集合与不等式测试题

合集下载

(完整版)高教版职高数学第二章测试题

(完整版)高教版职高数学第二章测试题

第二章:不等式测试题 姓名 班级 分数一、填空题:(每题3分,共30分)1、设72<-x ,则<x 。

2、设732<-x ,则<x 。

3、设b a <,则2+a 2+b ,a 2 b 2。

4、不等式042<+x 的解集为: 。

5、不等式231>-x 的解集为: 。

6、已知集合)6,2(=A ,集合(]7,1-=B ,则=B A I ,=B A Y7、已知集合)4,0(=A ,集合(]2,2-=B ,则=B A I ,=B A Y8、不等式组⎩⎨⎧<->+4453x x 的解集为: 。

9、不等式062<--x x 的解集为: 。

10、不等式43>+x 的解集为: 。

二、选择题(每题3分,共30分)1、不等式732>-x 的解集为( )。

A .5>x B.5<x C.2>x D.2<x2、不等式02142≤-+x x 的解集为( )。

A .(][)+∞-∞-,37,Y B. []3,7-C. (][)+∞-∞-,73,YD. []7,3-3、不等式123>-x 的解集为( )。

A .()+∞⎪⎭⎫ ⎝⎛-∞-,131,Y B. ⎪⎭⎫ ⎝⎛-1,31 C. ()+∞⎪⎭⎫ ⎝⎛∞-,131,Y D. ⎪⎭⎫ ⎝⎛1,31 4、不等式组⎩⎨⎧<->+0302x x 的解集为( ).A .()3,2- B. ()2,3- C. φ D. R5、已知集合()2,2-=A ,集合()4,0=B ,则=B A I ( )。

A .()4,2- B. ()0,2- C. ()4,2 D. ()2,06、要使函数42-=x y 有意义,则x 的取值范围是( )。

A .[)+∞,2 B.(][)+∞-∞-,22,Y C.[]2,2- D. R7、不等式0122≥++x x 的解集是( )。

A .{}1- B.R C.φ D. ()()+∞--∞-,11,Y8、不等式()()043<-+x x 的解集为( )。

集合与不等式测试题

集合与不等式测试题

集合与不等式 测试题班级________ 姓名________ 学号________ 成绩________一、选择题(本大题共10小题,每小题5分,共50分) 1.已知集合{}8,6,5,4=A ,{}8,7,5,3=B ,则集合=B A ( ){}8,5.A {}8,7,6,5,4.B {}8,7,6,5,4,3.C {}8,7,6,5,4.D2.若集合M ={-1,0,1},N ={0,1,2},则N M 等于( )A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}3.设集合{}5,4,3,2,1,0=U ,{}5,3,1=A ,,则=A C U ( ) A .{}5,3,1 B .{}4,2,0 C .{}4,2 D .{}5,4,3,2,1,04.如果U ={x|x 是小于9的正整数},A ={1,2,3,4},B ={3,4,5,6},则(∁U A )∩(∁U B)为( )A .{1,2}B .{3,4}C .{5,6}D .{7,8}5.已知集合{}{}032,422<--=<=x x x N x x M ,则集合=N M ( ) A .{}2-<x x B .{}3>x x C .{}21<<-x x D .{}32<<x x6.不等式x x >2的解集是( )A .()0,∞-B .()1,0C .()+∞,1D .()()+∞∞-,10,7. 不等式()03<-x x 的解集是( )A .{}3<x xB .{}3>x xC .{}30<<x xD .{}3,0><x x x 或8. 不等式111-≥-x 的解集是( ) A .[)+∞,0 B .[)()+∞,11,0 C .(][)+∞∞-,10, D .(]()+∞∞-,10,9.函数()213+++=x x x f 的定义域为( ) .A ),2()2,3(+∞--- .B ),2()2,3[+∞--- .C ),3(+∞- .D ),2()2,(+∞---∞10.不等式042<++ax x 的解集不是空集,则实数a 的取值范围是( )A .44≤≤-aB .44<<-aC .4,4-≤≥a a 或D .4,4-<>a a 或 二、填空题(本大题共4小题,每小题5分,共20分)11.已知全集{}2,1,0,1,-==A Z U ,{},2x x x B ==则()_________=B C A U12.已知集合{}1,1-=A ,{}1==mx x B ,且A B A = ,则m 的是_________13.函数()()1log 2+=x x f 的定义域为_________14.存在实数x ,使得0342<--b bx x 成立,则b 的取值范围是________ 三、解答题(共20分)15.(10分) 已知全集{}60≤<=x x U ,集合{}51<<=x x A ,集合{}62<<=x x B ,求:(1)B A ;(2)B A ;(3)()B C A C U U )(16.(12分)解下列不等式: 0253)1(2>-+x x ; 062)2(2<-+-x x ; ;016)3(2>---x x x ()0424≥+-x x .17. (12分)已知集合{}0232=+-=x x x A ,{}0532=-+-=a ax x x B ,若A ∩B=B ,求实数a 的取值范围.18. (12分)设函数()12--=mx mx x f 。

