算法分析与设计知识点总结
算法分析与设计总结

第一章算法概述1.算法:解决问题的一种方法或过程;由若干条指令组成的有穷指令。
2.算法的性质:1)输入:有零个或多个输入2)输出:有至少一个输出3)确定性:每条指令是清晰的、无歧义的4)有限性:每条指令的执行次数和时间都是有限的3.算法与程序的区别➢程序是算法用某种程序设计语言的具体实现➢程序可以不满足算法的有限性4.算法复杂性分析1)算法的复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要空间资源的量称为空间复杂性2)三种时间复杂性:最坏情况、最好情况、平均情况3)可操作性最好且最有实际价值的是最坏情况下的时间复杂性第二章递归与分支策略1.递归概念:直接或间接调用自身的算法2.递归函数:用函数自身给出定义的函数3.递归要素:边界条件、递归方程4.递归的应用✧汉诺塔问题void Hanuo(int n,int a,int b,int c){if(n==1) return;Hanuo(n-1,a,c,b);move(a,b)Hanuo(n-1,c,b,a);}✧全排列问题void Perm(Type list[],int k,int m){ //产生list[k,m]的所有排列if(k == m){for(int i = 0;I <= m;i++) cout<<list[i];cout<<endl;}else{for(int i = j; i<=m;i++){Swap(list[k],list[i]);Perm(list,k+1;m);Swap(list[k],list[i])}}}5.分治法的基本思想:将一个规模较大的问题分成若干个规模较小的子问题,这些子问题互相独立且与原问题相同。
6.分治法的使用条件:✓问题的规模缩小到一定程度可以容易地解决✓问题可以分解为若干个规模较小的相同问题✓利用原问题分解出的子问题的解可以合并为原问题的解✓各个子问题是相互独立的7.分治法的时间复杂度8.分治法的应用二分搜索1)时间复杂度 O(logn)2)参考算法快速排序1)快排的运行时间与划分是否对称有关2)时间复杂度O(nlogn)合并排序1)基本思想:将待排元素分成大小大致相同的两个子集合,分别对两个子集合进行排序,最总将排序好的子集合合并成所要求的排序好的集合。
算法设计与分析重点总结

算法设计与分析重点总结考试题型:选择 2* 10个填空2* 10个简答 3* 4个程序分析填空 4* 4个综合(代码)8* 4个第⼀章基础知识1.算法的定义算法就是解决问题的⽅法,是解决某⼀特定问题的⼀组有穷指令的序列,是完成⼀个任务所需要的具体步骤和⽅法2.算法的特征有限性 ⼀个算法总是在执⾏了有穷步的运算之后终⽌确定性:算法的每种运算必须要有确切的定义,不能有⼆义性。
输⼊:每个算法有0个或多个输⼊。
所谓0个输⼊是指算法本⾝定出了初始条件。
输出:⼀个算法产⽣⼀个或多个输出,这些输出是同输⼊有某种特定关系的量可⾏性:算法中有待实现的运算都是基本的运算,原理上每种运算都能由⼈⽤纸和笔在有限的时间内完成。
(实数的算术运算是“不能⾏”的)3.计算过程只满⾜确定性、能⾏性、输⼊、输出四个特性但不⼀定能终⽌的⼀组规则4.算法的有穷性意味着不是所有的计算机程序都是算法5.算法正确性证明数学归纳法,反例:能够使算法运⾏失败的输⼊实例6.算法的好坏:通过数学⽅法进⾏分析,时间复杂度,空间复杂度,循环次数(归并,快排,贪⼼的复杂度)7.算法运⾏中主要影响运⾏时间的语句是基本操作,即占有最多⽐例的语句8.时间复杂度分析:1)确定⽤来表⽰问题规模的变量;2)确定算法的基本操作;3)写出基本操作执⾏次数的函数(运⾏时间函数);4)如果函数依赖输⼊实例,则分情况考虑:最坏情况、最好情况、平均情况;5)只考虑问题的规模充分⼤时函数的增长率,⽤渐近符号O 、Θ、Ω 、o 来表⽰。
6)常⽤O和Θ9.基本操作算法中的某个初等操作,基本操作的选择,必须反映出该操作随着输⼊规模的增加⽽变化的情况第⼆章递归算法1.递归若⼀个对象部分地包含它⾃⼰, 或⽤它⾃⼰给⾃⼰定义, 则称这个对象是递归的;若⼀个过程直接地或间接地调⽤⾃⼰, 则称这个过程是递归的过程。
