高一数学集合与不等式测试题.
集合与不等式测试卷

集合与不等式测试卷一、选择题1. 设集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},则A∪B的元素个数为()。
A. 5B. 6C. 7D. 82. 已知集合A={x | x>2},集合B={x | x<5},则A∩B的元素个数为()。
A. 2B. 3C. 4D. 53. 若集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},则A-B的元素个数为()。
A. 2B. 3C. 4D. 54. 若集合A={x | 2<x<6},集合B={x | 3<x<7},则A∪B的元素个数为()。
A. 1B. 2C. 3D. 45. 一元二次不等式x^2-3x+2>0的解集为()。
A. x<1或x>2B. 1<x<2C. 1<x<2或x>2D. 1<x<2或x<1二、填空题1. 一个集合A,若A的元素个数为5,且A中的元素有正有负,那么A的幂集元素个数为______。
2. 若不等式2x-3>5有解,那么x的取值范围为______。
3. 若集合A={x | x>2},集合B={x | x<5},则A∩B的元素为______。
4. 一元二次不等式x^2-4x-21<0的解集为______。
5. 若集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},则A∪B的元素个数为______。
三、解答题1. 解方程组{2x-y=4, x+y=5}。
2. 解不等式2x-3≥5。
3. 解不等式(x-3)(x+2)>0。
4. 解不等式x^2-4x-21≥0。
5. 解不等式x^2-3x+2≤0。
解析:一、选择题1. B. 6A∪B的元素个数等于A的元素个数加上B的元素个数减去A∩B的元素个数,即5+5-4=6。
2. D. 5A∩B的元素个数等于A的元素个数加上B的元素个数减去A∪B的元素个数,即∅的元素个数为0,5+5-0=10,故A∩B的元素个数为5。
高一数学集合试题答案及解析

高一数学集合试题答案及解析1.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。
点评:涉及实数构成集合问题,常常借助于韦恩图。
2.已知集合A={ |-≤x≤},则必有 ()A.-1∈A B.0∈A C.∈A D.1∈A【答案】D【解析】∵,-≤x≤,∴x=1,2,即A={1,2},∴1∈A.故选D.【考点】元素与集合的关系点评:本题先根据x是正整数和-≤x≤确定集合A,再判断各元素是否属于集合。
3.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1)B.(,1)C.(-∞,0)D.(0,+∞)【答案】C【解析】因为函数f(x)的定义域是(0,1),所以,即,,故选C。
【考点】本题主要考查函数的概念,指数函数的图象和性质。
点评:简单题,解答指数不等式,通常要化为同底数指数,利用指数函数的单调性,转化为代数不等式。
4.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B= ()A.{x|x≥-1}B.{x|x≤2}C.{x|0<x≤2}D.{x|-1≤x≤2}【答案】A【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【考点】本题主要考查集合的并集。
点评:简单题,借助于数轴求集合的并集。
5.满足{0}∪B={0,2}的集合B的个数是 ()A.1B.2C.3D.4【答案】B【解析】依题意知,B中至少含有元素2,故B可能为{2},{0,2},共两个.【考点】本题主要考查集合的子集,集合的并集。
高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.2.已知集合,,则().A.B.C.D.【答案】A【解析】因为,所以;又因为,所以.【考点】集合的运算.3.已知全集U=R,A={x|﹣3<x≤6,},B={x|x2﹣5x﹣6<0,}.求:(1)A∪B;(2).【答案】(1);(2).【解析】解题思路:由题意,先解出一元二次不等式,化简集合B,再求出集合B的补集,再由交、并的运算法则解出即可.规律总结:在处理集合间的运算问题时,往往先化简集合,再结合数轴求集合间的交、并、补集. 试题解析:(1),则;(2),则 .【考点】交、并、补集的运算.4.已知集合,,且,则实数的值是.【答案】.【解析】∵,,∴.【考点】集合间的关系.5.已知集合,则满足A∩B=B的集合B可以是( )A.{0,}B.{x|-1≤x≤1}C.{x|0<x<}D.{x|x>0}【答案】C【解析】利用复合函数的值域知识可得A={y|0<y},因为A∩B=B,所以B A,所以答案是C.【考点】(1)复合函数;(2)集合的运算.6.已知全集,设集合,集合,若,求实数a的取值范围.【答案】.【解析】先解方程,的x=a,-4将a,与-4比较进行讨论,再利用得进行求解.试题解析:因为,又因为2分当时满足,此时 4分当时若,则 6分当时,满足,此时 8分综合以上得:实数的取值范围,所以 10分.【考点】1.一元二次不等式的解法;2.集合的运算.7.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.8.以知集合,则=()A.B.C.D.【答案】C【解析】,即,,,【考点】指数不等式的运算和集合的运算9.集合,,则.【答案】【解析】根据,集合A与集合B中的公共元素为4,7,所以【考点】集合的运算10.已知集合,,则=A.B.C.D.【答案】A【解析】,,,故选:A.【考点】集合的运算11.已知,集合,.(Ⅰ)若,求,;(Ⅱ)若,求的范围.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)将代入得到集合,然后计算并集和交集;(Ⅱ)结合数轴由,集合B的左端点大于等于1,右端点小于等于4,于是,特别注意端点值是否可以取等号。
高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤ B .{|1}x x ≥- C .{}|3x x > D .{}|0x x > 3.已知全集{}2,1,1,4U =--,{}2,1A =-,{}1,4B =,则()U A B ⋃=( ). A .{}2-B .{}2,1-C .{}1,1,4-D .{}2,1,1--4.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( ) A .{}1B .{}0,1C .{}0,1,2D .{}1,3,55.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则A B =( ) A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2-- 6.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C =7.已知集合{}35A x x =-≤<,{B x y ==,则()R A B ⋂=( )A .13,2⎡⎫--⎪⎢⎣⎭B .1,52⎛⎫- ⎪⎝⎭C .[)3,2--D .()2,5-8.