高中必修三数学上期末试卷及答案
【好题】高中必修三数学上期末试卷带答案

^^
^
③线性回归方程 y b x a 所在直线必过 x, y ;
④曲线上的点与该点的坐标之间具有相关关系;
⑤在一个 2 2列联表中,由计算得 K 2 13.079 ,则其两个变量之间有关系的可能性是
90
19. 已知集合 U {1, 2, 3, , n} ,集合 A、 B是集合 U的子集,若 A B ,则称“集
合 A 紧跟集合 B”,那么任取集合 U的两个子集 A、 B,“集合 A紧跟集合 B”的概率为 ______. 20. 下列说法: ①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
BCD 边长的概率是 __________.
16. 运行如图所示的程序框图,则输出的所有
y 值之和为 ___________.
17. 一只口袋中装有形状、大小都相同的 6 只小球,其中有 3 只红球、 2 只黄球和 1 只蓝 球. 若从中 1 次随机摸出 2 只球,则 2 只球颜色相同的概率为 ____. 18. 若从甲、乙、丙、丁 4 位同学中选出 2 名代表参加学校会议,则甲、乙两人至少有一 人被选中的概率为 ____.
3
1
C.
7
4
D.
13
10. 赵爽是我国古代数学家、天文学家大约在公元
222 年赵爽为《周碑算经》一书作序
时,介绍了“勾股圆方图”,亦称“赵爽弦图” ( 以弦为边长得到的正方形是由
4 个全等的
直角三角形再加上中间的一个小正方形组成的 ) 类比“赵爽弦图”,赵爽弦图可类似地构造
如图所示的图形,它是由个 3 全等的等边三角形与中间的一个小等边三角形组成的一个大
2020年高中必修三数学上期末试题(带答案)

2020年高中必修三数学上期末试题(带答案)一、选择题1.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .652.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)B .45(8)C .50(8)D .55(8)3.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于022C .现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数): ①甲地:5个数据是中位数为24,众数为22; ②乙地:5个数据是中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8 则肯定进入夏季的地区有( ) A .①②③B .①③C .②③D .①4.执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( )A .30B .20C .12D .85.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020216.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤7.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα8.按照程序框图(如图所示)执行,第3 个输出的数是( )A .6B .5C .4D .39.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <10.已知统计某校1000名学生的某次数学水平测试成绩得到样本频率分布直方图如图所示,则直方图中实数a 的值是( )A .0.020B .0.018C .0.025D .0.0311.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( ) A .13B .512C .12D .71212.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定二、填空题13.已知某程序框图如图所示,则该程序运行后输出S 的值为__________.14.如图,在半径为1的圆上随机地取两点,B E,连成一条弦BE,则弦长超过圆内接正 边长的概率是__________.BCD15.阅读如图所示的程序框图,若,,,则输出的结果是________.16.如图所示的程序框图,输出的S的值为()A.12B.2C.1-D.12-17.如图是一个算法的流程图,则输出的a的值是__________.18.执行如图所示的程序框图,输出的S值为__________.19.投掷一枚均匀的骰子,则落地时,向上的点数是2的倍数的概率是_________,20.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.三、解答题21.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)执行该程序框图,若输出的结果为4,求输入的实数x的值.22.2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g)进行了问卷调查,得到如下频率分布直方图:()1求频率分布直方图中a的值;()2以频率作为概率,试求消费者月饼购买量在600g1400g~的概率;()3已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的5%,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求(频率分布直方图中同一组的数据用该组区间的中点值作代表)?23.随着手机的普及,大学生迷恋手机的现象非常严重.为了调查双休日大学生使用手机的时间,某机构采用不记名方式随机调查了使用手机时间不超过10小时的50名大学生,将50人使用手机的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到下表,根据数据完成下列问题: 使用时间/时 (]0,2(]2,4(]4,6(]6,8(]8,10大学生/人51015128(1)完成频率分布直方图,并根据频率分布直方图估计大学生使用手机时间的中位数(保留小数点后两位);(2)用分层抽样的方法从使用手机时间在区间(]0,2,(]2,4,(]4,6的大学生中抽取6人,再从这6人中随机抽取2人,求这2人取自不同使用时间区间的概率.24.某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试,先从这些学生的成绩中随机抽取了50名学生的成绩,按照[)[)[]50,60,60,70,...,90,100分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分)(1)求频率分布直方图中的x 的值,并估计50名学生的成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表)(2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数. 25.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查. 将他们的年龄分成6段:[)[)[)[)[)[)20,30,30,40,40.50,50,60,60,70,70,80,后得到如图所示的频率分布直方图,问:30,60的人数;(1)在40名读书者中年龄分布在[)(2)估计40名读书者年龄的平均数和中位数.26.某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[)90,100分成5组,制成如图所示频率分直方80,90,[]70,80,[)60,70,[)50,60,[)图.(1)求图中x的值及这组数据的众数;50,60内的男生数与女生数的比为3:2,若在满意度评分值为(2)已知满意度评分值在[)[)50,60的人中随机抽取2人进行座谈,求2人均为男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.2.D解析:D 【解析】 【分析】先将这个二进制转化成十进制,然后除8取余数,即可得出答案. 【详解】∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10). 再利用“除8取余法”可得:45(10)=55(8). 故答案选D .【点睛】本道题考查了不同进制数的转化,较容易,先将二进制数转化成十进制,然后转为八进制,即可.3.B解析:B 【解析】试题分析:由统计知识①甲地:5个数据的中位数为24,众数为22可知①符合题意;而②乙地:5个数据的中位数为27,总体均值为24中有可能某一天的气温低于22C ,故不符合题意,③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.若由有某一天的气温低于22C 则总体方差就大于10.8,故满足题意,选C 考点:统计初步 4.A解析:A 【解析】从流程图看,该程序是利用辗转相除法计算,m n 的最大公约数.题设中已知72m =,输入的数为n ,程序给出了它们的最大公约数为6,比较四个数,只有72,30的最大公约数为6,故输入的数n 的值为30,选A. 5.C解析:C 【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯,11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭,111113355720172019S ∴=++++⨯⨯⨯⨯11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1110091220192019⎛⎫=-=⎪⎝⎭. 本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.6.B解析:B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体; 当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.7.C解析:C 【解析】 【分析】由框图可知程序的功能是输出三者中的最大者,比较大小即可. 【详解】由程序框图可知a 、b 、c 中的最大数用变量x 表示并输出, ∵,42ππα⎛⎫∈⎪⎝⎭∴0cos α12sin α<<<<, 又()y xsin α=在R 上为减函数,y sin x α=在()0∞+,上为增函数, ∴()sin sin αα<()cos sin αα,()sin cos αα<()sin sin αα故最大值为()cos sin αα,输出的x 为()cos sin αα故选:C 【点睛】本题主要考查了选择结构.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.8.B解析:B 【解析】第一次输出1,A =第二次输出123A =+=,第三次输出325A =+= ,选B.9.C解析:C 【解析】由程序框图可知a=4a+1=1,k=k+1=2; a=4a+1=5,k=k+1=3; a=4a+1=21,k=k+1=4; a=4a+1=85,k=k+1=5; a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.10.A解析:A 【解析】 【分析】由频率分布直方图的性质列方程,能求出a . 【详解】由频率分布直方图的性质得:()100.0050.0150.0350.0150.0101a +++++=,解得0.020a =. 故选A . 【点睛】本题考查实数值的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.A解析:A 【解析】设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,共有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(B 1,B 2),(A 2,A 1),(B 1,A 1),(B 2,A 1),(B 1,A 2),(B 2,A 2),(B 2,B 1)12种情况,而星期六安排一名男生、星期日安排一名女生共有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2)4种情况,则发生的概率为P=41123=, 故选:A .12.C解析:C 【解析】 甲的平均成绩11(7378798793)825x =++++=,甲的成绩的方差22222211[(7382)(7882)(7982)(8782)(9382)]50.45s =-+-+-+-+-=;乙的平均成绩21(7989899291)885x =++++=,乙的成绩的方差22222221[(7988)(8988)(8988)(9288)(9188)]21.65s =-+-+-+-+-=.∴12x x <,乙比甲成绩稳定. 故选C .二、填空题13.【解析】【分析】执行程序框图依次写出每次循环得到的Si 的值当i =2019时不满足条件退出循环输出S 的值为【详解】执行程序框图有S =2i =1满足条件执行循环Si =2满足条件执行循环Si =3满足条件执行解析:12- 【解析】 【分析】执行程序框图,依次写出每次循环得到的S ,i 的值,当i =2019时,不满足条件2018i ≤退出循环,输出S 的值为12-. 【详解】 执行程序框图,有 S =2,i =1满足条件2018i ≤ ,执行循环,S 3=-,i =2 满足条件2018i ≤ ,执行循环,S 12=-,i =3 满足条件2018i ≤ ,执行循环,S 13=,i =4 满足条件2018i ≤ ,执行循环, S =2,i =5 …观察规律可知,S 的取值以4为周期,由于2018=504*4+2,故有: S 12=-, i =2019, 不满足条件2018i ≤退出循环,输出S 的值为12-, 故答案为12-. 【点睛】本题主要考查了程序框图和算法,其中判断S 的取值规律是解题的关键,属于基本知识的考查.14.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BE BC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点, 当另一端点在劣弧CD 上时,BE BC >, 设圆的半径为r ,劣弧CD 的长度是23rπ, 圆的周长为2r π,所以()21323rP A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.15.a 【解析】【分析】首先分析程序框图的作用是输出三个数中的最大值从而比较三个数的大小求得结果【详解】根据题中所给的程序框图可以判断出其作用是输出三者中的最大出那个数因为a=log1213=log23> 解析:【解析】 【分析】首先分析程序框图的作用是输出三个数中的最大值,从而比较三个数的大小,求得结果. 【详解】根据题中所给的程序框图,可以判断出其作用是输出三者中的最大出那个数,因为,而,所以其最大值是, 故答案是:. 【点睛】该题考查的是有关程序框图的输出结果的求解问题,属于简单题目.16.A 【解析】【分析】模拟执行程序框图依次写出每次循环得到的k 的值当k=2012时不满足条件退出循环输出的值为【详解】模拟执行程序框图可得满足条件满足条件满足条件满足条件由此可见S 的周期为3故当k=20解析:A 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的k ,S 的值,当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12.