分为直接递归和间接递归2.特点(1)将问题分解成为形式上更加简单的⼦问题来进⾏求解,递归过程⼀般通过函数或⼦过程来实现(2)问题求解规模缩⼩,把问题转化为规模缩⼩了的同类问题的⼦问题(3)相邻两次重复之间有紧密的联系(4)是否收敛,即终⽌条件3.使⽤递归的三种情况问题的定义数据结构问题求解的过程4.递归模型递归边界(递归的终⽌条件)和递归体5.过程先将整个问题划分为若⼲个⼦问题,通过分别求解⼦问题,最后获得整个问题的解。
!算法设计与分析总复习

!算法设计与分析总复习算法设计与分析是计算机科学中非常重要的一个领域,它涉及到了算法的设计、性能分析和优化等方面。
在准备考试之前,我们需要对算法设计与分析的基本概念和常用算法进行全面复习。
一、算法设计与分析基本概念1.算法的定义:算法是一系列解决特定问题的有限步骤。
2.算法的特性:算法具有明确性、有限性、确定性和输入/输出。
3.算法的正确性:算法必须能够解决问题,并得到正确的答案。
4.算法的效率:算法的时间复杂度和空间复杂度是衡量算法效率的重要指标。
二、常用算法1.排序算法:常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
需要了解每种排序算法的思想、时间复杂度和空间复杂度,并能够对其进行实现和优化。
2.查找算法:常用的查找算法包括顺序查找、二分查找、哈希查找等。
需要了解每种查找算法的思想和时间复杂度,并能够对其进行实现和应用。
3. 图算法:图算法包括深度优先(DFS)、广度优先(BFS)、最短路径算法(Dijkstra算法、Floyd算法)等。
需要了解这些算法的思想、时间复杂度和应用场景,并能够对其进行实现和应用。
4.动态规划算法:动态规划算法适用于具有重叠子问题和具有最优子结构性质的问题。
需要了解动态规划算法的基本思想、时间复杂度和应用场景,并能够对具体问题进行动态规划的设计和实现。
5.贪心算法:贪心算法常用于解决最优化问题,每一步都选择当前最优解,以期最终达到全局最优解。
需要了解贪心算法的基本思想、时间复杂度和应用场景,并能够对具体问题进行贪心算法的设计和实现。
三、算法的时间复杂度和空间复杂度1. 时间复杂度:算法的时间复杂度表示算法的执行时间和输入数据规模之间的关系。
常见的时间复杂度有O(1)、O(logn)、O(n)、O(nlogn)、O(n^2)等。
需要掌握各种时间复杂度的计算方法和复杂度的比较。
2.空间复杂度:算法的空间复杂度表示算法的内存消耗和输入数据规模之间的关系。
算法分析与设计基本知识点复习

2.重叠子问题 动态规划应用于组合优化问题的第二个特征是问 题自身具有重叠子问题。 动态规划算法的运行时间取决于两个因素的乘积: 备忘录方法(64) 自顶向下的动态规划方法具有如下特点: · 它是一种对自然问题求解的机械转换。 · 方法自身可以确定计算子问题的顺序。 · 可能不需要计算出所有子问题的解。
找最大值与最小值分治算法
算法思想 如果我们将分治策略用于此问题,每次将 问题分成大致相等的两部分,分别在这两部分 中找出最大值与最小值,再将这两个子问题的 解组合成原问题的解,就可得到该问题的分治 算法。
归并排序算法(P28) 归并排序的关键操作是归并两个已排序的子序 列的过程。
归并排序最坏情况下的时间复杂度Θ(n lb n)要优 于冒泡排序最坏情况下的时间复杂度Θ(n2)。
渐近表示(P8)
渐进表示:是方便地表示算法的最坏情况下,计算的复杂度。 三个定义,三例题。 定义1.1如果存在三个正常数
第2章 分 治 法
递归(P13) 递归程序可被简单地定义为对自己的调用。 递归程序要求必须有终止条件。 斐波那契(Fibonacci)序列。 • 替换方法(P16) • 用替换方法解某个递归方程时,分为两步。首 先猜测问题解的某个界限,然后用数学归纳法证明 所猜测解的正确性。 • 主方法(P18) 主定理(三种情况,三个例题)
分治法的基本思想 (p20) 分治法在每一层递归上由三个步骤组成: (1)划分(divide):将原问题分解为若干规模较小、 相互独立、与原问题形式相同的子问题。 (2)解决(conquer):若子问题规模较小,则直接求 解;否则递归求解各子问题。 (3)合并(combine):将各子问题的解合并为原问题 的解。