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1}B .{1,2}C .{0,2}D .{0,1,2}9.已知集合{|A x y ==,集合{|1}B x x =<,则A B =( ) A .[)1,1- B .(1,1)- C .(,1)-∞ D .(0,1)10.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( ) A .[]1,3- B .[]2,4- C .{}1,2,3 D .{}0,1,2,311.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3] 12.设集合{|12}A x x =-<<,{|2}B x a x a =-<<,若{|10}A B x x =-<<,则A B ⋃=( )A .(2,1)-B .(2,2)-C .(1,2)-D .(0,2)13.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<14.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( ) A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2 15.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.若全集U =R ,集合{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,则U B A =___________.18.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)21.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______.22.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.23.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.三、解答题26.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.27.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.28.设r 为正实数,若集合(){}22,4M x y x y =+≤,()()(){}222,11N x y x y r =-+-≤.当M N N =时,求r 的取值范围.29.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ;(2)设全集为R ,求()R A B ⋂.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.B【解析】【分析】由分式不等式求得集合A ,再根据并集的原则求解即可.【详解】 对于集合A ,满足1033x x x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩, 解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-,故选:B3.D【解析】【分析】由集合的补集运算求U B ,再利用集合的并集运算求()U A B 即可. 【详解】由题意得,{}U 2,1B =--,又{}2,1A =-,(){}{}{}U 2,12,12,1,1AB ==---=--,故答案为:D.4.A【解析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤, 所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭, 又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=;故选:A5.C【解析】【分析】 根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解.【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C.6.C【解析】【分析】 由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C7.A【解析】【分析】先求出集合B ,得出其补集,再由交集运算得出答案.【详解】由420x +≥,得21x ≥-,即集合1,2B ⎡⎫=-+∞⎪⎢⎣⎭, 所以R 1,2B ∞⎛⎫=-- ⎪⎝⎭.所以()R 13,2A B ⎡⎫=--⎪⎢⎣⎭. 故选:A8.C【分析】 先求{}2,B k k n n Z ==∈,再求交集即可.【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =.故选:C .9.A【解析】【分析】求出集合A ,根据集合的交集运算即可求得答案.【详解】由题意得:{|{|1}A x y x x ===≥-,故{|11}A B x x ⋂=-≤<,故选:A10.D【解析】【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可.【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=, 因为{}14A x x =-≤≤所以A B ={}0,1,2,3故选:D11.D【解析】【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R ,再根据交集运算即可求出结果.【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R ,所以()[]1,3R A B =.故选:D.12.B【解析】由{}10A B x x ⋂=-<<,求出0a =,{}20B x x =-<<,由此能求出A B .【详解】 集合{}12A x x =-<<,{}2B x a x a =-<<,{}10A B x x ⋂=-<<,0a ∴=,{}20B x x ∴=-<<,满足题意则(2,2)=-A B .故选:B .13.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B14.D【解析】【分析】解不等式后求解【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D15.B【解析】【分析】利用交集概念及运算,即可得到结果.【详解】∵集合{}1,0,1,2A =-,{}12B x x =-<<,∴{}0,1A B =,故选:B二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.{}12x x <≤##(]1,2【解析】【分析】由集合A ,以及集合A 与集合B 的并集确定出集合B ,以及求出集合A 的补集,再根据交集运算即可求出结果.【详解】因为{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,所以{3U x x A =<-或}1x >,{}{}1232x x x B x ⊆<≤⊆-≤≤,所以{}12U B A x x =<≤.