【详解】模拟执行程序框图,可得 2,1S k ==满足条件2011k ≤,1,22S k ==, 满足条件2011k ≤,1,3S k =-=,满足条件2011k ≤,2,4S k ==,满足条件2011k ≤,1,52S k ,== 由此可见S 的周期为3,20113670...1,÷= 故当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 故选A. 【点睛】本题主要考查了循环结构的程序框图,属于基础题.17.7【解析】执行程序框图当输入第一次循环;第二次循环;第三次循环;第四次循环;第五次循环结束循环输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点解析:7 【解析】执行程序框图,当输入2,10a b ==,第一次循环,3,9==a b ;第二次循环,4,8a b ==;第三次循环,5,7a b ==;第四次循环,6,6a b ==;第五次循环,7,5a b ==,结束循环输出7a =,故答案为7.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.18.37【解析】根据图得到:n=18S=19n=12S=31n=6S=37n=0判断得到n>0不成立此时退出循环输出结果37故答案为:37解析:37【解析】根据图得到:n=18,S=19,n=12S=31,n=6,S=37,n=0,判断得到n>0不成立,此时退出循环,输出结果37.故答案为:37.19.【解析】分析:先确定总事件数再确定向上的点数是2的倍数的事件数最后根据古典概型概率公式求结果详解:因为投掷一枚均匀的骰子向上的点数有6种情况向上的点数是2的倍数的事件数为3所以概率为点睛:古典概型中解析:1 2【解析】分析:先确定总事件数,再确定向上的点数是2的倍数的事件数,最后根据古典概型概率公式求结果.详解:因为投掷一枚均匀的骰子,向上的点数有6种情况,向上的点数是2的倍数的事件数为3,所以概率为31 =62.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.20.【解析】【分析】首先从茎叶图中找到出现次数最多的数从而得到甲组数据的众数找出乙组数据的最大值和最小值两者作差求得极差得到结果【详解】根据众数的定义可以断定甲组数据的众数是21;从茎叶图中可以发现其最解析:21,43【解析】【分析】首先从茎叶图中找到出现次数最多的数,从而得到甲组数据的众数,找出乙组数据的最大值和最小值,两者作差求得极差,得到结果. 【详解】根据众数的定义,可以断定甲组数据的众数是21;从茎叶图中可以发现,其最大值为52,其最小值为9,所以极差为52943-=, 故答案为21,,43. 【点睛】该题考查的是茎叶图的应用,涉及到的知识点有一组数据的众数和极差的概念,只要明确众数是数据中出现次数最多的数,极差是最大值和最小值的差距,从而求得结果.三、解答题21.(1) 22,0log ,042,4x x x y x x x ⎧<⎪=<≤⎨⎪>⎩当0x =时,y 无解.(2) 2x =-.【解析】 【分析】(1)根据框图得到函数解析式;(2)结合第一问得到的函数表达式,分情况得到x 值即可. 【详解】(1)函数解析式为22,0log ,042,4x x x y x x x ⎧<⎪=<≤⎨⎪>⎩,当0x =时,y 无解.(2)当0x <时,24x =,2x =-或2(舍). 当04x ≤≤时,2log 4x =,解得16x =(舍). 当4x >时,24x =,解得2x =(舍) 所以2x =- 【点睛】这个题目考查了程序框图的应用,以及分段函数的应用;解决分段函数求值问题的策略:(1)在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f (f (f (a )))的值时,一般要遵循由里向外逐层计算的原则.22.(1)a 0.001=;(2)0.62;(3)12.08吨 【解析】 【分析】(1)由频率分布直方图列出方程能求出a .(2)由频率分布直方图先求出满足题意的频率,即得概率.(3)由频率分布直方图先求出人均月饼购买量,由此能求出该超市应准备12.08吨月饼恰好能满足市场需求. 【详解】()1由()0.00020.00055a 0.00050.000254001++++⨯=,解得a 0.001=. ()2消费者月饼购买量在600g 1400g ~的频率为: ()0.000550.0014000.62+⨯=,∴消费者月饼购买量在600g 1400g ~的概率为0.62.()3由频率分布直方图得人均月饼购买量为:()4000.00028000.0005512000.00116000.000520000.000254001208g⨯+⨯+⨯+⨯+⨯⨯=,∴2012085%1208⨯⨯=万克12.08?=吨, ∴该超市应准备12.08吨月饼恰好能满足市场需求. 【点睛】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,是中档题. 23.(1)频率分布直方图见解析,中位数约为5.33小时;(2)1115【解析】 【分析】(1)根据题中数据,完成频率分布表,可完成频率分布直方图,设中位数为x ,则()()0.050.1020.1540.5x +⨯+⨯-=,可得中位数;(2)分别求出从6人中随机抽取2人总的事件数及2人取自不同使用时间区间的事件数,由古典概型公式可得概率. 【详解】解:(1)根据题意,可将数据做如下整理:设中位数为x ,则0.050.1020.1540.5x +⨯+⨯-=,解得 5.33x =. ∴大学生每天使用手机时间的中位数约为5.33小时.(2)用分层抽样的方法从使用时间在区间(]0,2,(]2,4,(]4,6中抽取的人数分别为1,2,3,分别设为a ,1b ,2b ,1c ,2c ,3c ,所有的基本事件为1ab ,2ab ,1ac ,2ac ,3ac ,12b b ,11b c ,12b c ,13b c ,21b c ,22b c ,23b c ,12c c ,13c c ,23c c ,这2名大学生取自同一时间区间的基本事件12b b ,12c c ,13c c ,23c c ,设这2名大学生取自不同使用时间区间为事件A ,符合条件的总事件数为15,在同一区间内的情形有4种情况,∴()41111515P A =-=, 故这2名年轻人取自不同使用时间区间的概率为1115.. 【点睛】本题考查了频率分布直方图及系统抽样的相关性质,考查了分层抽样的使用及概率的求法,考查了推理与计算能力,是中档题. 24.(1)0.02x =;中位数为2203;平均数为74(2)1200 【解析】 【分析】(1)由频率分布直方图求出第4组的频率,从而得到0.02x =,从而可估计所抽取的50名学生成绩的平均数和中位数;(2)先求出50名学生中成绩不低于70分的频率为0.6,由此可以估计高三年级2000名学生中成绩不低于70分的人数. 【详解】(1)由频率分布直方图得,第4组的频率为为1(0.010.030.030.01)100.2-+++⨯= 则0.02x =故可抽到50名学生成绩的平均数为(550.01650.03750.03850.02950.01)1074⨯+⨯+⨯+⨯+⨯⨯=由于前两组的频率之和为0.10.30.4+=前三组的频率之和为0.10.30.30.7++=, 故中位数在第3组.设中位数为t 分,则有()700.030.1t -⨯=,则2203t = 即所求中位数为2203(2)由(1)知50学生中不低于70分的的频率为0.30.20.10.6++=,用用样本估计总体,可估计高三年级2000名学生中成绩不低于70分的人数为20000.61200⨯=【点睛】本题考查由频数分布表、直方图求频数、频率,频率分布直方图坐标轴的应用,考查了学生的计算能力,属于基础题.25.(1)24人 (2)平均数为54,中位数为55【解析】【分析】(1)读书者中年龄分布在[)30,60的频率,由此求得在40名读书者中年龄分布在[)30,60的人数.(2)利用每组中点乘以对应的频率再相加,求得平均数的估计值;通过从左边开始,频率之和为0.5的位置,由此求得中位数.【详解】(1)由频率分布直方图知年龄在[30,60)的频率为(0.010.020.03)100.6++⨯=, 所以40名读书者中年龄分布在[30,60)的人数为400.624⨯=人.(2)40名读书者年龄的平均数为:250.05350.1450.2550.3650.25750.154⨯+⨯+⨯+⨯+⨯+⨯=.设中位数为x ,则0.005100.01100.02100.03(50)0.5x ⨯+⨯+⨯+⨯-=,解得55x =, 即40名读书者年龄的中位数为55.【点睛】本小题主要考查利用频率分布直方图求频数,考查利用频率分布直方图估计平均数和中位数,属于基础题.26.(1)0.020x =,众数为75;(2)()310P A =【解析】【分析】(1)根据小矩形面积和为1,求解x ,根据最高小矩形的组中值为众数,求解即可. (2)先根据频率分布直方图求解在[)50,60内有5人,其中男生3人,女生2人,记为1A ,2A ,3A ,1B ,2B ,古典概型概率公式,求解即可.【详解】(1)由()0.0050.0100.0350.030101x ++++⨯=,解得0.020x =.这组数据的众数为75.(2)满意度评分值在[)50,60内有1000.005105⨯⨯=人.其中男生3人,女生2人,记为1A ,2A ,3A ,1B ,2B .记满意度评分值为[)50,60的人中随机抽取2人进行座谈,恰有1名女生为事件A . 总基本事件空间为:()()()()()()()()()(){}12131112232122313212,,,,,,,,,A A A A A B A B A A A B A B A B A B B B Ω= 则总基本事件个数为10个,A 包含的基本事件个数为3个.根据古典概型概率公式可知()310P A =. 【点睛】本题考查频率分布直方图,古典概型,属于中档题.。
高中数学必修三期末试题带答案

一、选择题1.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .382.质地均匀的正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为( ) A .19B .164C .18D .1163.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为423,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB 2C 3D .2π4.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )A.116B.18C.38D.3165.已知函数1()(1)g xx x=+,程序框图如图所示,若输出的结果1011S=,则判断框中可以填入的关于n的判断条件是()A.10?n≤B.10?n>C.11?n≤D.11?n>6.对任意非零实数a、b,若a b⊗的运算原理如图所示,则121log43-⎛⎫⊗ ⎪⎝⎭的值为()A .13B .1C .43D .27.定义语句“mod r m n =”表示把正整数m 除以n 所得的余数赋值给r ,如7mod31=表示7除以3的余数为1,若输入56m =,18n =,则执行框图后输出的结果为( )A .6B .4C .2D .18.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( )A .1x ≤B .2x ≤C .3x ≤D .4x ≤9.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,⋯,960,分组后在第一组采用简单随机抽样的方法抽到的号码为29,则抽到的32人中,编号落入区间[]200,480的人数为 A .7B .9C .10D .1210.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,811.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和9212.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y .根据收集到的数据可知12345150x x x x x ++++=,由最小二乘法求得回归直线方程为0.6754.9y x =+,则12345y y y y y ++++的值为( )A .75B .155.4C .375D .466.2二、填空题13.重庆一中高一,高二,高三的模联社团的人数分别为25,15,10,现采用分层抽样的方法从中抽取部分学生参加模联会议,已知在高二年级和高三年级中共抽取5名同学,若从这5名同学中再随机抽取2名同学承担文件翻译工作,则抽取的两名同学来自同一年级的概率为__________.14.若正方体1111ABCD A BC D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.15.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.16.如下图,程序框图中,若输入4,10m n ==,则输出a 的值是________.17.某程序流程框图如图所示,现执行该程序,输入下列函数()2sin3f x x π=, ()2cos3f x x π=,()4tan 3f x x π=,则可以输出的函数是()f x =__________.18.执行如图所示的程序框图,输出的T =______.19.某校有高一学生n 名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为10n的样本,若样本中男生比女生多12人,则n =_______.20.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.三、解答题21.端午节吃粽子是我国的传统习俗,设一盘中装有6个粽子,其中豆沙粽1个,肉粽2个,白粽3个,这三种粽子的外观完全相同.(Ⅰ)从中不放回的任取3个,记X 表示取到的肉粽个数,求X 的分布列和()E X ; (Ⅱ)从中有放回的任取3个,记Y 表示取到的肉棕个数,求(2)P Y ≥; (Ⅲ)比较()E X 与()E Y 的大小(只需写出结论). 22.已知集合{(,)|[0,2],[1,1]}M x y x y =∈∈-. (1)若,x y Z ∈,求0x y +≥的概率; (2)若,x y R ∈,求0x y +≥的概率. 23.编写程序计算98246++⋅⋅⋅++的值.24.设计一个算法,找出闭区间[]20,25上所有能被3整除的整数.25.某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额3000元)、专业二等奖学金(奖金额1500元)及专业三等奖学金(奖金额600元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校2018年500名学生周课外平均学习时间频率分布直方图,图(2)是这500名学生在2018年周课外平均学习时间段获得专业奖学金的频率柱状图.(Ⅰ)求这500名学生中获得专业三等奖学金的人数;(Ⅱ)若周课外平均学习时间超过35小时称为“努力型”学生,否则称为“非努力型”学生,列22⨯联表并判断是否有99.9%的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生2018年获得的专业奖学金额为随机变量X ,求随机变量X 的分布列和期望.22()()()()()n ad bc K a b c d a c b d -=++++26.为鼓励职工积极参与健康步行,某单位组织职工进行了健身走活动.