循环不变式具有以下三个性质: 初始:在循环的第一次迭代之前,循环不变式为 真。 维持:如果在循环的某次迭代之前循环不变式为 真,那么在下一次迭代之前,循环不变式仍然为真。 终止:当循环终止时,循环不变式给出有用性质, 这个性质可以用于证明算法的正确性
算法分析与设计知识点

算法分析与设计知识点算法是计算机科学中非常重要的一个概念,它是解决问题的有效方法和步骤的描述。
在实际的软件开发过程中,算法的设计和分析是必不可少的环节。
本文将介绍一些算法分析与设计的知识点,帮助读者更好地理解和运用算法。
一、算法分析的重要性在计算机科学中,算法的分析是一项关键任务。
通过对算法进行深入分析,我们可以评估其效率和性能,并选择最优算法来解决特定问题。
算法分析的重要性体现在以下几个方面:1. 时间复杂度:算法的时间复杂度描述了算法在输入规模增大时所需要的时间。
通过对算法的时间复杂度进行分析,我们可以预估算法的运行时间,从而选择更加高效的算法。
2. 空间复杂度:算法的空间复杂度描述了算法在运行过程中所需要的额外空间。
通过对算法的空间复杂度进行分析,我们可以评估算法对内存的消耗,避免出现内存溢出等问题。
3. 算法效率:通过算法分析,我们可以比较不同算法的效率和性能,选择合适的算法来解决问题。
高效的算法可以减少计算时间和资源消耗,提高程序的运行速度。
4. 问题复杂度:算法分析还可以帮助我们理解和评估问题的复杂度。
对问题的复杂度进行分析,有助于判断是否存在多项式时间解决问题的算法,并帮助我们进一步优化算法。
二、常见算法设计方法在算法设计中,有许多常见的设计方法可以帮助我们解决不同类型的问题。
以下是几种常见的算法设计方法:1. 贪心算法:贪心算法是一种简单而高效的算法设计方法。
在每个步骤中,贪心算法总是选择当前最优解,而不考虑未来可能带来的影响。
贪心算法通常用于求解一些最优化问题,如背包问题和最小生成树问题。
2. 动态规划:动态规划是一种将复杂问题分解成较小子问题的方法。
通过记忆已解决的子问题的解,动态规划可以避免重复计算,并提高算法的效率。
动态规划常用于求解最短路径问题、最长公共子序列等。
3. 分治算法:分治算法是一种将大问题分解成相互独立的小问题,并逐个解决的方法。
通过将问题分解为多个子问题,分治算法可以简化问题的求解过程。
算法设计与分析复习要点

算法设计与分析的复习要点第一章:算法问题求解基础算法是对特定问题求解步骤的一种描述,它是指令的有限序列。
一.算法的五个特征:1.输入:算法有零个或多个输入量;2.输出:算法至少产生一个输出量;3.确定性:算法的每一条指令都有确切的定义,没有二义性;4.可行性:算法的每一条指令必须足够基本,它们可以通过已经实现的基本运算执行有限次来实现;5.有穷性:算法必须总能在执行有限步之后终止。
二.什么是算法?程序与算法的区别1.笼统地说,算法是求解一类问题的任意一种特殊的方法;较严格地说,算法是对特定问题求解步骤的一种描述,它是指令的有限序列。
2.程序是算法用某种程序设计语言的具体实现;算法必须可终止,程序却没有这一限制;即:程序可以不满足算法的第5个性质“有穷性”。
三.一个问题求解过程包括:理解问题、设计方案、实现方案、回顾复查。
四.系统生命周期或软件生命周期分为:开发期:分析、设计、编码、测试;运行期:维护。
五.算法描述方法:自然语言、流程图、伪代码、程序设计语言等。
六.算法分析:是指对算法的执行时间和所需空间的估算。
算法的效率通过算法分析来确定。
七.递归定义:是一种直接或间接引用自身的定义方法。
一个合法的递归定义包括两部分:基础情况和递归部分;基础情况:以直接形式明确列举新事物的若干简单对象;递归部分:有简单或较简单对象定义新对象的条件和方法八.常见的程序正确性证明方法:1.归纳法:由基础情况和归纳步骤组成。
归纳法是证明递归算法正确性和进行算法分析的强有力工具;2.反证法。
第二章:算法分析基础一.会计算程序步的执行次数(如书中例题程序2-1,2-2,2-3的总程序步数的计算)。
二.会证明5个渐近记法。
(如书中P22-25例2-1至例2-9)三.会计算递推式的显式。