故答案为:{}12x x <≤.18.5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.19.3或-1##-1或3【解析】【分析】根据集合相等得到223m m -=,解出m 即可得到答案.【详解】由题意,2233m m m -=⇒=或m =-1.故答案为:3或-1.20.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃21.{}0,1【解析】【分析】先求出集合A ,然后根据交集的定义求得答案.【详解】 由题意,{}22A x x =-<<,所以{}0,1A B =.故答案为:{}0,1.22.(){}0,0【解析】【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果. 【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩ 则(){}0,0M N =.故答案为:(){}0,0.23.②③⑤【解析】【分析】根据集合与集合的关系,元素与集合的关系确定正确答案.【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误.④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤24.{}3【解析】【分析】由交集、补集的定义计算.【详解】 由题意{4,3}M =,所以M N ⋂={3}.故答案为:{3}.25.{}|23x x <≤【解析】【分析】先求得A B ,然后求得()A B C .【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤三、解答题26.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<; (2)()3,+∞.【解析】【分析】(1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<.(2) 解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.27.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.28.02r <≤-【解析】【分析】 确定集合的元素,由两位置关系可得.【详解】M N N =,则N M ⊆,集合M 表示以原点O 为圆心,2为半径的圆及圆内部分,集合N 表示以点C (1,1)为圆心,r 为半径的圆及内部,OC =2r OC -≥=02r <≤29.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.30.(1){}5A x x =>,{0B y y =<或}2y >(2)(){}R 5A B x x ⋂=≤【解析】【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ;(2)求出A B ,利用补集的定义可求得集合()R A B ⋂. (1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >. (2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R 5A B x x ⋂=≤.。
高一数学集合试题答案及解析

高一数学集合试题答案及解析1.已知U={x|-1≤x≤3},A={x|-1<x<3},B={x|x2-2x-3=0},C={x|-1≤x<3},则下列关系正确的是 ()A. A=BB.B=CC.(B) CD.A C【答案】A【解析】B={-1,3},A={-1,3},∴A=B.【考点】本题主要考查集合的子集,集合的补集。
点评:综合题,综合应用集合、方程及不等式知识解题。
2.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。
点评:涉及实数构成集合问题,常常借助于韦恩图。
3.已知集合A={x|ax2-2x+1=0}.(1)若A中恰好只有一个元素,求实数a的值;(2)若A中至少有一个元素,求实数a的取值范围.【答案】(1) a=0,或a=1 (2) a≤1【解析】(1)∵A中恰好只有一个元素,∴方程ax2-2x+1=0恰好只有一个根.当a=0时,方程的解为x=满足题意;当a≠0时,Δ=(-2)2-4a=0,∴a=1.∴所求a的值为a=0,或a=1.(2)∵A中至少有一个元素,∴方程ax2-2x+1=0有实数根.当a=0时,恰有一个根x=满足题意;当a≠0时,Δ≥0,即(-2)2-4a≥0,解得a≤1.∴所求实数a的取值范围是a≤1【考点】集合的表示、元素与集合的关系点评:本题是一个综合问题,既考查了集合的表示方法、元素与集合的关系,又用到一元二次方程根与系数的关系来确定的取值。
高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}3,5,7,9,11,13,17A =,{}41,B x x n n Z ==+∈,则A B =( ) A .{}5,9,11 B .{}5,9,11,17 C .{}5,13,17D .{}5,9,13,172.已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =( )A .2B .1C .0D .-13.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( )A .{}|12x x -≤<B .{}|33x x -<≤C .{}|32x x -<≤D .{}|13x x -≤≤4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2)B .(-1,2)C .(-2,3)D .(-1,3)6.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,7.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( ) A .∅B .{}1,2,3C .{}2D .{}38.已知集合{}1A x x =>,()(){}150B x x x =+-≤,则A B =( ) A .(]1,5-B .(]1,5C .[]1,5-D .[]1,59.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5 D .[]2,5 10.已知集合{}{}1101A B =-=,,,,则A B =( ) A .{0}B .{1}C .{2}D .∅11.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <- B .{}12x x -<< C .{}8x x >-D .{}28x x <≤12.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{{24},A xx B x y =<==∣∣,则A B ⋃=( ) A .[)2,+∞ B .[)3,4 C .[]3,4 D .[)3,+∞14.已知集合{}1A x x =≥-,{}12B x x =-<,则A B ⋃=( ) A .