根据该单位的1000名职工在健身走中行走步数(单位:百步,步数均在50到210之间)得到如图的频率分布直方图,由频率分布直方图估计出这1000名职工中有56%的职工行走步数小于130(百步).(1)计算图中的a 值,并以此估计该单位职工行走步数的中位数;(2)为鼓励职工积极参与健康步行,该单位决定对本次步数排在前200名的职工进行奖励,授予“运动达人”称号.一名职工走了160(百步),请根据频率分布直方图判断该职工能否获得“运动达人”称号.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH的面积,由测度比为面积比得答案.【详解】如图所示,由正方形ABNH、DEFM的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB==,可得正方形MCNG的边长为2,则阴影部分的面积为224⨯=,多边形ABCDEFGH的面积为2332214⨯⨯-⨯=.则向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为42 147=.故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.2.C解析:C【分析】露在外面的6个数字为2,0,1,3,0,3,则向下的数分别为1和2,求出所有的基本事件个数和向下数字为1和2的基本事件个数,代入概率公式即可.【详解】抛两个正四面体,共有4416⨯=个基本事件,向下数字为1和2的基本事件共有2个,分别是1,2和()2,1,所以向下数字为1和2的概率21168 P==,故选:C【点睛】本题主要考查随机事件概率的计算,难度较低.3.A解析:A【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果.【详解】因为四棱锥的体积为3,设球半径为R,则1122332R R R R =⨯⨯⨯⨯∴=因此所求概率为3131423ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.4.B解析:B 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为, 由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B. 【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.5.A解析:A 【分析】按照程序框图执行几次,找出此框图的算法功能,再根据已知条件1011S =进一步判断框内条件即可. 【详解】按照程序框图依次执行:110,1,01122S n S ===+=-⨯ 1111112,11+12232233n S ==-+=--=-⨯以此类推,可得111S n =-+ . 若1011S =,可得10n =,若要输出1011S =,则判断框内应填10n ≤?.故选:A. 【点睛】本题主要考查根据程序框图的输出结果判断程序框图中的选择条件,考查逻辑推理能力.6.B解析:B 【解析】模拟执行程序框图可得程序的功能是计算并输出分段函数1,2,b a b aa b a a b b-⎧⎪⎪⊗=⎨+⎪>⎪⎩的值,∵121log 4233-⎛⎫=<= ⎪⎝⎭.∴12131log 4132--⎛⎫⊗== ⎪⎝⎭.本题选择B 选项. 7.C解析:C 【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的m 的值. 【详解】第一次进入循环,因为56除以18的余数为2, 所以2r,18m =,2n =,判断r 不等于0,返回循环;第二次进入循环,因为18除以2的余数为0, 所以0r =,2m =,0n =,判断r 等于0, 跳出循环,输出m 的值为2.故选C. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.C解析:C 【分析】计算出输出15y =时,3x =;继续运行程序可知继续赋值得:4x =,此时不满足判断框条件,结束程序,从而可得判断框条件. 【详解】解析 当x =-3时,y =3;当x =-2时,y =0;当x =-1时,y =-1;当x =0时,y =0; 当x =1时,y =3;当x =2时,y =8; 当x =3时,y =15,x =4,结束. 所以y 的最大值为15,可知x ≤3符合题意. 判断框应填:3x ≤ 故选C 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.C解析:C 【分析】根据系统抽样的定义,可知抽到的号码数可组成一个以301=-n a n 为通项公式的等差数列,令*200301480,≤-≤∈n n N ,解不等式可得结果. 【详解】每组人数=9603230÷=人,即抽到号码数的间隔为30,因为第一组抽到的号码为29,根据系统抽样的定义,抽到的号码数可组成一个等差数列,且*2930(1)301,=+-=-∈n n n n N a ,令200301480≤-≤n ,得2014813030≤≤n ,可得n 的取值可以从7取到16,共10个,故选C . 【点睛】本题主要考查系统抽样的定义及应用,转化为等差数列是解决本题的关键.10.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图11.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.512.C解析:C 【分析】首先求得x 的值,然后利用线性回归方程过样本中心点的性质求解12345y y y y y ++++的值即可. 【详解】 由题意可得:12345305x x x x x x ++++==,线性回归方程过样本中心点,则:0.6754.975y x =⨯+=, 据此可知:12345y y y y y ++++5375y ==. 本题选择C 选项. 【点睛】本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】由人数之比求出抽出的5名同学中高二高三年级人数通过列举出从这5名同学中再随机抽取2名同学的所有可能即可求出抽取的两名同学来自同一年级的概率【详解】解:高二高三抽取人数之比为所以5名同学中高二解析:25【分析】由人数之比求出抽出的5名同学中高二、高三年级人数,通过列举出从这5名同学中再随机抽取2名同学的所有可能即可求出抽取的两名同学来自同一年级的概率. 【详解】解:高二高三抽取人数之比为15:103:2=,所以5名同学中高二有3人,高三有2人, 设高二3人为123,,A A A ,高三2人为12,B B ,则随机抽取2名同学的可能有12131112232122313212A A A A A B A B A A A B A B A B A B B B ,,,,,,,,,共十种可能,其中抽取的两名同学来自同一年级的有12132312,,,A A A A A A B B 四种可能,则 抽取的两名同学来自同一年级的概率为42105=, 故答案为:25. 【点睛】本题考查了分层抽样,考查了古典概型概率的求解.本题的关键是求出高二、高三各抽出的人数.14.【解析】【分析】先求出满足题意的体积运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点可用其体积满足的基本事件为为球心3为半径的求内部在正方体中的部分其体积为故则的长度大于3的概率【点 解析:16π-【解析】 【分析】先求出满足题意的体积,运用几何概型求出结果 【详解】由题意可知总的基本事件为正方体内的点,可用其体积3327=, 满足||3AE 的基本事件为A 为球心3为半径的求内部在正方体中的部分, 其体积为31493832V ππ=⨯⨯=,故则AE 的长度大于3的概率9211276P ππ=-=-.【点睛】本题考查了几何概型,读懂题意并计算出结果,较为基础15.80【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100该数满足解析:80 【分析】本道题一一列举,把满足条件的编号一一排除,即可. 【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80. 【点睛】本道题考查了列举法计算锁编号问题,难度一般.16.20【解析】模拟执行程序可得:不满足条件整除以不满足条件整除以不满足条件整除以不满足条件整除以满足条件整除以退出循环输出的值为点睛:本题主要考查的程序框图的知识点解题的关键是要读懂程序框图模拟执行程解析:20 【解析】模拟执行程序,可得:4,10m n ==,1i =,4a =不满足条件n 整除以a2i =,8a =不满足条件n 整除以a3i =,12a =不满足条件n 整除以a4i =,16a =不满足条件n 整除以a5i =,20a =满足条件n 整除以a ,退出循环,输出a 的值为20点睛:本题主要考查的程序框图的知识点.解题的关键是要读懂程序框图.模拟执行程序,依次写出每次循环得到的i ,a 的值,当20a =的时候,满足条件n 整除以a ,退出循环,即可得到输出a 的值为20.17.【分析】根据得知函数的图象关于点对称由可得知函数的周期为于此可在题中三个函数中找出合乎条件的函数作出输出结果【详解】可知函数的图象关于点对称由得所以函数的周期为由三角函数的周期公式可知函数和的最小正解析:()2cos 3f x x π=. 【分析】根据()302f x f x ⎛⎫+--= ⎪⎝⎭得知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()f x + 302f x ⎛⎫+= ⎪⎝⎭可得知函数()y f x =的周期为3,于此可在题中三个函数中找出合乎条件的函数作出输出结果. 【详解】()302f x f x ⎛⎫+--= ⎪⎝⎭,可知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()302f x f x ⎛⎫++= ⎪⎝⎭,得()3322f x f x f x ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的周期为3.由三角函数的周期公式可知,函数()2sin3f x x π=和()2cos 3f x x π=的最小正周期为3,函数()4tan3f x x π=的最小正周期为34,不合乎要求; 对于函数()2sin 3f x x π=,323sin sin 04342f ππ⎡⎤⎛⎫⎛⎫-=⨯-=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;对于函数()2cos3f x x π=,323cos cos 04342f ππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,合乎题意. 所以,函数()2cos3f x x π=的图象关于点3,04⎛⎫- ⎪⎝⎭对称, 故输出的函数为()2cos 3f x x π=,故答案为()2cos 3f x x π=. 【点睛】本题考查程序框图,考查三角函数的周期性和对称性,能根据抽象函数关系式得出函数的基本性质,是解本题的关键,属于中等题.18.16【解析】第一次运行:;第二次运行:;第三次运行:此时程序结束所以输出的解析:16 【解析】第一次运行:1,145,123,134T S S n T ===+==+==+=;第二次运行:45,549,325,459T S S n T =<==+==+==+=;第三次运行:9,9413,527,9716T S S n T ===+==+==+=.此时1613T S =>=,程序结束,所以输出的16T =19.【分析】依题意可得解之即得解【详解】依题意可得解得故答案为1320【点睛】本题主要考查分层抽样意在考查学生对这些知识的理解掌握水平和分析推理能力 解析:1320【分析】 依题意可得6512111110n⎛⎫-⨯= ⎪⎝⎭,解之即得解. 【详解】 依题意可得6512111110n⎛⎫-⨯=⎪⎝⎭,解得1320n =. 故答案为1320 【点睛】本题主要考查分层抽样,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.【分析】首先从茎叶图中找到出现次数最多的数从而得到甲组数据的众数找出乙组数据的最大值和最小值两者作差求得极差得到结果【详解】根据众数的定义可以断定甲组数据的众数是21;从茎叶图中可以发现其最大值为其 解析:21,43【分析】首先从茎叶图中找到出现次数最多的数,从而得到甲组数据的众数,找出乙组数据的最大值和最小值,两者作差求得极差,得到结果. 【详解】根据众数的定义,可以断定甲组数据的众数是21;从茎叶图中可以发现,其最大值为52,其最小值为9,所以极差为52943-=, 故答案为21,,43. 【点睛】该题考查的是茎叶图的应用,涉及到的知识点有一组数据的众数和极差的概念,只要明确众数是数据中出现次数最多的数,极差是最大值和最小值的差距,从而求得结果.三、解答题21.(Ⅰ)见解析,()1E X =;(Ⅱ)727;(Ⅲ)()()E X E Y =. 【分析】(Ⅰ)X 的取值分别为0,1,2,分别求出其概率可得分布列,再由期望公式计算期望;(Ⅱ)(2)P Y ≥(2)(3)P Y P Y ==+=,由此可得; (Ⅲ)Y 的取值分别为0,1,2,3,分别计算概率后可得期望. 【详解】(Ⅰ)由题意X 的取值分别为0,1,2,34361(0)5C P X C ===,1224363(1)5C C P X C ===,14361(2)5C P X C ===,X 的分布列为:期望为()0121555E X =⨯+⨯+⨯=; (Ⅱ)2233242(2)69C P Y ⨯⨯===,3321(3)627P Y ===, 所以217(2)(2)(3)92727P Y P Y P Y ≥==+==+=, (Ⅲ)又3348(0)627P Y ===,1233244(1)69C P Y ⨯⨯===,所以421()12319927E Y =⨯+⨯+⨯=. 所以()()E X E Y = 【点睛】本题考查随机变量的分布列与数学期望,掌握概率公式是解题基础. 22.(1)89 (2)78【解析】试题分析:(1)因为x ,y ∈Z ,且x ∈[0,2],y ∈[-1,1],基本事件是有限的,所以为古典概型,这样求得总的基本事件的个数,再求得满足x ,y ∈Z ,x+y≥0的基本事件的个数,然后求比值即为所求的概率.(2)因为x ,y ∈R ,且围成面积,则为几何概型中的面积类型,先求x ,y ∈Z ,求x+y≥0表示的区域的面积,然后求比值即为所求的概率. 试题(1)设"x+y 0,,"x y Z ≥∈为事件,,A x y Z ∈,[]0,2x ∈,即[]0,1,2;1,1x y =∈-,即1,0,1y =-.则基本事件有:()()()()()()()()()0,1,0,0,0,1,1,1,1,0,1,1,2,1,2,0,2,1---共9个,其中满足的基本事件有8个,所以()89p A =.故,,0x y Z x y ∈+≥的概率为89. (2)设"0,,"x y x y R +≥∈为事件B ,因为][0,2,1,1x y ⎡⎤∈∈-⎣⎦,则基本事件为如图四边形ABCD 区域,事件B 包括的区域为其中的阴影部分.所以()11-1122-11722===228ABCD ABCDABCD S S p B S S ⨯⨯⨯⨯⨯=⨯四边形阴影四边形四边形,故",0"x y R x y ∈+≥,的概率为78. 点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.23.答案详见解析. 【解析】 【分析】根据题干要求写出循环结构的程序即可. 