《不等式》单元测试卷(含详解答案)

《不等式》单元测试卷(含详解答案)

试卷第1页,总4页 不等式测试卷(各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程序拍照发给老师检查。

)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )A .[7,26]-B .[1,20]-C .[4,15]D .[1,15]3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .1524.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( )A .()2,0-B .()(),02,∞∞-⋃+C .()0,2D .()(),20,∞∞--⋃+ 6.已知关于x 的不等式101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12- 7.不等式20ax x c -+>的解集为}{|21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .。

集合与不等式测试卷

集合与不等式测试卷

集合与不等式测试卷一、选择题1. 设集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},则A∪B的元素个数为()。

A. 5B. 6C. 7D. 82. 已知集合A={x | x>2},集合B={x | x<5},则A∩B的元素个数为()。

A. 2B. 3C. 4D. 53. 若集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},则A-B的元素个数为()。

A. 2B. 3C. 4D. 54. 若集合A={x | 2<x<6},集合B={x | 3<x<7},则A∪B的元素个数为()。

A. 1B. 2C. 3D. 45. 一元二次不等式x^2-3x+2>0的解集为()。

A. x<1或x>2B. 1<x<2C. 1<x<2或x>2D. 1<x<2或x<1二、填空题1. 一个集合A,若A的元素个数为5,且A中的元素有正有负,那么A的幂集元素个数为______。

2. 若不等式2x-3>5有解,那么x的取值范围为______。

3. 若集合A={x | x>2},集合B={x | x<5},则A∩B的元素为______。

4. 一元二次不等式x^2-4x-21<0的解集为______。

5. 若集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},则A∪B的元素个数为______。

三、解答题1. 解方程组{2x-y=4, x+y=5}。

2. 解不等式2x-3≥5。

3. 解不等式(x-3)(x+2)>0。

4. 解不等式x^2-4x-21≥0。

5. 解不等式x^2-3x+2≤0。

解析:一、选择题1. B. 6A∪B的元素个数等于A的元素个数加上B的元素个数减去A∩B的元素个数,即5+5-4=6。

2. D. 5A∩B的元素个数等于A的元素个数加上B的元素个数减去A∪B的元素个数,即∅的元素个数为0,5+5-0=10,故A∩B的元素个数为5。

中职测试题集合与不等式单元测试题

中职测试题集合与不等式单元测试题

中职测试题:集合与不等式单元测试题制作人:李昕姓名:分数:一、选择题:(每小题5分,共10小题50分)1、已知集合M 1,2,3,4,5, N 2,4,8。

则M N ()A、 2B、2,5C、2,4D、2,4,82、不等式1 x 2用区间表示为:()A (1,2)B (1,2]C [1,2)D [1,2]3、设M x|x 7,x 4,则下列关系中正确的是()A、x MB、x MC、x MD、x M4、设集合M 1,0,1 ,N 1,1 ,则()A、M NB、M NC、M ND、N M5、若a> b, c > d」())A、a — c > b — dB、 a +c > b + dC、a c > bd aD、- bc d26不等式xx 2<0的解集是( )A. (-2, 1)B.(— 2 —2)U (1 , +x)C. (- 1, 2)D.(——1)U (2,+x)7、设U={0,1, 2, 3, 4},A={0,1, 2, 3},B={2,3, 4},则(CUA)(CUB)=()A、{0}B、{0, 1}C、{0, 1, 4}D、{0, 1, 2, 3, 4}8、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要9、已知全集U = {0,1,2,3,4},集合M= {1,3}, P= {2,4}则下列真命题的是()A. M n P={1 ,2,3,4} B .C u M P C.C u M C d P © D . C d M C d P {0}10、10.设集合M = {x | x+1>0} , N = {x | - x+3 >0},则M A N =()。

A、{x | x >—1}B、{x | x v —3}C、{x | —1 v x v 3}D、{x | x >— 1 或x v 3}选择题答案:二、填空题(本题共5小题,每小题5分,共25分)11、已知集合M 2,3,4 , N 2,4,6,8,贝U M N ____________________________ ;x 1 012、不等式组的解集为:;x 2 013、不等式I 2x — 1 lv 3的解集是_________________________ ;14、已知方程x2 3x m 0的一个根是1,则另一个根是____________ m ___________15、不等式(m2—2m—3)x2—(m—3)x— 1 v0 的解集为R,贝U m ______ 。

中职教育数学《不等式和函数》测试

中职教育数学《不等式和函数》测试

第二章:不等式一、填空题:(每空2分)1、设72<-x ,则<x 。

2、设732<-x ,则<x 。

3、设b a <,则2+a 2+b ,a 2 b 2。

4、不等式042<+x 的解集为: 。

5、不等式231>-x 的解集为: 。

6、已知集合)6,2(=A ,集合(]7,1-=B ,则=B A ,=B A7、已知集合)4,0(=A ,集合(]2,2-=B ,则=B A ,=B A8、不等式组⎩⎨⎧<->+4453x x 的解集为: 。

9、不等式062<--x x 的解集为: 。

10、不等式43>+x 的解集为: 。

二、选择题(每题3分)1、不等式732>-x 的解集为( )。

A .5>x B.5<x C.2>x D.2<x2、不等式02142≤-+x x 的解集为( )。

A .(][)+∞-∞-,37, B. []3,7- C. (][)+∞-∞-,73, D. []7,3-3、不等式123>-x 的解集为( )。

A .()+∞⎪⎭⎫ ⎝⎛-∞-,131, B. ⎪⎭⎫ ⎝⎛-1,31 C. ()+∞⎪⎭⎫ ⎝⎛∞-,131, D. ⎪⎭⎫ ⎝⎛1,31 4、不等式组⎩⎨⎧<->+0302x x 的解集为( ).A .()3,2- B. ()2,3- C. φ D. R5、已知集合()2,2-=A ,集合()4,0=B ,则=B A ( )。

A .()4,2- B. ()0,2- C. ()4,2 D. ()2,06、要使函数42-=x y 有意义,则x 的取值范围是( )。

A .[)+∞,2 B.(][)+∞-∞-,22, C.[]2,2- D. R7、不等式0122≥++x x 的解集是( )。

A .{}1- B.R C.φ D. ()()+∞--∞-,11,8、不等式()()043<-+x x 的解集为( )。

职高数学不等式测试题

职高数学不等式测试题

练习2.1 不等式的基本性质1、用符号“>”或“<”填空:(1)67 78 76π 78π (2)431 17 431- 17- (3),2a b a <+设则 2,1b a +- 1,1b a -- 1b +;(4),a b a <设则2 2,2b a - 2,31b a -- 31b -。