{}13x x -<< B .{}1x x >- C .{}13x x -≤<D .{}1x x ≥-15.设集合{}*21230,1A x N x x B x Rx ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1B .{}1C .(]0,1D .{}0,1二、填空题16.已知平面上两个点集(){},112,,M x y x y x y x R y R =++++->∈∈,(){},11,,N x y x a y x R y R =-+-≤∈∈,若M N ⋂=∅,则实数a 的取值集合是___________.17.设非空数集M 同时满足条件:①M 中不含元素1,0,1-;②若a M ∈,则11aM a+∈-,则下列结论不正确的个数是__________个. (1)集合M 中至多有2个元素; (2)集合M 中至少有4个元素; (3)集合M 中有且仅有4个元素; (4)集合M 中至多有4个元素.18.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.19.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 20.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.21.已知集合{}2,1,0,1A =--,{}|3B x N x =∈<,则A B =_____.22.若集合{}3cos23,xA x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.24.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______25.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.三、解答题26.已知集合2{|23}A x a x a =≤≤+,{|14}B x x =-≤≤,全集U =R . (1)当1a =时,求U ()A B ;(2)当A =∅时,求实数a 的取值范围;(3)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.27.已知集合2111x A xx +⎧⎫=>-⎨⎬-⎩⎭,(){}222B x x m x m B =<-+,不为空集. (1)当1m =时,求()RA B ⋃;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.28.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .29.设n 是不小于3的正整数,集合12{()|{01}12}n n i S a a a a i n =⋯∈=⋯,,,,,,,,,对于集合Sn 中任意两个元素1212()()n n A a a a B b b b =⋯=⋯,,,,,,,.定义()1122 n n A B n a b a b a b =--+-++-.若·0A B =,则称A ,B 互为相反元素,记作A B =或B A =.(1)若n =3,A =(0,1,0),B =(1,1,0),试写出A ,B ,以及A ·B 的值; (2)若n A B S ∈,,证明: A B A B n +=;(3)设k 是小于n 的正奇数,至少含有两个元素的集合n M S ⊆,且对于集合M 中任意两个不同的元素1212 ()()n n A a a a B b b b =⋯=⋯,,,,,,,,都有·A B n k =-,试求集合M 中元素个数的所有可能的取值.30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-. (1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题 1.D 【解析】 【分析】根据交集的定义计算即可. 【详解】因为集合{}3,5,7,9,11,13,17A =,{}41,B x x n n Z ==+∈, 所以{5,9,13,17}A B =, 故选:D. 2.B【解析】 【分析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解. 【详解】对于集合N ,因为280a ∆=+>, 所以N 中有两个元素,且乘积为-2, 又因为N M ⊆,所以{}2,1N =-, 所以211a -=-+=-.即a =1. 故选:B. 3.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由()()130x x +-≤,解得13x -≤≤, 所以()(){}{}|130|13B x x x x x =+-≤=-≤≤, 又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<. 故选:A 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.B 【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B.6.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 7.C 【解析】 【分析】由交集的定义直接求解即可 【详解】因为{}1,2M =,{}2,3N = 所以{}2M N =,故选:C 8.B 【解析】 【分析】化简集合B ,然后利用交集的定义运算即得. 【详解】∵集合()(){}{}15015B x x x x x =+-≤=-≤≤,{}1A x x =>, ∴(]1,5A B ⋂=. 故选:B. 9.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤,即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 10.B 【解析】 【分析】根据集合的交集运算,直接求得答案. 【详解】集合{}{}1101A B =-=,,,, 则{1}A B ⋂=, 故选:B 11.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 12.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 13.A 【解析】 【分析】求出集合A 、B ,利用交集的定义可求得集合A B . 【详解】解:{}[)2424A x x =≤<=,,{[)3,B x y ∞===+,因此,[)2,A B =+∞. 故选:A. 14.D 【解析】 【分析】求出集合B ,利用并集的定义可求得集合A B .【详解】因为{}{}{}1221213B x x x x x x =-<=-<-<=-<<,因此,{}1A B x x ⋃=≥-. 故选:D. 15.B 【解析】 【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果. 【详解】因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R所以{}1A B =. 故选:B.二、填空题 16.