法,对于给定的x0,计算下面多项式的值:P(x)=a n x n+a n-1x n-1+…+a1x+a0并确定该算法的最差效率类型.b.如果你设计的算法属于Θ(n2),请你为该算法设计一个线性的算法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法设计与分析要点复习:
一、基本概念
1、什么是算法?算法是求解一类问题的人以一种特殊的方法。
一个算法是对特
定问题求解步骤的一种描述,它是指令的有限序列。
2、算法有那些特性?输入、输出、确定性、能行性、有穷性。
3、评估一个算法的指标有那些(或者说分析一个算法的优劣主要考虑的因素)?
正确性、简明性、效率、最优性。
4、算法运行的时间代价的度量不应依赖于算法运行的软件平台,算法运行的软
件包括操作系统和采用的编程语言及其编译系统。
时间代价用执行基本操作(即关键操作)的次数来度量,这是进行算法分析的基础。
5、基本操作(即关键操作)是指算法运行中起主要作用且花费最多时间的操作。
6、基本操作是个概念,无法具体定义。
问题的实例长度是指作为该问题的一个
实例的输入规模的大小。
这个概念也很难精确定义。
算法的时间(或)空间复杂度是由问题实例长度的函数来表示的。
即:一个算法的时间代价由该算法用于问题长度为n的实例所需要的基本操作次数来表示。
7、算法的时间复杂度、空间复杂度。
T(n)、S(n)
8、在实际的算法中T(n)是否唯一?不唯一。
可能有最好、最坏、平均情形的时
间复杂度。
9、算法与程序的区别?
10、算法按计算时间可分为两类:多项式是时间算法、指数时间算法。
最常
见的多项式时间算法的渐进时间复杂度之间的关系为:O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n3)
最常见的指数时间算法的渐进时间复杂度之间的关系为:O(2n)<O(n!)< O(n n)
11、算法的作用和地位?
12、算法问题的求解过程是怎样的?如下图所示:
13、
14、简述分治法是怎样的一种算法设计策略。
15、二分查找算法的实现前提?
16、为什么要对二叉排序树进行平衡操作?
17、什么是平衡因子?什么是二叉平衡树?二叉平衡树对平衡因子的取值有
什么要求?
18、最优化问题:是指对于某类问题,给定某些约束条件,满足这些约束条
件的问题解称为可行解。
为衡量可行解的好坏,还给出了称为目标函数的某个数值函数,使目标函数取的最大(或最小)值的可行解称为最优解。
19、贪心算法总是做出在当前看来是最好的选择。
也就是说贪心算法并不从
整体最优上加以考虑,它所作出的选择只是在某种意义上的局部最优选择,即使贪心算法不能得到整体最优解,但其最终结果也是最优解的很好的近似解。
20、贪心选择的基本要素:贪心选择性质、最优子结构性质
21、动态规划算法的基本要素:最优子结构性质、子问题重叠性质。
22、动态规划算法与分治法、贪心法比较有何特点?
23、比较回溯算法、分枝限界算法。