【详解】 程序如下: i=2 sum=0 DO sum=sum+i i=i+2LOOP UNTIL i>98 PRINT sum END 【点睛】应用循环语句编写程序时需注意: ①循环语句中的循环变量一般要设初始值.②在循环过程中需要有“结束”的语句,程序中最忌“死循环”. 24.见解析 【解析】试题分析:可通过循环结构的算法实现求闭区间[]20,25上所有能被3整除的整数. 试题第一步,用20除以3,余数不为0,故20不能被3整除; 第二步,用21除以3,余数为0,故21能被3整除; 第三步,用22除以3,余数不为0,故22不能被3整除; 第四步,用23除以3,余数不为0,故23不能被3整除; 第五步,用24除以3,余数为0,故24能被3整除; 第六步,用25除以3,余数不为0,故25不能被3整除; 第七步,指出在闭区间[20,25]上能被3整除的整数为21和24. 25.(Ⅰ)160人;(Ⅱ)有;(Ⅲ)见解析. 【分析】(Ⅰ)根据频率之和为1,得到获得三等奖学金的频率,再由总人数得到答案;(Ⅱ)根据频率分布直方图和频率柱状图,填写好列联表,再计算出2K 进行判断,得到答案;(Ⅲ)先得到X 可取的值,再分别求出其概率,根据数学期望的公式,得到答案. 【详解】()I 获得三等奖学金的频率为:()()()0.0080.0160.0450.150.040.0560.01650.40.0160.00850.40.32++⨯⨯+++⨯⨯++⨯⨯=5000.32160⨯=,故这500名学生获得专业三等奖学金的人数为160人.()II 每周课外学习时间不超过35小时的“非努力型”学生有()5000.0080.0160.040.040.0560.0165440⨯+++++⨯=人,其中获得一、二等奖学金学生有()()()5000.0080.0160.0450.055000.040.0560.01650.250.0592x ++⨯⨯+⨯++⨯⨯+=每周课外学习时间超过35小时称为“努力型”学生有5000.1260⨯=人,其中获得一、二等奖学金学生有()600.350.2536⨯+=人,22⨯列联表如图所示:()250034836922442.3610.8344060128372K ⨯⨯-⨯=≈>⨯⨯⨯故有99.9%的把握认为获得一二等奖学金与学习“努力型”学生的学习时间有关;()III X 的可能取值为0,600,1500,3000 ()6000.32P X ==, ()15000.198P X ==, ()30000.058P X ==,()010.320.1980.0580.424P X ==---=X 的分布列00.4246000.3215000.19830000.058192297174663EX x =⨯+⨯++⨯=++=元.【点睛】本题考查利用频率分布直方图求频率和频数,通过求2K 的值进行判断是否相关,随机变量的分布列和数学期望,属于中档题. 26.(1)0.012a =,中位数125;(2)能. 【分析】(1)由小于130步的频率是56%可计算出a ,同时也可计算出b ,由频率分布直方图可计算出中位数(频率0.5对应的步数);(2)前200人,即频率为0.2,求出频率0.2对应的步数后可得. 【详解】解(1)因为1000名职工中有56%的单位职工行走步数小于130(百步). 所以(0.0020.0060.008)200.56a +++⨯=. 所以0.012a =.因为[]50,110的频率为(0.0020.0060.008)200.32++⨯=, 又[]110,130的频率为0.24,所以中位数m 在[]110,130里面,所以1100.500.320.75200.560.32m --==-. 所以125m =.(2)设步数为y 百步能获得称号,前200名即占1000名职工的0.20由于[150,170]是0.16,[170,210]是0.08, 所以y 应在[150,170]中取值,1500.04200.16y -=,所以155y =百步, 160155>,该职工能获得“运动达人”称号.【点睛】本题考查频率分布直方图,由频率分布直方图计算中位数,属于基础题.。
【苏科版】高中数学必修三期末试卷(及答案)

一、选择题1.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .232.在下列命题中,①从分别标有1,2,……,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是518; ②341()2x x+的展开式中的常数项为2;③设随机变量~(0,1)N ξ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是( ) A .② B .①③ C .②③D .①②③3.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。
在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是( ) A .15B .1115C .35D .134.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .237B .4715C .1715D .53175.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( )A .84B .56C .35D .286.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A .2B .3C .4D .57.如图,“大衍数列”:0,2,4,8,12….来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n 项和的程序框图.执行该程序框图,输入10m =,则输出的S =( )A .100B .140C .190D .2508.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A .7SB .21SC .28SD .36S9.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生总人数是( )A .24B .48C .56D .6410.从两个班级各随机抽取5名学生测量身高(单位:cm ),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高x 甲,x 乙及方差2s 甲,2s 乙的关系为( )A .x 甲>x 乙,2s 甲>2s 乙B .x 甲>x 乙,2s 甲<2s 乙C .x 甲<x 乙,2s 甲<2s 乙D .x 甲<x 乙,2s 甲>2s 乙11.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 17612.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .91二、填空题13.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为___________.14.有一个底面半径为2,高为2的圆柱,点1O ,2O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点1O 或2O 的距离不大于1的概率是________.15.十六个图钉组成如图所示的四行四列的方阵,从中任取三个图钉,则至少有两个位于同行或同列的概率为______.16.下图所示的算法流程图中,输出的S表达式为__________.a ,则以下程序运行后的结果是_____.17.若4518.如图是一个算法流程图,则输出的S的值为______.19.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在7078()kg~的人数为__________.20.一个容量为40的样本,分成若干组,在它的频率分布直方图中,某一组相应的小长方形的面积为0.4,则该组的频数是__________.三、解答题21.考试结束以后,学校对甲、乙两个班的数学考试成绩进行分析,规定:大于或等于80分为优秀,80分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个班全部110人中随机抽取1人为优秀的概率为3 11.(1)若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:22()()()()()n ad bcKa b c d a c b d-=++++.优秀非优秀合计甲班10乙班30合计11022.某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:[40,50),[50,60),[60,70),…,[90,100]后得到如图频率分布直方图.(1)根据频率分布直方图,估计众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在[50,60)的概率.23.编写一个程序,要求输入两个正数a和b的值,输出a b和b a的值,并画出程序框图. 24.下面程序的功能是输出1~100之间的所有偶数.程序:i=1DOm=iMOD2IF①THENPRINTiENDIF②LOOPUNTILi>100END(1)试将上面的程序补充完整;(2)改写为WHILE型循环结构程序.25.潜叶蝇是南方地区水稻容易遭受的虫害之一,成虫将虫卵产在叶片里,待虫卵孵化之后幼虫会在叶片中啃叶肉,使得秧苗的叶片呈现白色的状态,进而降低水稻产量.经研究,每只潜叶蝇的平均产卵数y和夏季平均温度x有关,现收集了某地区以往6年的数据,得到下面数据统计表格.x︒212325272931平均温度Ci平均产卵数i y个711212264115(Ⅰ)根据相关系数r判断,潜叶蝇的平均产卵数y与平均温度x是否具有较强的线性相=+,若没有较强的线性相关关系,若有较强的线性相关关系,求出线性回归方程y bx ar>时,可认为变量有较强的线性相关关关关系,请说明理由(一般情况下,当0.75系);(Ⅱ)根据以往的统计,该地区夏季平均气温为()C ξ︒近似地服从正太分布()226.5,N σ,且()125282P ξ<≤=.当该地区某年平均温度达到28C ︒以上时,潜叶蝇快速繁殖引发虫害,需要进行一次人工治理,每次的人工治理成本为200元/公顷(其他情况均不需要人工治理),且虫害一定会导致水稻减产,对过往10次爆发虫害时的减产损失进行统计,结果如下:用样本的频率估计概率,预测未来2年,每公顷水稻可能因潜叶蝇虫害造成的经济损失Y (元)的数学期望.(经济损失=减产损失+治理成本) 参考公式和数据:()()niix x y y r --=∑()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-()()61700iii x x yy =--=∑,6214126ii x==∑,61240i i y ==∑,()6218816i i y y=-=∑,8.4≈786≈.26.两台机床同时生产直径为10的零件,为了检验产品质量,质量质检员从两台机床的产品中各抽取4件进行测量,结果如下:如果你是质量检测员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.2.C解析:C 【解析】 【分析】根据二项式定理,古典概型,以及正态分布的概率计算,对选项进行逐一判断,即可判断. 【详解】对①:从9张卡片中不放回地随机抽取2次,共有9872⨯=种可能; 满足2张卡片上的数奇偶性不同,共有54240⨯⨯=种可能; 根据古典概型的概率计算公式可得,其概率为405729P ==,故①错误; 对②:对341()2x x +写出通项公式可得434124144122rrr r r rr x T C C xx ---+⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 令1240r -=,解得3r =,即可得常数项为31422C -⋅=,故②正确;对③:由正态分布的特点可知11(10)(1)22P P p ξξ-<<=-≥=-,故③正确. 综上所述,正确的有②③. 故选:C. 【点睛】本题考查古典概型的概率计算,二项式定理求常数项,以及正态分布的概率计算,属综合性基础题.3.B解析:B 【分析】找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可. 【详解】不超过15的素数为2,3,5,7,11,13,共6个,任取2个分别为2,3(),2,5(),2,7(),2,11(),2,13(),3,5(),3,7(),3,11(),3,13(),5,7(),5,11(),5,13(),7,11(),7,13(),11,13(),共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知1115P=. 【点睛】本题主要考查了古典概型,基本事件,属于中档题.4.B解析:B 【分析】由试验结果知120对0~1之间的均匀随机数,x y ,满足0101x y ≤<⎧⎨≤<⎩,面积为1,两个数能与1构成钝角三角形三边的数对(,)x y ,满足221x y +<且0101x y ≤<⎧⎨≤<⎩, 1x y +>,面积为142π-,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值. 【详解】由题意,120名同学随机写下的实数对()x y ,落在由0101x y <<⎧⎨<<⎩的正方形内,其面积为1.两个数能与1构成钝角三角形应满足2211x y x y +>⎧⎨+<⎩且0101x y <<⎧⎨<<⎩, 此为一弓形区域,其面积为142π-.由题意134421120π-=,解得4715π=,故选B . 【点睛】本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.5.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =, 则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环; 3i =,6n =,10S =,不满足7i ≥,循环;4i =,10n =,20S =,不满足7i ≥,循环; 5i =,15n =,35S =,不满足7i ≥,循环; 6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =. 故选:A . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.6.C解析:C 【分析】按照用二分法求函数零点近似值的步骤求解即可,注意验证精确度的要求. 【详解】解:模拟程序的运行,可得121,1,2,0.1n x x d ====,令22f xx ,则()()110,220f f =-<=>,()1.5, 1.50.250m f ==>,满足条件()()120, 1.5f m f x x <=,此时1.510.50.1-=>,不符合精确度要求;()2, 1.25, 1.250.43750n m f ===-<,不满足条件()()110, 1.25f m f x x <=,此时1.5 1.250.250.1-=>,不符合精确度要求;()3, 1.375, 1.3750.1090n m f ===-<,不满足条件()()110, 1.375f m f x x <=,此时1.5 1.3750.1250.1-=>,不符合精确度要求;()4, 1.4375, 1.43750.0660n m f ===>,满足条件()()120, 1.4375f m f x x <=,此时1.4375 1.3750.06250.1-=<,符合精确度要求. 退出循环,输出n 的值为4. 故选:C. 