2、比较两式的大小:2211(0)x x x x ++->与 2.2区间习题 练习2.2.1 有限区间1、已知集合()[)2,7,1,9,A B A B =-=⋂=则2、已知集合[][)2,3,5,1,A B A B =-=-⋃=则3、已知全集[]()1,11,1I I A =--=,集合A=,则C练习2.2.2 无限区间1、 已知集合()[),6,2,+,A B A B =-∞=∞⋂=则2、不等式378x -<的解集是3、已知{A x x =≤,用区间可以表示A 为2.3一元二次不等式习题 练习2.3 一元二次不等式1、不等式2320x x -+>的解集是2、不等式2560x x +-≤的解集是3、不等式(1)(3)0x x --≤的解集是4、不等式2340x x -++≥的解集是 2.4含绝对值的不等式习题练习2.4.1 不等式x a x a <>或1、不等式2x ≤的解集为2、不等式235x -+<-的解集为3、不等式39x <的解集为练习2.4.2 不等式ax b c ax b c +<+>或1、不等式22x -<的解集为2、不等式30x ->的解集为3、不等式212x +≤的解集为4、不等式823x -≤的解集为参考答案:1、(1)<,<(2)<,>(3)<,<,<(4)<,>,>2、2211x x x ++>-参考答案:练习2.2.1 有限区间 1、[)1,7 2、 [)-5,3 3、 {}-1,1,练习2.2.2 无限区间参考答案:1、 [)2,6 2、 (),5-∞ 3、 (-∞ 练习2.3 一元二次不等式参考答案:1、()(),12,-∞⋃+∞2、[]6,1-3、[]1,34、41,3⎡⎤-⎢⎥⎣⎦2.4含绝对值的不等式习题参考答案:1、[][],22,-∞-⋃+∞2、()(),44,-∞-⋃+∞3、()3,3- 练习2.4.2 不等式ax b c ax b c +<+>或参考答案:1、()0,42、()(),33,-∞-⋃+∞3、31,22⎡⎤-⎢⎥⎣⎦ 4、511,22⎡⎤⎢⎥⎣⎦。

