高一数学 集合与不等式练习题

高一数学 集合与不等式练习题

高一数学 集合与不等式练习题

一、选择题

1*.设a,b ∈R ,集合{1,a+b,a}={0, a

b ,b},则b-a 等于( ) A. 1 B.-1 C.2 D.-2 2*.设P 和Q 是两个集合,定义集合P-Q={x| Q x P x ?∈且,},如果P={x|x<0},Q={x||x-2|<1}.那么P-Q 等于( )

A. }10|{<

B. }10|{≤

C. }21|{<≤x x

D. }32|{<≤x x

3*.已知集合A={x|x

A.a ≤ 2

B.a<1

C.a ≥2

D.a>2

二、非选择题(解答题做在背面)

4.已知集合A={x| 01832>-+x x },B={x|(x-k)(x-k-1) ≤0},若φ=?B A , 则k 的范围是__.

5*.已知集合M={ R a x ax R x ∈=+-∈,023|2}.(1)若集合M 中只有一个元素,求a 的值,并求出这个元素;(2)若集合M 中至多只有一个元素,求a 的取值范围。

6.设全集U=R ,集合M={m|方程012=--x mx 有实数根},集合N={m|方程0m 2=+-x x 有实数根},求N M C ?)(u

7*.重点题(1)若方程07)1(82

=-+++m x m x 有两个负根,求实数m 的取值范围。(2)若方程07)5(32=+-+x m x 的一个根大于4,一个根小于4,求m 的取值范围。(3)若方程01222=-+-t tx x 的两个实根都在-2和4之间求t 的取值范围。

8.设A={x|1

的解集,试确定a,b 的取值范

围,使得B A ?.

9*.设关于x 的二次方程02)13(722=--++-k k x k x 有两根21,x x ,且满足,21021<<<

(完整版)高中数学不等式归纳讲解

第三章不等式 定义:用不等号将两个解析式连结起来所成的式子。 3-1 不等式的最基本性质 ①对称性:如果x>y,那么y<x;如果y<x,那么x>y; ②传递性:如果x>y,y>z;那么x>z; ③加法性质;如果x>y,而z为任意实数,那么x+z>y +z; ④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则) 3-2 不等式的同解原理 ①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。 ③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。 ④不等式F (x )G (x )>0与不等式 0)x (G 0)x (F >>或0)x (G 0)x (F <<同解 不等式解集表示方式 F(x)>0的解集为x 大于大的或x 小于小的 F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式

3-3-1 均值不等式 1、调和平均数: )a 1...a 1a 1(n H n 21n +++= 2、几何平均数: n 1 n 21n )a ...a a (G = 3、算术平均数: n )a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++= 这四种平均数满足Hn ≤Gn ≤An ≤Qn a1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号 3-3-1-1均值不等式的变形 (1)对正实数a,b ,有2ab b a 22≥+ (当且仅当a=b 时 取“=”号)

高一数学集合与不等式测试题.

高一级数学单元测试题 集合与不等式 一、选择题:(4分×15=60分) 1、设{}|7M x x =≤,x = ( ) A. x ∈ M B. x M ? C .{}x M ∈ D .{x }∪M 2、下列不等式中一定成立的是( ). A .x >0 B . x 2≥0 C .x 2>0 D . |x |>0 3、已知集合A =[-1,1],B =(-2,0),则A ∩B =( )。 A .(-1,0) B .[-1,0) C .(-2,1) D .(-2,1] 4、下列表示①{0}=?、②{0}?∈、③{0}??、④0∈?中,正确的个数为( ) A.2 B.1 C.4 D.3 5、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )∪(C U B )= ( ) A {0} B {0,1} C {0,1,4} D {0,1,2,3,4} 6、已知 ?∪A ={1,2,3},则集合A 真子集的个数( ) A 5 B 6 C 7 D 8 设U =[-3,5],C U A =[-3,0)∪(3,5] 7、设p 是q 的必要不充分条件,q 是r 的充要条件,则p 是r 的( )。 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8、不等式()()012<+-x x 的解集是( ) A 、〔—1,2〕 B 、〔2,—1〕 C 、R D 、空集 9、设、、均为实数,且<,下列结论正确的是( )。 A. < B. < C. -<- D. < 10、若x 2-ax -b <0的解集是{x |20的解集为( ) A .11{|}23x x - ≤≤ B .11{|}23x x -<< C .11{|}23x x -<<-D .11{|}23 x x -≤≤- 11、一元二次方程x 2 – mx + 4 = 0 有实数解的条件是m ∈( ) A.(-4,4) B.[-4,4] C.(-∞,-4)∪(4, +∞) D.(-∞,-4]∪[4, +∞) 12、下列不等式中,与 3 2<-x 的解集相同的是 ( ) A 0542 <--x x B 051 ≤-+x x C 0)1)(5(<+-x x D 0542 <-+x x 14、设全集U={(x ,y )R y x ∈,},集合M={(x ,y ) 12 2 =-+x y },N={(x ,y )4-≠x y },那么 (C U M )(C U N )等于( ) A {(2,-2)} B {(-2,2)} C φ D C U N 15、已知集合M={直线},N={圆},则M ∩N 中的元素个数为( ) A 0个 B 0个或1个或2个 C 无数个 D 无法确定 二、填空题(5分×6=30分) 13、 p :a 是整数;q :a 是自然数。则p 是q 的 。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高一数学不等式解法例题.doc