{}1-【解析】 【分析】结合点到直线距离公式可知M 表示到直线10x y ++=与10x y +-=的,可得可行域;N 是以(),1a 的正方形及其内部的点集,采用数形结合的方式可确定a 的取值. 【详解】由112x y x y ++++->>则M 表示到直线10x y ++=与10x y +-=直线10x y ++=与10x y +-=之间的距离d =则集合()10,10x y M x y x y ⎧⎫+->⎧=⎨⎨⎬++<⎩⎩⎭,则其表示区域如阴影部分所示(不包含10x y ++=与10x y +-=上的点);集合N 是以(),1a 若M N ⋂=∅,则,M N 位置关系需如图所示,由图形可知:当且仅当1a =-时,M N ⋂=∅, ∴实数a 的取值集合为{}1-.【点睛】思路点睛:本题考查集合与不等式的综合应用问题,解题基本思路是能够确定集合所表示的点构成的区域图形,进而采用数形结合的方式来进行分析求解. 17.3 【解析】 【分析】 由题意可求出11,,11,1a a a a a a -+--+都在M 中,然后计算这些元素是否相等,继而判断M 的元素个数的特点. 【详解】因为若a M ∈,则11aM a +∈-,所以1111111a a M a a a ++-=-∈+--,111111a a M a a--=∈++, 则11211211a a a a M a a -++==∈--+; 当1,0,1a ≠-时,4个元素11,,11,1a a a a a a -+--+中,任意两个元素都不相等, 所以集合M 中至少有4个元素.故可判断出(1)错误,(2)正确,(3)错误,(4)错误, 故答案为:3.18.4a >【解析】 【分析】结合数轴图与集合包含关系,观察即可得到参数的范围. 【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >. 19. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.20.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==. 由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z , ∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+ ⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒21.{}0,1【解析】 【分析】由题知{}0,1,2B =,再根基集合交集运算求解即可. 【详解】解:因为{}{}|30,1,2B x N x =∈<=,{}2,1,0,1A =-- 所以A B ={}0,1 故答案为:{}0,122.{}1【解析】 【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果. 【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=, 故答案为:{}1.23.{}1【解析】 【分析】根据集合的交集的定义进行求解即可 【详解】当0x =时,不等式214x ≤<不成立, 当1x =时,不等式214x ≤<成立, 当2x =时,不等式214x ≤<不成立, 当4x =时,不等式214x ≤<不成立, 所以{}1A B ⋂=, 故答案为:{}1 24.1078 【解析】 【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果. 【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个. 故答案为:1078.25.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4三、解答题26.(1)[)1,1-; (2)()(),13,∞∞--⋃+; (3)()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦.【解析】 【分析】(1)根据集合的补运算和交运算,求解即可;(2)根据题意,求解关于a 的一元二次不等式,即可求得范围; (3)根据集合之间的关系,列出不等关系,求解即可. (1)当1a =时,{|15}A x x =≤≤,{|14}B x x =-≤≤, 故U ()A B {|1x x =<或{}5}|14{|11}x x x x x >⋂-≤≤=-≤<.即U ()A B [)1,1=-.(2)若A =∅,则223a a >+,即()()310a a -+>,解得1a <-或3a >, 故实数a 的取值范围为:()(),13,∞∞--⋃+. (3)若“x A ∈”是“x B ∈”的充分条件,则A B ⊆, ①A =∅时,1a <-或3a >满足题意;②A ≠∅,则13234a a -≤≤⎧⎨+≤⎩,得1-12a ≤≤综上所述,实数a 的取值范围为()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦.27.(1)12x x ⎧≤-⎨⎩或}1x ≥(2)(]2,4- 【解析】 【分析】(1)分别求出集合,A B ,再根据并集和补集的定义即可得出答案;(2)根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆且B ≠∅,讨论m 的范围,从而可得出答案. (1)解:当1m =时,{}212112B x x x x x ⎧⎫=<+=-<<⎨⎬⎩⎭,{}211211x A x x x x +⎧⎫=>-=-<<⎨⎬-⎩⎭, 则112A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭,所以()12RA B x x ⎧⋃=≤-⎨⎩或}1x ≥; (2)解:(){}()(){}222210B x x m x m x x m x =<-+=+-<,因为“x A ∈”是“x B ∈”的必要条件, 所以B A ⊆且B ≠∅,故2m ≠-, 当12m->,即2m <-时,12m B x x ⎧⎫=<<-⎨⎬⎩⎭,因为{}21A x x =-<<, 所以A B =∅,不符合题意; 当12m-<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则有222m m >-⎧⎪⎨-≥-⎪⎩,解得24m -<≤,综上(]2,4m ∈-. 28.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,UB {|1x x =<-或3}x >;(2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >. 【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()UAB ,根据已知集合求解即可.(1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<,{|13}A B x x ⋃=-≤≤,UB {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()BA B ⋂3{|12x x =-≤<或23}x ≤≤. (3)因为{|13}A B x x ⋃=-≤≤, 根据题意可得M =()UAB {|1x x =<-或3}x >.29.