集合与常用逻辑用语、一元二次函数、方程和不等式单元测试答

集合与常用逻辑用语、一元二次函数、方程和不等式单元测试答

高一数学必修一第一、二章测试题一、单选题(每小题5分,共40分)1.若集合A ={x ∈N |x ≤ 2 020 },a =22 ,则下列结论正确的是( ) A .{a }⊆A B .a ⊆A C .{a }∈A D .a ∉A 分析选D.因为A ={x ∈N |x ≤ 2 020 },所以A 中元素全是整数,因为a =22 ,所以a ∉A .2.设全集为R ,集合A ={1,2,3},B ={x |y =x -2 },则A ∩(R B )=( ) A .{1,2} B .{1} C .{1,3} D .{1,2,3}分析选B.因为B ={x |x ≥2},所以R B ={x |x <2},且A ={1,2,3}, 所以A ∩(R B )={1}.3.已知集合A ={x |(x -1)(x +2)<0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪x x -1>0 ,则A ∩B =( )A .{x |-2<x <0}B .{x |1<x <2}C .{x |0<x <1}D .R分析选A.因为集合A ={x |(x -1)(x +2)<0}={x |-2<x <1},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1>0 ={x |x <0或x >1},所以A ∩B ={x |-2<x <0}. 4.设a =x 2+y 2-2x +2y +1,b =-4,则实数a ,b 的大小关系( ) A .a <b B .a >b C .a =b D .与x ,y 取值有关分析选B.a -b =x 2+y 2-2x +2y +5=(x -1)2+(y +1)2+3>0,所以a >b . 5.已知t >0,则函数y =2t 2-t +2t的最小值为( )A .-2B .12C .3D .2分析选C.因为t >0,则函数y =2t 2-t +2t =2t +2t-1≥22t ·2t-1=3,当且仅当t =1时取等号.所以函数y =2t 2-t +2t的最小值为3.6.若不等式kx 2-6kx +k +8≥0的解集为R ,则实数k 的取值范围是( ) A .0≤k ≤1B .0<k ≤1C .k <0或k >1D .k ≤0或k ≥1分析选A.由于不等式kx 2-6kx +k +8≥0的解集为R ,分以下两种情况讨论:①当k =0时,则有8≥0,合乎题意;②当k ≠0时,则有⎩⎪⎨⎪⎧k >0Δ=36k 2-4k (k +8)=32k (k -1)≤0 , 解得0<k ≤1.综上所述,0≤k ≤1.7.某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等.假设今明两年该物品的价格分别为p 1,p 2(p 1≠p 2),则这两种方案中平均价格比较低的是( ) A .甲B .乙C .甲、乙一样D .无法确定解:甲方案:每年购买的数量相等;乙方案:每年购买的金额相等. 设甲每年购买的数量x ;乙每年购买的金额y . 因为今明两年该物品的价格分别为p 1,p 2(p 1≠p 2), 则甲的平均价格甲==,①乙的平均价格乙==,②两式作商可得=>=1,故乙的平均价格比较低,故选:B .8.某公司从2018年起每人的年工资主要由三个项目组成并按下表规定实施:项目 计算方法基础工资 2018年1万元,以后每年逐增10%住房补贴 按工龄计算:400元×工龄 医疗费每年1 600元固定不变若该公司某职工在2020年将得到的住房补贴与医疗费之和超过基础工资的25%,到2020年底这位职工的工龄至少是( )A .2年B .3年C .4年D .5年分析选C.设这位职工工龄至少为x 年,则400x +1 600>10 000·(1+10%)2×25%, 即400x +1 600>3 025,即x >3.562 5,所以至少为4年.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分) 9.下列命题中,正确的是( ) A .若a b >,则22ac bc > B .若a b >,则33a b >C .若0a b >>,0m >,则b m ba m a+>+ D .若15a -<<,23b <<,则43a b -<-<分析选BCD : 取0c,代入验证A,有00>,错误,故A 不正确;对于B :记()3f x x =,则()f x 为增函数,所以a b >时有()()f a f b >,故B 正确; 对于C :记()(0,0)b xf x a b x a x+=>>≥+,易证()f x 为增函数,所以0m >时有()()0f m f >,即b m ba m a+>+成立,故C 正确; 对于D :23,32b b <<∴-<-<-,又有15a -<<,利用同向不等式相加,有:43a b -<-<,故D正确.故选:BCD10.下列不等式不一定正确的是( ) A .|x +1x |≥2B .x 2+y 2xy ≥2C .x 2+y 22>xyD .|x +y |2≥|xy |分析选BCD.