(迭代法、代换法,主方法)四.会用主定理求T(n)=aT(n/b)+f(n)。
(主定理见P29,如例2-15至例2-18)五.一个好的算法应具备的4个重要特征:1.正确性:算法的执行结果应当满足预先规定的功能和性能要求;2.简明性:算法应思路清晰、层次分明、容易理解、利于编码和调试;3.效率:算法应有效使用存储空间,并具有高的时间效率;4.最优性:算法的执行时间已达到求解该类问题所需时间的下界。
高校计算机专业算法分析与设计知识梳理

高校计算机专业算法分析与设计知识梳理在高校计算机专业的学习中,算法分析与设计是一门重要的课程。
它不仅是计算机科学的基础,也是解决实际问题的关键。
本文将对高校计算机专业算法分析与设计的知识进行梳理和总结,以帮助读者更好地理解和应用这门课程。
一、算法的概念和基本性质在计算机科学中,算法是指用于解决问题的一系列有序步骤。
它是一种精确而又可执行的描述,能够根据输入产生输出。
算法的基本性质包括输入、输出、确定性、有限性和可行性。
算法的好坏通常通过时间复杂度和空间复杂度来评估。
二、算法设计的基本思想1. 分治法:将原问题划分为若干个规模较小的子问题,逐个解决子问题,最后将子问题的解合并得到原问题的解。
2. 动态规划:利用问题的最优子结构和子问题重叠性质,通过保存已解决子问题的结果,避免重复计算并得到最优解。
3. 贪心算法:在每一步选择中,都采取当前状态下最好或最优的选择,以期望达到全局最好或最优的结果。
4. 回溯法:通过探索所有可能的解空间,逐步构建问题的解,当发现当前选择不能得到有效解时,回溯到前一步选择继续尝试。
三、常见算法及其应用1. 排序算法:包括冒泡排序、插入排序、选择排序、快速排序、归并排序等,用于将一组数据按照某一标准进行排序。
2. 查找算法:包括线性查找、二分查找、哈希查找等,用于在一组数据中寻找特定元素。
3. 图算法:包括深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(如迪杰斯特拉算法、弗洛伊德算法)等,用于解决与图相关的问题。
4. 字符串匹配算法:包括朴素字符串匹配算法、KMP算法、Boyer-Moore算法等,用于在一段文本中查找特定字符串的出现位置。
5. 动态规划算法:如背包问题、最长公共子序列问题、最短路径问题等,用于解决涉及递推关系的问题。
四、算法分析与效率评估算法分析是评估算法性能和效率的过程。
常用的方法有时间复杂度分析和空间复杂度分析。
时间复杂度是指算法运行时间随输入规模增长的增长趋势,常用大O表示法表示。
算法分析设计知识点

算法分析设计知识点在计算机科学领域,算法分析设计是一项重要的技能,用于解决各种问题和优化程序。
本文将介绍算法分析设计的一些关键知识点,帮助读者深入了解这个领域。
1. 算法的定义和分类算法是解决特定问题的有序步骤集合,包括输入、输出和执行的操作。
算法可以根据其实现方式和问题类型进行分类。
常见的算法类型包括搜索算法、排序算法、图算法等。
2. 时间复杂度和空间复杂度在算法分析设计时,时间复杂度和空间复杂度是评估算法性能的重要指标。
时间复杂度表示算法执行所需的时间量级,通常用大O符号表示。
空间复杂度表示算法执行所需的存储空间量级。
3. 常见的算法分析技术为了评估算法的效率和性能,研究人员开发了许多算法分析技术。
其中常见的技术包括渐进分析、递归方程、平摊分析等。
这些技术可帮助我们了解算法在不同输入规模下的性能表现。
4. 常用的算法设计策略在算法设计中,常用的策略包括分治法、贪心法、动态规划等。
分治法将问题分解为子问题,然后将子问题的解组合起来得到原问题的解;贪心法通过每一步选择局部最优解来达到整体最优解;动态规划则利用子问题的重叠性质,将问题划分为相互依赖的子问题并逐步求解。
5. 常见的搜索算法搜索算法用于在一个数据集中查找指定的元素或确定一个问题的解。
常见的搜索算法包括线性搜索、二分搜索、广度优先搜索、深度优先搜索等。
这些算法在不同的场景下具有不同的适用性和效率。
6. 常见的排序算法排序算法用于按照一定的规则对数据进行排序。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