(1)(101)(001)2A B A B ===,,,,,, (2)证明见解析(3)集合M 中元素的个数只可能是2 【解析】 【分析】(1)根据定义直接求解即可;(2)设121212()()()n n n A a a a B b b b A x x x =⋯=⋯=⋯,,,,,,,,,,,,进而结合题意得1122||n n a x a x a x n +++=---,112i i x a i n ==⋯-,,,,,再计算 A B A B +即可;(3)假设121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素,进而结合题意,推出矛盾,得出假设不成立,即集合M 中至多有两个元素,且{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意,故集合M 中元素的个数只可能是2(1)解:因为若·0A B =,则称A ,B 互为相反元素,记作A B =或B A =, 所以(101)(001)A B ==,,,,,, 所以()30111002A B =--+-+-=. (2)解:设121212()()()n n n A a a a B b b b A x x x =⋯=⋯=⋯,,,,,,,,,,,, 由{01}12i i i a b x i n ∈=⋯,,,,,,,,可得||112i i a x i n ≤=⋯-,,,, 所以1122||n n a x a x a x n ++⋯+≤---,当且仅当||112i i a x i n ==⋯-,,,,,即112i i x a i n ==⋯-,,,,时上式“=”成立 由题意可知1122·()0n n A A n a x a x a x =--+-++-=即1122n n a x a x a x n -+-++-=所以112i i x a i n ==⋯-,,,, 12[|||(1)|]ni i i i i A B A B n a b a b =+=--+--∑12[|1||0|]ni i i n b b ==--+-∑12(1)ni i i n b b ==--+∑2n n =-n =(3)解:解法1:假设121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素. 则1122(||||||)n n A B n a b a b a b n k =--+-++-=-即1122||||||n n a b a b a b k -+-++-=又由题意可知||0i i a b =-或1,i =1,2,,n 1122||,||,,||n n a b a b a b ---恰有k 个1,与n -k 个0设其中k 个等于1的项依次为1122,,,k k m m m m m m a b a b a b --- n -k 个等于0的项依次为1122,,,k k k k n n m m m m m m a b a b a b ++++---由题意可知1122(||||||)n n A C n a c a c a c n k =--+-++-=-所以11||||i i jj knm m m m i j k a c ac k ==+-+-=∑∑, 同理11||||i i jj k nm m m m i j k b c bc k ==+-+-=∑∑所以1111||||||||2i i j ji i j jkn kn m m m m m m m m i j k i j k a c a c b c b c k ==+==+⎛⎫⎛⎫-+-+-+-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑ 即111(||||)||||2i i i i jj jj knnm m m m m m m m i j k j k a c b c ac bc k ==+=+-+-+-+-=∑∑∑因为11221k k m m m m m m a b a b a b -=-==-=由(2)可知1(||||)i i i i km m m m i a c b c k =-+-=∑因为11220k k k k n n m m m m m m a b a b a b ++++-=-==-=所以11||||jj jj nnm m m m j k j k ac bc =+=+-=-∑∑,设11||||jj jj nnm m m m j k j k ac bc p =+=+-=-=∑∑,由题意可知p N ∈.所以2 2k p k +=,得2k p =与k 为奇数矛盾所以假设不成立,即集合M 中至多有两个元素 当{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意所以集合M 中元素的个数只可能是2解法2:假设121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素.则1122(||||||)n n A B n a b a b a b n k =--+-++-=-即1122||||||n n a b a b a b k -+-++-=又由题意可知||0112i i a b i n ==⋯-或,,,, 1122||,||,,||n n a b a b a b ---恰有k 个1,与n -k 个0设其中k 个等于1的项依次为1122,,,k k m m m m m m a b a b a b --- n -k 个等于0的项依次1122,,,k k k k n n m m m m m m a b a b a b ++++---由题意可知1122(||||||)n n A C n a c a c a c n k =--+-++-=-所以11||||i i jj knm m m m i j k a c ac k ==+-+-=∑∑① 同理11||||i i jj k nm m m m i j k b c bc k ==+-+-=∑∑②因为11220k k k k n n m m m m m m a b a b a b ++++-=-==-=所以11||||jj jj nnm m m m j k j k ac bc =+=+-=-∑∑,①—②得1(||||)0i i i i km m m m i a c b c =---=∑又因为111(||||)(|1||0|)2i i i i i i i k k km m m m m m m i i i a c b c c c k c ===---=---=-∑∑∑为奇数与1(||||)0i i i i km m m m i a c b c =---=∑矛盾所以假设不成立,即集合M 中至多有两个元素 当{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意所以集合M 中元素的个数只可能是2. 【点睛】关键点点睛:本题第三问解题的关键在于利用反证法证明当121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素时,结合题意推出2k p =与k 为奇数矛盾,进而得集合M 中至多有两个元素,再举例当{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意即可.30.(1){|22}A x x =-≤≤ (2)[1,)-+∞ 【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解. (1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤. (2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆, 当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<,综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。