因为x 与1x 同号,所以⎪⎪⎪⎪⎪⎪x +1x =|x |+1|x | ≥2,A 正确; 当x ,y 异号时,B 不正确;当x =y 时,x 2+y 22=xy ,C 不正确;当x =1,y =-1时,D 不正确. 10.有以下说法,其中正确的为( )A .“x ,y 为无理数”是“xy 为无理数”的充分条件B .“若x ∈A ∩B ”则“x ∈A ”的否定是“若x ∈A ∩B ”则“x ∉∈A ”C .“x 2-2x -3=0”是“x =3”的必要条件D .“x >1”是“1x<1”的充分不必要条件分析选CD.对于A ,2 是无理数,但2 ×2 =2是有理数,故A 不正确;对于B ,“若x ∈A ∩B ”则“x ∈A ”是全称量词命题,它的否定是“∃x ∈A ∩B ”则“x ∉∈A ”,故B 不正确;对于C ,x =3⇒x 2-2x -3=0,反之不成立,因此“x 2-2x -3=0”是“x =3”的必要条件,故C 正确;对于D ,1x<1⇒x >1或x <0,因此“x >1”是“1x<1”的充分不必要条件,故D 正确.12.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的取值可以是( ) A .4 B .5 C .6 D .7分析选CD.设y =x 2-6x +a ,其图象为开口向上,对称轴为x =3的抛物线,如图所示.关于x 的一元二次不等式x2-6x +a ≤0的解集中有且仅有3个整数,a 需满足⎩⎪⎨⎪⎧22-6×2+a ≤012-6×1+a >0 ,解得5<a ≤8,又a ∈Z ,所以a 的取值是6,7,8. 三、填空题(每小题5分,共20分)13.命题∀x ∈R ,∃n ∈N ,2n>x 2的否定为________.分析存在量词命题的否定是全称量词命题,所以该命题的否定为 答案:∃x ∈R , ∀n ∈N ,2n≤x2 14.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为____________.分析:由(x -m )2>3(x -m ),得(x -m )(x -m -3)>0,解得x >m +3或x <m . 所以p :x >m +3或x <m .由x 2+3x -4<0,解得-4<x <1,即q :-4<x <1. 因为p 是q 成立的必要不充分条件,所以q ⇒p ,p ⇒q , 所以{x |-4<x <1}{x |x >m +3或x <m }.结合数轴可知m +3≤-4或m ≥1,解得m ≤-7或m ≥1.答案:m ≤-7或m ≥1 15.已知不等式axx -1<1的解集为{x |x <1或x >2},则a =______.分析由(1)101a x x -+<-,即[](1)1(1)0a x x -+-<,由不等式的解与方程的关系,(1)210a -⨯+=所以,a =1216.已知正实数a ,b 满足ab -b +1=0,则1a +4b 的最小值是________,此时b =________.分析由ab -b +1=0可得a =b -1b ,由a =b -1b>0,得b >1, 所以1a +4b =b b -1 +4b =1b -1 +4(b -1)+5,因为1b -1 +4(b -1)≥4,所以1a +4b ≥9,当且仅当a =13 ,b =32 时等号成立.答案:9 32四、解答题(共70分)17.(10分)设全集为R ,集合A ={x |x 2-2x -3>0},B ={x |a -1<x <2a +3}. (1)若a =-1,求(R A )∩B ;(2)在①A ∪B =A ,②A ∩B =B ,③(R A )∩B =∅,这三个条件中任选一个作为已知条件,求实数a 的取值范围.(注:如果选择多个条件分别解答,则按第一个解答计分)分析(1)全集为R ,集合A ={x|x 2-2x -3>0}={x|x <-1或x >3},所以R A ={x|-1≤x ≤3}; 又a =-1时,集合B ={x|a -1<x <2a +3}={x|-2<x <1},所以(R A)∩B ={x|-1≤x <1}.(2)选择①A ∪B =A 作为已知条件.(选择②,③的解法同①)因为A ∪B =A ,所以B ⊆A , 又由A ={x|x <-1或x >3}得当B =∅时a -1≥2a +3,解得a ≤-4;当B ≠∅时⎩⎪⎨⎪⎧a -1<2a +32a +3≤-1 或⎩⎪⎨⎪⎧a -1<2a +3a -1≥3 ,所以⎩⎪⎨⎪⎧a >-4a ≤-2 或⎩⎪⎨⎪⎧a >-4a ≥4,所以-4<a ≤-2或a ≥4.综上,可得a 的取值范围为a ≤-2或a ≥4. 18.(12分)解关于x 的不等式x 2-(3m +1)x +2m 2+2m <0.分析:x 2-(3m +1)x +2m 2+2m<0,即x 2-(3m +1)x +2m(m +1)=(x -2m)(x -m -1)<0, 令(x -2m)(x -m -1)=0,解得x =2m 或x =m +1, 当2m >m +1,即m >1时,解集为{x|m +1<x<2m}, 当2m <m +1,即m <1时,解集为{x|2m<x<m +1}, 当m =1时,解集为∅.