【点睛】本题主要考查循环结构程序框图以及用二分法求区间根的问题,属于基础题型,二分法是把函数的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而求零点近似值的方法.7.C解析:C 【分析】根据程序框图进行运算,直到满足判断框中的条件,就停止运行,输出结果. 【详解】第一次运行,211,0,0002n n a S -====+=,不符合n m ≥,继续运行;第二次运行,22,22n n a ===,022S =+=,不符合n m ≥,继续运行,第三次运行,213,42n n a -===,426S =+=,不符合n m ≥,继续运行,第四次运行,24,82n n a ===,8614S =+=,不符合n m ≥,继续运行,第五次运行,5n =,21122n a -==,121426S =+=, 不符合n m ≥,继续运行,第六次运行,6n =,2182n a ==,182644S =+=, 不符合n m ≥,继续运行,第七次运行,217,242n n a -===,244468S =+=, 不符合n m ≥,继续运行,第八次运行,28,322n n a ===,3268100S =+=, 不符合n m ≥,继续运行,第九次运行,219,40,401001402n n a S -====+=, 不符合n m ≥,继续运行,第十次运行,210,50,501401902n n a S ====+=,符合n m ≥,退出运行,,输出190S =.故选:C 【点睛】本题考查了程序框图中循环结构,正确理解程序框图是解题关键,属于基础题. 8.C解析:C 【分析】根据程序框图列出所有的循环步骤,最后一次循环中的S 满足条件,以及倒数第二次循环中S 不满足条件来选择四个选项中的判断条件. 【详解】第一次循环:1S =,不满足条件,2i =; 第二次循环:3S =,不满足条件,3i =; 第三次循环:6S =,不满足条件,4i =; 第四次循环:10S =,不满足条件,5i =; 第五次循环:15S =,不满足条件,6i =; 第六次循环:21S =,不满足条件,7i =; 第七次循环:28S =,满足条件,输出的值为7. 所以判断框中的条件可填写“28S ”. 故选C .【点睛】本题考查程序框图中判断条件的选择,这种类型的问题一般要列举出所有的循环步骤,利用最后一次和倒数第二次循环中变量满足与不满足来筛选判断条件,考查逻辑推理能力,属于中等题.9.B解析:B 【分析】根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解. 【详解】 由直方图可知,从左到右的前3个小组的频率之和为1(0.01250.0375)510.250.75-+⨯=-=, 又前3个小组的频率之比为1:2:3,所以第二组的频率为20.750.256⨯=, 所以学生总数120.2548n =÷=,故选B. 【点睛】本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.10.C解析:C 【解析】 【分析】利用公式求得x 甲和x 乙,从而得到x 甲和x 乙的大小,观察两组数据的波动程度,可以得到2s 甲与2s 乙的大小,从而求得结果.【详解】 甲班平均身高1691621501601591605x ++++==甲,乙班平均身高1801601501501651615x ++++==乙,所以x x <甲乙,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以22s s >乙甲,故选C. 【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.11.C解析:C 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 12.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.二、填空题13.【解析】从分别写有12345的5张卡片中随机抽取1张放回后再随机抽取1张基本事件总数n=5×5=25抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(21)(31)(32)(41)(42解析:25【解析】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4), 共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=2.5故答案为25. 14.【分析】本题利用几何概型求解先根据到点的距离等于1的点构成图象特征求出其体积最后利用体积比即可得点到点的距离不大于1的概率;【详解】解:由题意可知点P 到点或的距离都不大于1的点组成的集合分别以为球心解析:16【分析】本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P 到点1O ,2O 的距离不大于1的概率; 【详解】解:由题意可知,点P 到点1O 或2O 的距离都不大于1的点组成的集合分别以1O 、2O 为球心,1为半径的两个半球,其体积为314421233ππ⨯⨯⨯=,又该圆柱的体积为22228V r h πππ==⨯⨯=,则所求概率为41386P ππ==.故答案为:16【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.15.【分析】先求出从16个图钉中任取3个的所有方法数再求出三个图钉分别位于三行或三列的情况的数量利用排除法即得解【详解】从16个图钉中任取3个共有种取法;三个图钉分别位于三行或三列的情况的数量:种至少有 解析:2935【分析】先求出从16个图钉中任取3个的所有方法数,再求出三个图钉分别位于三行或三列的情况的数量,利用排除法,即得解. 【详解】从16个图钉中任取3个共有316560C =种取法;三个图钉分别位于三行或三列的情况的数量:34432=96C ⨯⨯⨯种 至少有两个位于同行或者同列的情况的数量:56096464-=种. 所以至少有两个位于同行或同列的概率为2935. 故答案为:2935【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归,数学运算的能力,属于中档题.16.【分析】根据流程图知当满足条件执行循环体依此类推当不满足条件退出循环体从而得到结论【详解】满足条件执行循环体满足条件执行循环体满足条件执行循环体…依此类推满足条件执行循环体不满足条件退出循环体输出故解析:112399++++【分析】根据流程图知当1i =,满足条件100i <,执行循环体,1S =,依此类推,当100i =,不满足条件100i <,退出循环体,从而得到结论. 【详解】1i =,满足条件100i <,执行循环体,1S =2i =,满足条件100i <,执行循环体,12S =+ 3i =,满足条件100i <,执行循环体,123S =++…依此类推99i =,满足条件100i <,执行循环体,1299S =++⋯+,100i =,不满足条件100i <,退出循环体,输出1112399S S ==+++⋯+,故答案为112399++++.【点睛】本题主要考查了循环结构应用问题,此循环是先判断后循环,属于中档题.17.5【分析】根据条件就是求a 除以10的整数减去a 除以10的商加上a 除以10的余数【详解】【点睛】本题考查除法与取整同余等概念考查基本求解能力解析:5 【分析】根据条件就是求a 除以10 的整数减去a 除以10 的商加上a 除以10 的余数. 【详解】4545\10/1010[]54 4.55 4.5.1010a a aMOD -+=-+=-+= 【点睛】本题考查除法与取整、同余等概念,考查基本求解能力.18.【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循 解析:7【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟程序的运行,可得1S =,1i =满足条件4i <,执行循环体,2S =,2i =满足条件4i <,执行循环体,4S =,3i = 满足条件4i <,执行循环体,7S =,4i = 此时,不满足条件4i <,退出循环,输出S 的值为7. 故答案为7. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19.240【解析】该校2000名男生中体重在的人数为解析:240 【解析】该校2000名男生中体重在()7078kg ~的人数为2000(0.020.01)4240⨯+⨯=.20.16【解析】根据频率直方图的含义每组小矩形的面积就是该组数据在总体中出现的频率所以该组频数为故填16解析:16 【解析】根据频率直方图的含义,每组小矩形的面积就是该组数据在总体中出现的频率,所以该组频数为400.4=16⨯,故填16.三、解答题21.(1)不能;(2)736. 【分析】(1)根据已知条件求得优秀人数,填写22⨯列联表,计算出2K 的值,由此作出判断. (2)根据古典概型概率计算方法,计算出所求概率. 【详解】(1)依题意,在甲、乙两个班全部110人中随机抽取1人为优秀的概率为311,所以总的优秀人数为31103011⨯=人.由于甲班优秀10人,故乙班优秀20人,由此填写22⨯列联表如下:根据列联表中的数据,得到()22110103020507.48610.82830805060K⨯⨯-⨯=≈<⨯⨯⨯,因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”.(2)设“抽到9或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A 包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7个.所以P(A)=736,即抽到9号或10号的概率为736.【点睛】本小题主要考查22⨯列联表独立性检验,考查古典概型概率计算,属于中档题.22.(1)众数为75,中位数为73.33;(2)9 10.【分析】(1)由频率分布直方图能求出a=0.030.由此能求出众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,基本事件总数2510n C==,这两人的分数至少一人落在[50,60)包含的基本事件个数112 2339m C CC=+=,由此能求出这两人的分数至少一人落在[50,60)的概率.【详解】(1)由频率分布直方图得:(0.0100.0150.0150.0250.005)101a+++++⨯=,解得0.030a=,所以众数为:7080752+=,[)40,70的频率为(0.010.0150.015)100.4++⨯=,[)70,80的频率为0.03100.3⨯=,中位数为:0.50.4701073.330.3-+⨯≈.(2)用分层抽样的方法从[)40,60的学生中抽取一个容量为5的样本,[)40,50的频率为0.1,[)50,60的频率为0.15,[)40,50∴中抽到0.1520.25⨯=人,[)50,60中抽取0.15530.25⨯=人,从这五人中任选两人参加补考,基本事件总数2510n C==,这两人的分数至少一人落在[)50,60包含的基本事件个数1122339m C C C =+=,所以这两人的分数至少一人落在[)50,60的概率910m P n ==. 【点睛】在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式mP n=求得概率 23.见解析; 【解析】试题分析: 先利用INPUT 语句输入两个正数a 和b 的值,再分别赋值a b 和b a 的值,最后输出a b 和b a 的值 试题程序和程序框图分别如下:24.(1)①m=0②i=i+1;(2)见解析 【分析】(1)如果除以2的余数为零,则为偶数,故填0m =.i 每次增加1,故填1i i =+.(2)根据WHILE 型循环的结构,对原有程序进行改写. 【详解】(1)①m=0②i=i+1(2)改写为WHILE 型循环程序如下: i=1 WHILE i<=100 m=I MOD 2 IF m=0 THEN PRINT i END IF i=i+1 WEND END 【点睛】本小题主要考查循环结构的两种编写程序的方法,属于基础题. 25.(Ⅰ)具有较强的线性相关关系,10220y x =-;(Ⅱ)330元【分析】(Ⅰ)代入公式计算r ,再做判断,根据公式求,b a ,即得结果;(Ⅱ)先确定温度达到28C ︒以上时概率,再确定随机变量取法,分别求出对应概率,最后根据数学期望公式求结果. 【详解】 (Ⅰ)21232527293171121226411526,4066x y ++++++++++=======()()7000.75786niix x y y r --==>=>∑所以潜叶蝇的平均产卵数y 与平均温度x 具有较强的线性相关关系,()()()1217001070nii i ni i xx y y b x x==--===-∑∑,401026220a y bx =-=-⨯=- 10220y bx a x ∴=+=-;(Ⅱ)()12528,2P ξ<≤=()C ξ︒近似地服从正太分布()226.5,N σ,()()12528128,24P P ξξ-<≤∴>==0,1200,1600Y =13141163(0)1,(1200),(1600)444101041020P Y P Y P Y ==-===⨯===⨯= 313()01200140033041020E Y =⨯+⨯+⨯=(元)【点睛】本题考查线性回归方程、数学期望公式、正态分布,考查综合分析求解能力,属中档题. 26.机床乙的零件质量更符合要求,运算见解析. 【详解】先考虑各自的平均数:设机床甲的平均数、方差分别为211x s 、; 机床乙的平均数、方差分别为222x s 、.1109.81010.2104x +++==,210.1109.910104x +++==∴两者平均数相同,再考虑各自的方差:2222211[(1010)(9.810)(1010)(10.210)]0.024s =-+-+-+-= 2222221[(1010)(10.110)(1010)(9.910)]0.0054s =-+-+-+-= ∵2212s s >,∴机床乙的零件质量较稳定,乙更符合要求.。
新高中必修三数学上期末试卷附答案