每种算法都有其独特的实现思路和性能特点。
7. 算法优化和算法复杂性理论在算法分析设计中,优化算法的性能是一个重要的研究方向。
研究人员通过改进算法的实现方式、优化数据结构和算法策略来提高算法的效率。
此外,算法复杂性理论研究了算法在资源利用方面的界限和限制。
8. 算法实践与应用算法分析设计不仅仅是一门理论学科,还有广泛的实际应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章概述
算法的概念:算法是指解决问题的一种方法或过程,是由若干条指令组成的有穷序列。
算法的特征:
可终止性:算法必须在有限时间内终止;
正确性:算法必须正确描述问题的求解过程;
可行性:算法必须是可实施的;
算法可以有0个或0个以上的输入;
算法必须有1个或1个以上的输出。
算法与程序的关系:
区别:程序可以不一定满足可终止性。
但算法必须在有限时间内结束;
程序可以没有输出,而算法则必须有输出;
算法是面向问题求解的过程描述,程序则是算法的实现。
联系:程序是算法用某种程序设计语言的具体实现;
程序可以不满足算法的有限性性质。
算法描述方式:自然语言,流程图,伪代码,高级语言。
算法复杂性分析:
算法复杂性的高低体现运行该算法所需计算机资源(时间,空间)的多少。
算法复杂性度量:
期望反映算法本身性能,与环境无关。
理论上不能用算法在机器上真正的运行开销作为标准(硬件性能、代码质量影响)。
一般是针对问题选择基本运算和基本存储单位,用算法针对基本运算与基本存储单位的开销作为标准。
算法复杂性C依赖于问题规模N、算法输入I和算法本身A。
即C=F(N, I, A)。
第二章递归与分治
分治法的基本思想:
求解问题算法的复杂性一般都与问题规模相关,问题规模越小越容易处理。
分治法的基本思想是,将一个难以直接解决的大问题,分解为规模较小的相同子问题,直至这些子问题容易直接求解,并且可以利用这些子问题的解求出原问题的解。
各个击破,分而治之。
分治法产生的子问题一般是原问题的较小模式,这就为使用递归技术提供了方便。
递归是分治法中最常用的技术。
使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。
分治法所能解决的问题一般具有以下几个特征:
该问题的规模缩小到一定的程度就可以容易地解决;
该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;
利用该问题分解出的子问题的解可以合并为该问题的解;
该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
(这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。
)
递归的概念:
直接或间接地调用自身的算法称为递归算法,用函数自身给出定义的函数称为递归函数。
反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。
第三章动态规划
动态规划的基本思想:
动态规划算法与分治法类似,其思想把求解的问题分成许多阶段或多个子问题,然后按顺序求解各子问题。
最后一个阶段或子问题的解就是初始问题的解。
分治法求解时,子问题数目太多,从而导致解决原问题需要耗费指数级时间。
与分治法不同的是,动态规划中分解得到的子问题往往不是互相独立的。
但不同子问题的数目常常只有多项式级。
用分治法求解时,有些子问题被重复计算了许多次。
动态规划的适用条件:
动态规划法解所能解决的问题一般具有以下两个基本因素:
一、最优子结构性质
当问题的最优解包含着其子问题的最优解时,称该问题具有最优子结构性质。
二、重叠子问题性质
递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。
这种性质称为子问题的重叠性质。
其它同分治法。
动态规划问题的特征:
求解的问题是组合优化问题;
求解过程需要多步判断,从小到大依次求解;
子问题目标函数最优解之间存在依赖关系;
动态规划算法设计的基本步骤和要素:
基本步骤:
(1)找出最优解的性质,并刻画其结构特征。
(考察是否适合采用动态规划法。
)
(2)递归地定义最优值。
(建立递归式或动态规划方程)
(3)以自底向上的方式(或以自顶向下的备忘录方法)计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解。
要素:
最优子结构
重叠子问题
备忘录(表格)
应用实例分析:
1、矩阵连乘问题:
(1)分析最优解结构:
计算A[i:j]的最优次序所包含的计算矩阵子链A[i:k]和A[k+1:j]的次序也是最优的。
矩阵连乘计算次序问题的最优解包含着其子问题的最优解,满足最优子结构性质。
问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。
(2)建立递归关系;
(3)计算最优值—递归求解(递归求解最优值复杂度较高的原因是:子问题重复度高);
计算最优值—迭代查表求解
计算最优值—备忘录求解
(4)构造最优解
第四章贪心法
贪心算法的基本思想:
当一个问题具有最优子结构性质时,可用动态规划方法求解,但有时会有更简单有效的方法。
顾名思义,贪心算法总是作出在当前看来最好的选择。
也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。
贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。
在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
贪心算法中,较大子问题的解恰好包含了较小子问题的解作为子集,这与动态规划算法设计中的优化原则本质上是一致的。
动态规划算法在某一步决定优化函数的最大或最小值时,需要考虑到它的所有子问题的优化函数值,然后从中选出最优的结果;贪心算法的每步判断时,不考虑子问题的计算结果,而是根据当时情况采取“只顾眼前”的贪心策略决定取舍。
贪心算法的设计要素:
可以用贪心算法求解的问题一般具有2个重要的性质:
1、最优子结构性质:
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。
问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征
2、贪心选择性质:
贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。
这是贪心算法与动态规划算法的主要区别。
动态规划算法通常以自底向上的方式求解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。
对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。
应用实例:
1、活动安排问题:
第五章回溯法
回溯法的基本思想:
回溯法的使用条件:
回溯法适用于搜索问题和优化问题。
回溯法的设计要素:
针对问题定义解空间:
问题解向量
解向量分量取值集合
构造解空间树
两类典型的解空间树:
子集树:当所给的问题是从n个元素的集合S中找出满足某种性质的子集时,相应的解空间树称为子集树。
子集树通常有2n个叶结点
排列树:当所给的问题是确定n个元素满足某种性质的排列时,相应的解空间树称为排列树。
排列树通常有n!个叶结点。
判断问题是否满足多米诺性质。
搜索解空间树,确定剪枝函数。
确定存储搜索路径的数据结构。
第六章分支限界法
分支限界法的基本思想:
分支界限法类似与回溯法,也是在问题解空间中搜索问题解的一种算法。
分支界限法与回溯法思想对比:
求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。
搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。
这个过程一直持续到找到所需的解或活结点表为空时为止。
常见的两种分支界限法:
队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
最大堆:最大效益优先
最小堆:最小耗费优先。