综上所述,当m =1时,解集为∅;当m>1时,解集为{x|m +1<x<2m};当m<1时,解集为{x|2m<x<m +1}. 19.(12分)(1) 若x>3,求y =4x +2+13x -的最小值. (2)已知0,0a b >>,且1a b +=,4141M a b =++求M 的最大值.解(1)因为x>3,所以x -3>0.又因为y =4(x -3)+1x -3 +1414(3)14183x x ≥-⨯=- 当且仅当14(3)3x x -=-,即132x -=时,72x =等号成立,故y 的最小值是18. (2)2(4141)4()22(41)(41)4()2(41)(41)8()423M a b a b a b a b a b a b =+++=+++++≤++++++=++=,当4a+1=4b+1时取等号,此时a=b=12∴M 的最大值是3 20.(12分)已知命题p :“∃x ∈R ,x 2-2x +a =0”;命题q :“∀x ∈{x |1≤x ≤2},x 2+ax -8≤0” 若p,q 至少有一个为假命题,求实数a 的取值范围.分析命题p :“∃x ∈R ,x 2-2x +a =0”为假命题,可得方程x 2-2x +a =0无实数解,即有Δ=4-4a <0,解得a >1;命题q :“∀x ∈{x|1≤x ≤2},x 2+ax -8≤0”为真命题,可得⎩⎪⎨⎪⎧1+a -8≤04+2a -8≤0 ,解得a ≤2,命题q 为假a ≥2.综上可得,a 的取值范围是a >1. 21.(12分)()1已知x ,y 都是正数.求证:()()()2233338.x y x y x y x y +++≥()2已知a ,b ,c 为正数,且满足1a b c ++=.证明:164149a b c++≥.21.(1)证明:由基本不等式可知()()()(()(22332x y x yxy xy +++≥⋅⋅()23388xy xy x y =⋅=,(当且仅当x y =时取得等号). (2)∵1a b c ++=,∴()16411641a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭16416421b a c a c b a b a c b c ⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21≥+21168449=+++= 当且仅当47a =,27b =,17c =时,上式等号成立. 22.(12分)第一机床厂投资A 生产线500万元,每万元可创造利润1.5万元.该厂通过引进先进技术,在A 生产线的投资减少了x (x >0)万元,且每万元创造的利润变为原来的(1+0.005x )倍.现将在A 生产线少投资的x 万元全部投入B 生产线,且每万元创造的利润为1.5(a -0.013x )万元,其中a >0. (1)若技术改进后A 生产线的利润不低于原来A 生产线的利润,求x 的取值范围; (2)若B 生产线的利润始终不高于技术改进后A 生产线的利润,求a 的最大值. 分析(1)由题意得1.5(1+0.005x)(500-x)≥1.5×500,整理得x 2-300x ≤0, 解得0≤x ≤300,又x >0,故0<x ≤300.(2)由题意知,B 生产线的利润为 1.5(a -0.013x)x 万元,技术改进后,A 生产线的利润为 1.5(1+0.005x)(500-x)万元,则1.5(a -0.013x)x ≤1.5(1+0.005x)(500-x)恒成立,又x >0, 所以a ≤x 125 +500x +1.5恒成立.又x 125 +500x +1.5≥2x 125·500x+1.5=5.5, 当且仅当x 125 =500x ,即x =250时,等号成立,又a>0,所以0<a ≤5.5,所以a 的最大值为5.5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与不等式测试题
一、填空题:(每题3分,共30分)
1.已知集合},02{2R x x x x A ∈=--=,集合}31|{≤≤=x x B ,则A ∩B = . 2.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∪B )∩(∁U C )=________. 3、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ⋂=____________.
4.50名学生做的物理、化学两种实验,已知物理实验做的正确得有40人,化学实验做的正确的有31人,两种实验都做错的有4人,则这两种实验都做对的有 人. 5. 不等式
13
1
2>+-x x 的解集是 6. 已知不等式052
>+-b x ax 的解集是}23|{-<<-x x ,则不等式052
>+-a x bx 的解是___________ .
7. 不等式(1+x )(1-x )>0的解集是
8.集合{}52<<-=x x A ,集合{}
121-≤≤+=m x m x B ,若A B ⊆,且B 为非空集合,则m 的取值范围为 .
9. 设{}
{}
I a A a a =-=-+241222,,,,,若{}1I C A =-,则a=__________。