新高中必修三数学上期末试卷附答案一、选择题1.如图阴影部分为曲边梯形,其曲线对应函数为1x y e =-,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( )A .23e - B .13e - C .43e- D .53e- 2.将A ,B ,C ,D ,E ,F 这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A ,B ,C 三个字母连在一起,且B 在A 与C 之间的概率为( ) A .112B .15C .115D .2153.执行如图的程序框图,那么输出的S 的值是( )A .﹣1B .12C .2D .14.在长为10cm 的线段AB 上任取一点C ,作一矩形,邻边长分別等于线段AC 、CB 的长,则该矩形面积小于216cm 的概率为( ) A .23B .34C .25D .135.执行如图所示的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .56.已知线段MN 的长度为6,在线段MN 上随机取一点P ,则点P 到点M ,N 的距离都大于2的概率为( ) A .34B .23C .12D .137.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <8.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .9.在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A.13B.2C.12D.2310.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率()A.38B.34C.35D.4511.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A.1次B.2次C.3次D.4次12.执行如图所示的程序框图,则输出s的值为()A.10 B.17 C.19 D.36二、填空题13.若正方形ABCD的边长为4, E为四边形上任意一点,则AE的长度大于5的概率等于______14.袋中装有大小相同的总数为5个的黑球、白球若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为______. 15.执行如图所示的伪代码,若输出的y 的值为10,则输入的x 的值是________.16.如图是某算法流程图,则程序运行后输出S 的值为____.17.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.18.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.19.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______.20.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.三、解答题21.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)执行该程序框图,若输出的结果为4,求输入的实数x 的值.22.某单位为了解其后勤部门的服务情况,随机访问了40名其他部门的员工,根据这40名员工对后勤部门的评分情况,绘制了频率分布直方图如图所示,其中样本数据分组区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.(1)求a 的值;(2)估计该单位其他部门的员工对后勤部门的评分的中位数;(3)以评分在[)40,60的受访者中,随机抽取2人,求此2人中至少有1人对后勤部门评分在[)40,50内的概率.23.如下图是某校高三(1)班的一次数学知识竞赛成绩的茎叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求分数在[50,60)的频率及全班人数;(2)求频率分布直方图中的,x y;(3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.24.某医疗器械公司在全国共有100个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这100个销售点的年销量绘制出如下的频率分布直方图.(1)完成年销售任务的销售点有多少个?(2)若用分层抽样的方法从这100个销售点中抽取容量为25的样本,求该五组[2,6), ,[14,18),[18,22),(单位:千台)中每组分别应抽取的销[6,10),____________售点数量.(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取2个,求这两个销售点不在同一组的概率.25.在最强大脑的舞台上,为了与国际X战队PK,假设某季Dr.魏要从三名擅长速算的选手A1,A2,A3,三名擅长数独的选手B1,B2,B3,两名擅长魔方的选手C1,C2中各选一名组成中国战队.假定两名魔方选手中更擅长盲拧的选手C1已确定入选,而擅长速算与数独的选手入选的可能性相等.(Ⅰ)求A1被选中的概率;(Ⅱ)求A1,B1不全被选中的概率.26.某手机厂商在销售某型号手机时开展“手机碎屏险”活动.用户购买该型号手机时可选购“手机碎屏险”,保费为x元,若在购机后一年内发生碎屏可免费更换一次屏幕,为了合理确定保费x的值,该手机厂商进行了问卷调查,统计后得到下表(其中y表示保费为x元时愿意购买该“手机碎屏险”的用户比例):(1)根据上面的数据计算得()()5119.2iii x x y y =--=-∑,求出y 关于x 的线性回归方程;(2)若愿意购买该“手机碎屏险”的用户比例超过0.50,则手机厂商可以获利,现从表格中的5种保费任取2种,求这2种保费至少有一种能使厂商获利的概率.附:回归方程$$ˆy bxa =+中斜率和截距的最小二乘估计分别为()()()121niii nii x x y y b x x ==--=-∑∑$,$a y bx =-$【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】通过定积分可求出空白部分面积,于是利用几何概型公式可得答案. 【详解】由题可知长方形面积为3,而长方形空白部分面积为:()()11001|2x x e dx e x e -=-=-⎰,故所求概率为25133e e---=,故选D. 【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.2.C解析:C 【解析】 【分析】将A ,B ,C 三个字捆在一起,利用捆绑法得到答案. 【详解】由捆绑法可得所求概率为242466A A 1A 15P ==.故答案为C 【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.3.B解析:B 【解析】由题意可得:初如值S=2,k=2015, S=-1,k=2016<2018 S=12,k=2017<2018 2,2018S k ==输出2,选C.4.C解析:C 【解析】 【分析】根据几何概型的概率公式,设AC =x ,则BC =10﹣x ,由矩形的面积S =x (10﹣x )<16可求x 的范围,利用几何概率的求解公式求解. 【详解】设线段AC 的长为xcm ,则线段CB 长为(10)cm x -, 那么矩形面积为(10)16x x -<,2x <或8x >,又010x <<, 所以该矩形面积小于216cm 的概率为42105=. 故选:C 【点睛】本题考查几何概型,考查了一元二次不等式的解法,明确测度比为长度比是关键,是中档题.5.B解析:B 【解析】 【详解】阅读流程图,初始化数值1,1,0a k S =-==. 循环结果执行如下:第一次:011,1,2S a k =-=-==; 第二次:121,1,3S a k =-+==-=; 第三次:132,1,4S a k =-=-==; 第四次:242,1,5S a k =-+==-=; 第五次:253,1,6S a k =-=-==;第六次:363,1,7S a k =-+==-=, 结束循环,输出3S =.故选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.6.D解析:D 【解析】 【分析】根据题意画出图形,结合图形即可得出结论. 【详解】 如图所示,线段MN 的长度为6,在线段MN 上随机取一点P , 则点P 到点M ,N 的距离都大于2的概率为2163P ==. 故选D . 【点睛】本题考查了几何概型的概率计算问题,是基础题.7.C解析:C 【解析】由程序框图可知a=4a+1=1,k=k+1=2; a=4a+1=5,k=k+1=3; a=4a+1=21,k=k+1=4; a=4a+1=85,k=k+1=5; a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.8.B解析:B 【解析】 【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。
【压轴题】高中必修三数学上期末试卷及答案

【压轴题】高中必修三数学上期末试卷及答案一、选择题1.在如图所示的算法框图中,若()321a x dx =-⎰,程序运行的结果S 为二项式()52x +的展开式中3x 的系数的9倍,那么判断框中应填入的关于k 的判断条件是( )A .3K <B .3K >C .2K <D .2K >2.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .33B .3 C .13D .233.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A .B .C .D .4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13 C .12D .235.执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( )A .30B .20C .12D .86.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020217.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人; ③西部地区学生小刘被选中的概率为150; ④中部地区学生小张被选中的概率为15000A .①④B .①③C .②④D .②③8.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( ) A .31号B .32号C .33号D .34号9.设数据123,,,,n x x x x L 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变10.已知统计某校1000名学生的某次数学水平测试成绩得到样本频率分布直方图如图所示,则直方图中实数a 的值是( )A .0.020B .0.018C .0.025D .0.0311.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率( ) A .38B .34C .35D .4512.如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .122π- C .2πD .1π二、填空题13.袋中装有大小相同的总数为5个的黑球、白球若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为______. 14.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的图案.如图所示的窗棂图案,是将半径为R 的圆六等分,分别以各等分点为圆心,以R 为半径画圆弧,在圆的内部构成的平面图形.现在向该圆形区域内的随机地投掷一枚飞镖,飞镖落在黑色部分(忽略图中的白线)的概率是__________.15.甲、乙二人约定某日早上在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是________.16.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
【人教版】高中数学必修三期末试卷带答案

一、选择题1.已知点(,)P x y 满足||||2x y +≤,则到坐标原点O 的距离1d ≤的点P 的概率为( ) A .16π B .8π C .4π D .2π 2.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为( )A .15B .25C .35D .453.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。
在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是( ) A .15B .1115C .35D .134.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为( )A .13B .12C 3D .225.若执行如图所示的程序框图,则输出S 的值是( )A.63 B.15 C.31 D.32 6.执行如图的程序框图,若输入1t=-,则输出t的值等于( )A.3 B.5 C.7 D.15 7.执行如图所示的程序框图,若输入的6n=,则输出S=A.514B.13C.2756D.3108.执行如图所示的程序框图,输出的结果为()A .201921-B .201922-C .202022-D .202021- 9.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+10.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和6711.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,812.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.14.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.如果执行如图的程序框图,那么输出的S =__________.17.执行如图所示的程序框图,若1ln2a=,22be=,ln22c=(其中e是自然对数的底),则输出的结果是__________.18.一个算法的程序框图如图所示,则该程序运行后输出的结果是.19.某社会爱心组织面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3组抽取__________名志愿者.20.已知一组数据126,,,x x x ⋅⋅⋅的方差是2,并且()()()22212611118x x x -+-+⋅⋅⋅+-=,0x ≠,则x =______.三、解答题21.某校从高三年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)估计这次考试的及格率(60分及以上为及格)和平均分;(2)按分层抽样从成绩是80分以上(包括80分)的学生中选取6人,再从这6人中选取两人作为代表参加交流活动,求他们在不同分数段的概率.22.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a 的值,并由频率分布直方图估计该单位职工一天步行数的中位数; (2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数; (3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间150,(170]的概率.23.某算法框图如图所示.(1)求函数()y f x =的解析式及7[()]6f f -的值;(2)若在区间[2,2]-内随机输入一个x 值,求输出y 的值小于0的概率.24.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.25.某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y (单位:万只)与相应年份x (序号)的数据表和散点图(如图所示),根据散点图,发现y 与x 有较强的线性相关关系,李四提供了该县山羊养殖场的个数z (单位:个)关于x 的回归方程ˆ230z x =-+.年份序号x 1 2 3 4 5 6 7 8 9 年养殖山羊y /万只1.21.51.61.61.82.52.52.62.7y x (2)试估计:①该县第一年养殖山羊多少万只? ②到第几年,该县养殖山羊的数量与第1年相比减少了? 参考统计量:()92160ii x x =⋅-=∑,()()9112i i i x x y y =⋅--=∑.附:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u βα=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i ni i uu v v u u β==--=-∑∑,ˆˆv u αβ=-. 26.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:古文迷 非古文迷 合计 男生 26 24 50 女生 30 20 50 合计5644100(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,由此利用几何概型能求出到坐标原点O 的距离1d ≤的点P 的概率. 【详解】点(),P x y 满足2x y +≤,∴当0x ≥,0y ≥时,2x y +≤;当0x ≥,0y ≤时,2x y -≤; 当0x ≤,0y ≥时,2x y -+≤; 当0x ≤,0y ≤时,2x y --≤. 作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为2正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,∴到坐标原点O 的距离1d ≤的点P 的概率为:282222S p S π===⨯圆正方形.故选:B . 【点睛】本题考查概率的求法,几何概型等基础知识,考查运算求解能力,是中档题.2.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==,∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.3.B解析:B 【分析】找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可. 【详解】不超过15的素数为2,3,5,7,11,13,共6个,任取2个分别为2,3(),2,5(),2,7(),2,11(),2,13(),3,5(),3,7(),3,11(),3,13(),5,7(),5,11(),5,13(),7,11(),7,13(),11,13(),共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知1115P=. 【点睛】本题主要考查了古典概型,基本事件,属于中档题. 4.B解析:B【分析】 分别求解出小正方形和大正方形的面积,可知面积比为15,从而构造方程可求得结果. 【详解】由图形可知,小正方形边长为b a - ∴小正方形面积为:()2b a -,又大正方形面积为:2c()()2222222221115b a b a ab a b c a b a b b a --∴==-=-=+++,即:25a b b a ⎛⎫+= ⎪⎝⎭ 解得:12a b = 本题正确选项:B【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.5.C解析:C【分析】根据程序框图模拟程序计算即可求解.【详解】模拟程序的运行,可得1S =,1i =;满足条件5i <,执行循环体,3S =,2i =;满足条件5i <,执行循环体,7=S ,3i =;满足条件5i <,执行循环体,15S =,4i =;满足条件5i <,执行循环体,31S =,5i =;此时,不满足条件5i <,退出循环,输出S 的值为31.故选:C【点睛】本题主要考查了程序框图,循环结构,属于中档题.6.C【分析】直接根据程序框图依次计算得到答案.【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<,不满足条件0t >,1t =,满足条件()()250t t +-<,满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7.故选:C.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.7.B解析:B【解析】【分析】首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】 由流程图可知,程序输出的值为:1111023344556S =++++⨯⨯⨯⨯, 即1111111123344556S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111263=-=. 故选B .【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,由于()2019232019202021222222212S -=+++⋯+==--.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.D解析:D【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.10.B解析:B【解析】【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解.【详解】设更正前甲,乙,…的成绩依次为a 1,a 2,…,a 50,则a 1+a 2+…+a 50=50×70,即60+90+a 3+…+a 50=50×70,(a 1﹣70)2+(a 2﹣70)2+…+(a 50﹣70)2=50×75,即102+202+(a 3﹣70)2+…+(a 50﹣70)2=50×75. 更正后平均分为x =150×(80+70+a 3+…+a 50)=70; 方差为s 2=150×[(80﹣70)2+(70﹣70)2+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+50×75﹣102﹣202]=67. 故选B .【点睛】本题考查平均数与方差的概念与应用问题,是基础题.11.C解析:C【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图 12.C解析:C【解析】【分析】 细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论.【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位,即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.二、填空题13.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2.【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.14.80【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100该数满足解析:80【分析】本道题一一列举,把满足条件的编号一一排除,即可.【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80.【点睛】本道题考查了列举法计算锁编号问题,难度一般.15.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38【解析】【分析】根据几何槪型的概率意义,即可得到结论.【详解】正方形的面积S =1,设阴影部分的面积为S ,∵随机撒1000粒豆子,有380粒落到阴影部分,∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38,故答案为:0.38.【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础. 16.42【分析】输入由循环语句依次执行即可计算出结果【详解】当时当时当时当时当时当时故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算求出输出值较为基础解析:42【分析】输入1k =,由循环语句,依次执行,即可计算出结果【详解】当1k =时,0212S =+⨯=当2k =时,021226S =+⨯+⨯=当3k =时,021222312S =+⨯+⨯+⨯=当4k =时,021********S =+⨯+⨯+⨯+⨯=当5k =时,0212223242530S =+⨯+⨯+⨯+⨯+⨯=当6k =时,021222324252642S =+⨯+⨯+⨯+⨯+⨯+⨯=故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算,求出输出值,较为基础17.(注:填也得分)【解析】分析:执行如图所示的程序框图可知该程序的功能是输出三个数的大小之中位于中间的数的数值再根据指数函数与对数函数的性质得到即可得到输出结果详解:由题意执行如图所示的程序框图可知该 解析:ln 22(注:填c 也得分). 【解析】 分析:执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值,再根据指数函数与对数函数的性质,得到b c a <<,即可得到输出结果.详解:由题意,执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值, 因为212ln 2,,ln 22a b c e ===,则221ln 21132ln 2e <<<<,即b c a <<, 所以此时输出ln 22c =. 点睛:识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合.18.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细解析:4【分析】执行程序,当4K =时循环结束,即可得出【详解】因为第一次进入循环后1,1S K ==;第二次进入循环后3,2S K ==;第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.19.【分析】先分别求出这3组的人数再利用分层抽样的方法即可得出答案【详解】第3组的人数为第4组的人数为第5组的人数为所以这三组共有60名志愿者所以利用分层抽样的方法在60名志愿者中抽取6名志愿者第三组应解析:3【分析】先分别求出这3组的人数,再利用分层抽样的方法即可得出答案.【详解】第3组的人数为10050.0630⨯⨯=,第4组的人数为10050.0420⨯⨯=,第5组的人数为1000.02510⨯⨯=,所以这三组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,第三组应抽取306360⨯=名, 故答案为:3.【点睛】关键点点睛:该题考查的是有关频率分布直方图的识别以及分层抽样某层抽取个数的问题,正确解题的关键是掌握在抽取过程中每个个题被抽到的机会均等. 20.2【解析】【分析】由题意结合方差的定义整理计算即可求得最终结果【详解】由题意结合方差的定义有:①而②①-②有:③注意到将其代入③式整理可得:又故故答案为2【点睛】本题主要考查方差的计算公式整体的数学解析:2【解析】【分析】由题意结合方差的定义整理计算即可求得最终结果.【详解】由题意结合方差的定义有:()()()22212612x x x x x x -+-++-= ①, 而()()()22212611118x x x -+-+⋅⋅⋅+-=, ②,①-②有:()()212612666226x x x x x x x x --+++++++=-, ③,注意到1266x x x x +++=,将其代入③式整理可得:26120x x -+=, 又0x ≠,故2x =.故答案为2.【点睛】本题主要考查方差的计算公式,整体的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)及格率是80%;平均分是72分(2)13【分析】(1)由频率分布直方图直接可计算得及格率以及平均分;(2)按分层抽样知[80,90)5人A ,B ,C ,D ,E ,[90,100]”1人F ,写出基本事件,事件“不同分数段”所包含的基本事件数5种,利用古典概型即可得到结论.【详解】(1)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.0200.0300.0250.005)100.80+++⨯=,所以抽样学生成绩的合格率是80%.-利用组中值估算抽样学生的平均分:123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅450.05550.15650.2750.3850.25950.05=⨯+⨯+⨯+⨯+⨯+⨯72=.估计这次考试的平均分是72分(2)按分层抽样抽取[80,90)5人A ,B ,C ,D ,E ,[90,100]”1人F .,则基本事件(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种,事件“不同分数段”所包含的基本事件数5种, 故所求概率为:51153p ==. 【点睛】本题考查利用频率分布直方图求平均数,考查分层抽样的定义,古典概型,属于基础题. 22.(1)0.012a =,125;(2)112人;(3)25 【分析】(1)根据频率分布直方图中矩形的面积和为1求出0.012a =,再求中位数得解;(2)直接利用频率分布直方图估计职工一天行走步数不大于13000的人数;(3)先求出在区间(]150,170中有32人,在区间(]170,190中有8人,在区间(]190,210中有8人,再利用古典概型的概率公式求出这两人均来自区间150,(170]的概率.【详解】(1)由题意得0.002200.006200.00820200.010200.008200.002200.002201a ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=解得0.012a = .设中位数为110x +,则0.002200.006200.008200.0120.5x ⨯+⨯+⨯+=解得15x = .∴中位数是125.(2)由()2000.002200.006200.008200.01220112⨯⨯+⨯+⨯+⨯=∴估计职工一天步行数不大于13000步的人数为112人(3)在区间(]150,170中有2000.0082032⨯⨯=人在区间(]170,190中有2000.002208⨯⨯=人在区间(]190,210中有2000.002208⨯⨯=人按分层抽样抽取6人,则从(]150,170抽取4人,(]170,190抽取1人,(]190,210抽取1人设从(]150,170抽取职工为1A ,2A ,3A ,4A ,从(]170,190抽取职工为B ,从(]190,210抽取职工为C ,则从6人中抽取2人的情况有12A A ,13A A ,41A A ,1A B ,1A C ,23A A ,24A A ,2A B ,2A C ,34A A ,3A B ,3A C ,4A B ,4A C ,BC 共15种情况,它们是等可能的,其中满足两人均来自区间(]150,170的有12A A ,13A A ,41A A ,23A A ,24A A ,34A A 共有6种情况, ∴62155P == ∴两人均来自区间(]150,170的概率为25. 【点睛】本题主要考查频率分布直方图的应用,考查频率分布直方图中中位数的计算,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力》23.(1)24;(2)14 【分析】 (1)从程序框图可提炼出分段函数的函数表达式,从而计算得到76f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值; (2)此题为几何概型,分类讨论得到满足条件下的函数x 值,从而求得结果.