高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.若,则的值为【答案】-1【解析】由集合相等的概念可知有元素,又,则,故,根据集合中元素的互异性知,故。
【考点】集合相等的概念及集合中元素的互异性。
2.设集合,A.B.C.D.【答案】B【解析】集合=,N= ;所以M N=【考点】交集的运算3.已知集合,,则.【答案】【解析】集合,集合,.【考点】集合的交集.4.已知全集,集合(1)求(2)求【答案】(1)(2)【解析】分别求出两集合A,B的解集,,再求出,分别求出,.由,得-6<x-1<6,解得-5<x<7,由,得(x-8)(2x-1)>0,解得x>8,或x<.(1);(2).【考点】集合的运算.5.已知集合,集合,若是单元素集,则=【答案】6 或-4【解析】由条件,得,可知集合表示一条直线,集合表示圆心为,半径为的圆,若是单元素,则直线与圆相切,则有,即,解得.【考点】1、集合的交集运算;2、直线与圆的位置关系.6.集合.(1)当时,求;(2)若是只有一个元素的集合,求实数的取值范围.【答案】(1)(2)m=3或m≥【解析】(1)两集合的交集即两集合的公共部分,所以应联立方程解方程组。
(2)要使是只有一个元素的集合,只需联立的方程只有一个根,消去y或x后整理出一元二次方程,当判别式等于0时,对称轴需在内,当判别式大于0时,函数的一个零点应在内。
试题解析:(1),所以。
(2)消去y整理可得。
因为是只有一个元素的集合,即此方程在只有一个根。
所以或解得m=3或m≥【考点】集合运算一元二次函数图像7.集合.(1)若A B=,求a的取值范围.(2)若A B=,求a的取值范围.【答案】(1)(2)【解析】(1)A B=时,集合A集合B没有公共点,所以时成立。
当时,两集合仍没有公共点,所以;(2)集合B中必须含有小于等于的元素,集合A中含有的元素在集合B中仍可含有所以试题解析:(1)因为,A B=,所以(2)当A B=时【考点】集合的运算8.满足A∪{-1,1}={-1,0,1}的集合A共有( )A.10个B.8个C.6个D.4个【答案】D【解析】根据题意,分析可得,集合A中必须有元素0,可能含有元素1或-1,由此列举可得全部可能的集合集合A可能为{0}、{0,1}、{0,-1}、{0,1,-1},共有4个;故选D【考点】子集与真子集.9.设集合若,则实数 .【答案】4【解析】,或或,当时,,此时不合题意,.【考点】集合的交、并、补运算10.已知集合,.(Ⅰ)若,求();(Ⅱ)若,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)解出集合,再根据确定集合,然后由数轴找出交集是;(Ⅱ)由可知,由子集概念求出的取值范围是.试题解析:(Ⅰ)因为当时,.所以.又因为集合,所以().(Ⅱ)因为,所以.当时,有:,此时;当时,有:,解得.综上所述,实数的取值范围是.【考点】集合的基本运算.11.已知全集为实数集R,集合,.(1)分别求,;(2)已知集合,若,求实数的取值集合.【答案】(1),;(2)的取值范围是.【解析】(1)只要求出集合,根据集合交集,并集,补集的定义就可以得出结论;(2)由于,可以在数轴上表示出两个集合,从而得出的范围.试题解析:(Ⅰ),,,.(Ⅱ)①当时,,此时;②当时,,则.综合①②,可得的取值范围是.【考点】1、集合的运算;2、子集的概念.A=12.已知集合A={y | y=2x,x∈R},则CRA.B.(-∞,0]C.(0,+∞)D.R【答案】B【解析】A={y | y=2x,x∈R},所以CA=(-∞,0].R【考点】本小题主要考查指数函数的值域和补集运算.点评:涉及到集合的运算,可以借助数轴辅助解决问题.13.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(CB)等于()UA.{4,5} B.{2,4,5,7} C.{1,6} D.{3}【答案】AB={2,4,5,7},【解析】根据题意,由于全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6}那么可知,CU则A∩(CB)= {4,5},故选A.U【考点】交、并、补的定义点评:本题考查利用交、并、补的定义进行集合间的混合运算,属于基础题14.已知A={xú 2a≤x≤a+3},B={xú x<-1或x>5} 且A∩B=Ф,求实数a的取值范围.【答案】.【解析】当时,,所以,这时A∩B="Ф" (2分)当时,根据题意得,即,所以(8分)综上可得,或(9分)∴实数的取值范围是(10分)【考点】本题主要考查集合的运算,一元一次不等式组的解法。
高一数学集合与不等式练习题

高一数学集合与不等式练习题一、选择题1*.设a,b ∈R ,集合{1,a+b,a}={0,ab,b},则b-a 等于( ) A. 1 B.-1 C.2 D.-2 2*.设P 和Q 是两个集合,定义集合P-Q={x|Q x P x 且,},如果P={x|x<0},Q={x||x-2|<1}.那么P-Q 等于() A.}10|{x x B.}10|{x x C.}21|{x x D.}32|{x x 3*.已知集合A={x|x<a},B={x|1<x<2}.且.)(R B C A u 则实数a 的取值范围是( )A.a 2B.a<1C.a 2D.a>2二、非选择题(解答题做在背面)4.已知集合A={x|01832x x },B={x|(x-k)(x-k-1)0},若B A , 则k 的范围是__.5*.已知集合M={R a x ax R x ,023|2}.(1)若集合M 中只有一个元素,求a 的值,并求出这个元素;(2)若集合M 中至多只有一个元素,求a 的取值范围。
6.设全集U=R ,集合M={m|方程012x mx 有实数根},集合N={m|方程0m 2x x 有实数根},求NM C )(u 7*.重点题(1)若方程07)1(82m x m x 有两个负根,求实数m 的取值范围。
(2)若方程07)5(32xm x 的一个根大于4,一个根小于4,求m 的取值范围。
(3)若方程01222t tx x 的两个实根都在-2和4之间求t 的取值范围。
8.设A={x|1<x<3}.又设B 是关于x 的不等式组的解集,试确定a,b 的取值范围,使得B A. 9*.设关于x 的二次方程02)13(722k k x k x 有两根21,x x ,且满足,21021x x 求K 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一级数学单元测试题
集合与不等式
一、选择题:(4分×15=60分)
1、设{}|7M x x =≤,43x =,则下列关系中正确的是 ( ) A. x ∈ M B. x M ∉ C .{}x M ∈ D .{x }∪M
2、下列不等式中一定成立的是( ).