10.已知集合{}
{}
A x y y x
B x y y x ==-==()|()|,,,322那么集合A B =
二、选择题(每题3分,共30分)
11、下列四组对象,能构成集合的是 ( )
A 某班所有高个子的学生
B 著名的艺术家
C 一切很大的书
D 倒数等于它自身的实数 12、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 13.已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为( )
A .{}
1,2,4
B .{}
2,3,4
C .{}
0,2,4
D .{}
0,2,3,4
14、方程组 1
1x y x y +=-=- 的解集是 ( )
A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 15.已知集合U ={2,3,4,5,6,7},M ={3,4,5,7},N ={2,4,5,6},则 ( )
A .M ∩N ={4,6}
B .M ∪N =U
C .(∁U N )∪M =U
D .(∁U M )∩N =N
16.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集()U C A
B =( )
A .{|0}x x ≥
B .{|1}x x ≤
C .{|01}x x ≤≤
D .{|01}
x x <<
17. 已知{x |x 0},N {x |ax 10}M a =-==-=,若M N N =,则实数a 的值为( ) 或0 或1或 0 或0 或-1
18.已知全集R,U = 集合{}1,2,3,4,5A =,{|2}B x x =∈≥R ,下图中阴影部分所表示的集合
A. {1,2}
B. {0,1}
C. {1}
D. {0,1,2}
19.设{}
022=+-=q px x x A ,{}
05)2(62=++++=q x p x x B ,若⎭
⎬⎫⎩⎨⎧=21B A ,则=B A ( )
(A )⎭⎬⎫⎩⎨⎧-4,31,21 (B )⎭⎬⎫⎩⎨⎧-4,21 (C )⎭⎬⎫⎩⎨⎧31,21 (D)⎭
⎬⎫⎩⎨⎧21
20、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且
,a P b Q ∈∈,则有 ( )
A
a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个
三、解答题:(8+10+10+12=40分)
21. 若集合{
}{
}
2
2
30,,0,A x x mx x R B x x x n x R =+-=∈=-+=∈, 且{}3,0,1A B =-,求实数,m n 的值。