【详解】(1)由算法框图得:当0x >时,2πcos 2x y =,当0x =时,0y =,当0x <时,1y x =--,()2πcos ,020,01,0x xy f xx x x ⎧>⎪⎪∴===⎨⎪--<⎪⎩7711666f ⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭,2π1cos 71π236cos 66122f f f +⎡⎤+⎛⎫⎛⎫∴-==== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (2)当02x ≤≤时,()[]0,1f x ∈,当20x -≤<时,由0y <得10x -<< 故所求概率为()()011224P --==-- 【点睛】本题主要考查分段函数的应用,算法框图的理解,意在考查学生分析问题的能力. 24.见解析;【解析】试题分析: 先利用INPUT 语句输入法定工作时间以及加班工作时间,再分别赋值法定工作时间工资,加班工作时间工资以及总工资,最后输出一周所得的工资.试题程序如下:点睛:25.(1)ˆ0.21yx =+;(2)①33.6万只;②到第10年该县养殖山羊的数量相比第1年减少了.【分析】(1)由已知求得,x y ,进一步套公式求出ˆb 和ˆa 的值,就求出线性回归方程; (2)由题意求得()()2ˆˆ0.212300.4430z y x x x x ⋅=+⋅-+=-++, 在①中,令x =1求解,在②中,令20.443033.6x x -++<,解不等式即可.【详解】解:(1)设y 关于x 的线性回归方程为y bx a =+,12345678959x ++++++++==, 1.2 1.5 1.6 1.6 1.8 2.5 2.5 2.6 2.729y ++++++++==, ()()()9192112ˆ0.260i ii i i x x y y b x x ==--===-∑∑, ˆ20.251a=-⨯=. 所以y 关于x 的线性回归方程为ˆ0.21yx =+. (2)估计第x 年山羊养殖的只数为()()2ˆˆ0.212300.4430z y x x x x ⋅=+⋅-+=-++ 令1x =,则0.443033.6-++=,故该县第一年养殖山羊约33.6万只.由题意,得20.443033.6x x -++<,整理得()()910x x -->,解得9x >或1x <(舍去),所以到第10年该县养殖山羊的数量相比第1年减少了.【点睛】方法点睛:求线性回归方程的步骤:(1)先求 x 、y 的平均数,x y ;(2)套公式求出ˆb和ˆa 的值:()()()91921ˆi i i i i x x y y b x x ==--=-∑∑,ˆa y b x =-⨯; (3)写出回归直线的方程.26.(I )没有的把握认为“古文迷”与性别有关;(II )“古文迷”的人数为3,“非古文迷”有2;(III )分布列见解析,期望为95. 【详解】(I)由列联表得所以没有的把握认为“古文迷”与性别有关.(II)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为人,“非古文迷”有人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人(III)因为为所抽取的3人中“古文迷”的人数,所以的所有取值为1,2,3.,,.所以随机变量ξ的分布列为123于是.。
高中数学必修三期末试题(附答案)

一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.从单词“book ”的四个字母中任取2个,则取到的2个字母不相同的概率为( ) A .13B .12C .23D .343.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.设向量()()1,,a x y x y R =-∈,若1a ≤,则y x ≥的概率为( ) A .14B .1142π- C .114π-D .3142π+ 5.执行如图所示的程序框图,结果是( )A.11 B.12 C.13 D.14 6.下列赋值语句正确的是 ()A.S=S+i2B.A=-AC.x=2x+1 D.P=7.执行如图所示的程序框图,若输出的结果为48,则输入k的值可以为A.6B.10C.8D.4) 8.执行如图所示程序框图,当输入的x为2019时,输出的y(A .28B .10C .4D .29.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差10.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,411.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表:根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1,则甲以3:1取得胜利的概率为______________.14.如图所示,分别以,,A B C 为圆心,在ABC 内作半径为2的三个扇形,在ABC内任取一点P ,如果点P 落在这三个扇形内的概率为13,那么图中阴影部分的面积是____________.15.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.16.执行如图所示的程序框图,输出S 的值为___________.17.用秦九韶算法求多项式()5432357911f x x x x x x =+-+-+当4x =时的值为____________.18.如图是一个算法的流程图,则输出的a 的值是___________.19.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.20.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________.三、解答题21.从广安市某中学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,...,第八组[)190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校800名男生的身高的中位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
输入 8,第一次执行循环: y 3 ,此时 y x 5 ,
不满足退出循环的条件,则 x 3 ,
第二次执行循环: y 1 ,此时 y x 5 ,
2
2
满足退出循环的条件,
故输出的 y 值为 1 ,故选 C. 2
【点睛】 本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下 几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结 构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确 控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只 要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.
积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小
数点后两位的近似值 3.14,这就是内作正 n 边形求其面积,如图是其设计的一个程序框图,则框图中应填入、
输出 n 的值分别为( )
(参考数据: sin
200
A. 1 2
B. 1 3
C. 1 4
D. 1 5
11.袋中装有红球 3 个、白球 2 个、黑球 1 个,从中任取 2 个,则互斥而不对立的两个事
件是 ( )
A.至少有一个白球;都是白球
B.至少有一个白球;至少有一个红球
C.至少有一个白球;红、黑球各一个
D.恰有一个白球;一个白球一个黑球
12.执行如图所示的程序框图,若输入 x=9,则循环体执行的次数为( )
200 0.3420, sin(
)
0.1161 )
3
A. S 1 n sin 1800 , 24
2
n
B. S 1 n sin 1800 ,18
2
n
C. S 1 n sin 3600 ,54
2
n
D. S 1 n sin 3600 ,18
2
n
5.如图,矩形 ABCD 中,点 E 为边 CD 的中点,若在矩形 ABCD 内部随机取一个点 Q,
A.1 次
B.2 次
C.3 次
D.4 次
二、填空题
13.袋中装有大小相同的总数为 5 个的黑球、白球若从袋中任意摸出 2 个球,至少得到1个
白球的概率是 9 ,则从中任意摸出 2 个球,得到的都是白球的概率为______. 10
14.一个算法的伪代码如下图所示,执行此算法,若输出的 y 值为1,则输入的实数 x 的
A. 16 36
B. 17 36
C. 1 2
D. 19 36
9.甲、乙两位同学在高一年级的 5 次考试中,数学成绩统计如茎叶图所示,若甲、乙两人
的平均成绩分别是 x1, x2 ,则下列叙述正确的是( )
A. x1 x2 ,乙比甲成绩稳定 B. x1 x2 ,甲比乙成绩稳定
C. x1 x2 ,乙比甲成绩稳定 D. x1 x2 ,甲比乙成绩稳定
量绘制出如下的频率分布直方图.
(1)完成年销售任务的销售点有多少个?
(2)若用分层抽样的方法从这100个销售点中抽取容量为 25 的样本,求该五组[2,6) , [6,10) , ____________ ,[14,18) ,[18, 22) ,(单位:千台)中每组分别应抽取的销
售点数量. (3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取 2 个,求这两个 销售点不在同一组的概率. 26.随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从 2009 2018 年网民 人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.
分布直方图.观察图中数据,完成下列问题.
(Ⅰ)求 a 的值及样本中男生身高在185,195(单位: cm )的人数;
(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生 的平均身高;
(Ⅲ)在样本中,从身高在145,155 和185,195(单位: cm )内的男生中任选两人,求
中位数是 83,则 的值为__________.
19.在区间[0,1] 中随机地取出两个数,则两数之和大于 4 的概率是______. 5
20.已知 AOB 中, AOB 60 , OA 2 , OB 5,在线段 OB 上任取一点 C ,则
AOC 为锐角三角形的概率_________.
三、解答题 21.某中学随机选取了 40 名男生,将他们的身高作为样本进行统计,得到如图所示的频率
隔年数.如果在某一时期有 1 k 0,那么在这期间人口数
A.呈下降趋势
B.呈上升趋势
C.摆动变化
D.不变
8.某校从高一(1)班和(2)班的某次数学考试(试卷满分为 100 分)的成绩中各随机抽取了 6
份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)
班成绩更好的概率为( )
售额约为
_____________万元.(参考公式:
a
y
b
x
)
17.变量 X 与 Y 相对应的 5 组数据和变量 U 与 V 相对应的 5 组数据统计如表:
X
10 11.3 11.8 12.5 13
U
10 11.3 11.8 12.5 13
Y
1
2
3
4
5
V
5
4
3
2
1
用 b1 表示变量 Y 与 X 之间的回归系数,b2 表示变量 V 与 U 之间的回归系数,则 b1 与 b2 的大 小关系是___. 18.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出 7 名学生参加成语 知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是 85,乙班学生成绩的
4.C
解析:C 【解析】
分析:在半径为1的圆内作出正 n 边形,分成 n 个小的等腰三角形,可得正 n 边形面积是
S 1 n sin 360 ,按照程序框图规定的运算方法逐次计算,直到达到输出条件即可的
2
n
结果.
详解:在半径为1的圆内作出正 n 边形,分成 n 个小的等腰三角形,
每一个等腰三角形两腰是1,顶角是
这两人的身高都不低于185cm 的概率.
22.一个袋中装有四个形状大小完全相同的球,球的编号分别为 1,2,3,4. (1)从袋中随机抽取两个球,求取出的球的编号之和不大于 4 的概率; (2)先从袋中随机取一个球,该球的编号为 m,将球放回袋中,然后再从袋中随机取一个
球,该球的编号为 n,求 n m 2 的概率
(1)求直方图中 x 的值; (2)现采用分层抽样的方式从每日自主安排学习时间不超过 40 分钟的学生中随机抽取 6 人,若从这 6 人中随机抽取 2 人进行详细的每日时间安排调查,求抽到的 2 人每日自主安 排学习时间均不低于 20 分钟的概率.
25.某医疗器械公司在全国共有100 个销售点,总公司每年会根据每个销售点的年销量进 行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这100 个销售点的年销
6.9
50.3%
6.2
45.2%
2016
7.3
53.2%
7.0
51.0%
2017
7.7
55.8%
7.5
54.4%
2018
8.3
59.6%
8.2
58.9%
(互联网普及率 (网民人数/人口总数)×100%;手机网民普及率 (手机网民人数/人口
总数)×100%) (Ⅰ)从 2009 2018 这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过 80%的概率;
则点 Q 取自△ABE 内部的概率等于
A. 1 4
B. 1 3
C. 1 2
D. 2 3
6.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了 100 名学
生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:
将阅读时间不低于 30 分钟的观众称为“阅读霸”,则下列命题正确的是( )
高中必修三数学上期末试卷及答案
一、选择题 1.如图阴影部分为曲边梯形,其曲线对应函数为 y ex 1,在长方形内随机投掷一颗黄
豆,则它落在阴影部分的概率是( )
A. e 2 3
B. e 1 3
C. 4 e 3
D. 5 e 3
2.如图, ABC 和 DEF 都是圆内接正三角形,且 BC / /EF ,将一颗豆子随机地扔到
该圆内,用 A 表示事件“豆子落在 ABC 内”, B 表示事件“豆子落在 DEF 内”,则
P(B | A) ( )
A. 3 3 4
B. 3 2
C. 1 3
3.执行如图所示的程序框图,若输入 x 8 ,则输出的 y 值为(
D. 2 3
)
A.3
B. 5 2
C. 1 2
D. 3 4
4.公元 263 年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面
值为________.
15.根据如图所示算法流程图,则输出 S 的值是__.
16.某公司的广告费支出 x 与销售额 y (单位:万元)之间有下列对应数据:由资料显示 y 对 x 呈线性相关关系。
x
2
4
5
6
8
y
30
40
60
50
70
根据上表提供的数据得到回归方程
y
b
x
a
中的
b
7
,预测广告费支出
10
万元时,销
360 n
,
所以正 n 边形面积是 S 1 n sin 360 ,