A .x >0
B . x 2≥0
C .x 2>0
D . |x |>0 3、已知集合A =[-1,1],B =(-2,0),则A ∩B =( )。
A .(-1,0) B .[-1,0) C .(-2,1) D .(-2,1]
4、下列表示①{0}=∅、②{0}∅∈、③{0}∅⊆、④0∈∅中,正确的个数为( ) A.2 B.1 C.4 D.3
5、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )∪(C U B )= ( ) A {0} B {0,1} C {0,1,4} D {0,1,2,3,4}
6、已知
∅∪A ={1,2,3},则集合A 真子集的个数( )
A 5
B 6
C 7
D 8
设U =[-3,5],C U A =[-3,0)∪(3,5]
7、设p 是q 的必要不充分条件,q 是r 的充要条件,则p 是r 的( )。
A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8、不等式()()012<+-x x 的解集是( ) A 、〔—1,2〕 B 、〔2,—1〕 C 、R D 、空集
9、设、、均为实数,且<,下列结论正确的是( )。
A. <
B. <
C. -<-
D. <
10、若x 2-ax -b <0的解集是{x |2<x <3},则bx 2-ax -1>0的解集为( ) A .11{|}23x x -
≤≤ B .11{|}23x x -<< C .11{|}23x x -<<-D .11{|}23
x x -≤≤- 11、一元二次方程x 2 – mx + 4 = 0 有实数解的条件是m ∈( )
A.(-4,4)
B.[-4,4]
C.(-∞,-4)∪(4, +∞)
D.(-∞,-4]∪[4, +∞)
12、下列不等式中,与3
2<-x 的解集相同的是 ( )
A 0542
<--x x B 051
≤-+x x C 0)1)(5(<+-x x D 0542
<-+x x
14、设全集U={(x ,y )R y x ∈,},集合M={(x ,y )
12
2
=-+x y },N={(x ,y )4-≠x y },那么 (C U M )(C U N )等于( )
A {(2,-2)}
B {(-2,2)}
C φ
D C U N 15、已知集合M={直线},N={圆},则M ∩N 中的元素个数为( ) A 0个 B 0个或1个或2个 C 无数个 D 无法确定
二、填空题(5分×6=30分)
13、 p :a 是整数;q :a 是自然数。
则p 是q 的 。
14. {3,5} {5};2 {x | x <1}。
(∈,∉,,,=)
15、已知集合A={x ||x +2|≥5},B={x |-x 2+6x -5>0},则A ∪B= ; 16、若A={x |x 2+x -6=0}, B={x |mx +1=0}且A ∪B =A 则m 的取值集合为______
17、经调查,我班70名学生中,有37名喜欢语文,49名喜欢数学,两门都喜欢的有20名,问两门都不喜欢的有 名学生。
18、已知集合A ={a |关于x 的方程2
2-+x a
x =1有唯一实数解},用列举法表示集合A 为
______________.
三.解答题(12分+13分+15分)
15、不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围.
16、已知U={x |x 2-3x +2≥0}, A={x ||x -2|>1},B={x |
2
1
--x x ≥0}, 求A ∩B , A ∪B , (C U A )∪B , A ∩(C U B ).
17、解关于x 的不等式:(1) x 2-(a +1)x +a <0,(2) 0222
>++mx x .
DACBC ACACB
11、{x |x ≤-7或x >1} 12、110,,32⎧⎫-⎨⎬⎩⎭
13 、 4 14、A={-
4
9
,2,2-}. 14、解:由22-+x a x =1得⎪⎩⎪⎨⎧≠-=---.02,022
2x a x x 由方程x 2-x -a -2=0得Δ=1+4(a +2)=0,
解得a =-
49,此时x =21满足②.∴A ={-4
9}. 15、解析: (1)当m 2-2m -3=0,即m =3或m =-1时, ①若m =3,原不等式解集为R
②若m =-1,原不等式化为4x -1<0∴原不等式解集为{x |x <4
1
},不合题设条件. (2)若
m 2-2m -3≠0,依题意有⎪⎩⎪
⎨⎧<--+-=∆<--0
)32(4)3(0
32222
m m m m m
即⎪⎩⎪
⎨⎧<<-<<-35
1
31m m ∴
-
51<m <3,综上,当-5
1
<m ≤3时,不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R . 16、解:∵U ={x |x 2-3x +2≥0}={x |(x -2)(x -1)≥0}={x |x ≥2或x ≤1}, A ={x ||x -2|>1} ={x |x -2>1或x -2<-1}={x |x >3或x <1},
B ={x |⎩
⎨⎧≠-≥--020)2)(1(x x x }={x |x >2或x ≤1}.由图(1)可知,A ∩B ={x |x >3或x <1},
A ∪
B ={x |x >2或x ≤1}.
.
A
A
B
B
1
2
3
x
图(1)
由图(2)可知U A ={x |2≤x ≤3或x =1}, 易知
U B ={x |x =2}.
.
A A
U
U
1
2
3
x
图(2)
由图(3)可知,(
U A )∪B ={x |x ≥2
或x ≤1}=U .
①
②
.
A B B U
U
1
2
3
x
图(3)
由图(4)可知,A ∩(
U B )=
∅.
B
A
A
U
123x
图(4)
17、解析:(1)原不等式可化为:,0)1)((<--x a x 若a >1时,解为1<x <a ,若a <1时, 解为a <x <1,若a =1时,解为φ
(2)△=162
-m . ①当时或即440162>-<>-m m m ,△>0.
方程0222
=++mx x 有二实数根:.4
16
,4162221-+-=---=m m x m m x
∴原不等式的解集为.
416416|22⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧-+->---<m m x m m x x 或 ①当m =±4 时,△=0,两根为.4
21m
x x -
== 若,4=m 则其根为-1,∴原不等式的解集为{}1,|-≠∈x R x x 且. 若,4-=m 则其根为1,∴原不等式的解集为{}1,|≠∈x R x x 且. ②当-4<4<m 时,方程无实数根.∴原不等式的解集为R .。