22.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥5
2
},
求:A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).
23.已知方程02
=++q px x 的两个不相等实根为βα,。

集合},{βα=A ,
=B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值?
24.解下列不等式
(1)0262≥+--x x (2)0962>+-x x (3)22
1
≤-+x x
(4)1<| x - 2 |≤7
一 、1.{2} 2. {2,5} 3、 {}|34x x x <->或 4. 25 >4或 x<-3 6.)3
1
,21(--
7.(-1,1) 8.【2,3) 9. 2 10. ()(){}1124,,, 二 、 三 、 21.
}
1,3{23}0,1{0
00},1,0,3{0-=⇒=⇒∈-⇒=⇒=⇒∈⇒∉-=⋃∈A m A B n B A B A
22. 解:将集合A 、B 、P 表示在数轴上,如图.X k b 1 . c o m
∵A ={x |-4≤x <2},B ={x |-1<x ≤3}, ∴A ∩B ={x |-1<x <2}. ∵∁U B ={x |x ≤-1或x >3},
∴(∁U B )∪P ={x |x ≤0或x ≥5
2
},
(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <5
2
}
={x |0<x <2}.
23.解:由A ∩C=A 知A ⊆C 。


},{βα=A ,则C ∈α,C ∈β. 而A ∩B =φ,故B ∉α,B ∉β。


然即属于C 又不属于B 的元素只有1和3. 不仿设α=1,β=3. 对于方程02
=++q px x 的两根βα,应用韦达定理可得3,4=-=q p .。

相关文档
最新文档