典型例题一 例 1 解不等式:( 1)2x3 x2 15 x 0 ;(2) ( x 4)( x 5)2 (2 x)3 0 . 分析:如果多项式 f (x) 可分解为 n 个一次式的积,则一元高次不等式 f ( x) 0 (或f (x) 0 )可用“穿根法”求解,但要注意处理好有重根的情况. 解:( 1)原不等式可化为 x(2x 5)( x 3)0 把方程 x(2 x 5)( x 3) 0 的三个根 x1 0, x2 5 , x3 3顺次标上数轴.然后从右上2 开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为x 5 0或 x 3 x 2 ( 2)原不等式等价于 ( x 4)( x 5)2 (x 2)3 0 x 5 0 x 5 (x 4)( x 2) 0 x 4或 x 2 ∴原不等式解集为x x 5或 5 x 4或x 2 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或 奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿” ,其法如下图. 典型例题二 例 2 解下列分式不等式: ( 1) 3 1 2 ;(2) x2 4x 1 1 x 2 x 2 3x2 7x 2 分析:当分式不等式化为f (x) 0(或0) 时,要注意它的等价变形g( x)

① f ( x) f ( ) g ( ) 0 g( x) x x ② f ( x) f (x) g(x) f ( x) f ( x ) 0或 ( ) ( ) 0 或 g( x) g (x) 0 g (x) f x g x ( 1)解: 原不等式等价于 3 x 3 x 0 x 2 x 2 x 2 x 2 3( x 2) x( x 2) x 2 5x 6 ( x 2)( x 2) (x 2)( x 2) ( x 6)( x 1) 0 (x 6)( x 1)( x 2)(x 2) 0 ( x 2)( x 2) (x 2)( x 2) 0 用“穿根法” ∴原不等式解集为 ( , 2) 1,2 6, 。 ( 2)解法一 :原不等式等价于 2x 2 3x 1 0 3x 2 7x 2 (2x 2 3x 1)(3x 2 7 x 2) 0 2x 2 3x 1 0 2x 2 3x 1 3x 2 7x 2 或 3x 2 7x 2 1 或 1 x 或 x 2 x 2 1 3 ∴原不等式解集为 ( , 1 ) ( 1 ,1) (2, ) 。 3 2 解法二:原不等式等价于 ( 2x 1)( x 1) 0 (3x 1)( x 2) (2x 1)( x 1)(3x 1) (x 2) 0 用“穿根法” ∴原不等式解集为 ( , 1) ( 1 ,1) (2, ) 3 2 典型例题三 例 3 解不等式 x 2 4 x 2

集合与不等式测试题

集合与不等式测试题 一、填空题:(每题3分,共30分) 1.已知集合},02{2R x x x x A ∈=--=,集合}31|{≤≤=x x B ,则A ∩B = . 2.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∪B )∩(?U C )=________. 3、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 4.50名学生做的物理、化学两种实验,已知物理实验做的正确得有40人,化学实验做的正确的有31人,两种实验都做错的有4人,则这两种实验都做对的有 人. 5. 不等式13 12>+-x x 的解集是 6. 已知不等式052>+-b x ax 的解集是}23|{-<<-x x ,则不等式052>+-a x bx 的解是 ___________ . 7. 不等式(1+x )(1-x )>0的解集是 8.集合{}52<<-=x x A ,集合{}121-≤≤+=m x m x B ,若A B ?,且B 为非空集合,则m 的取值范围为 . 9. 设{}{}I a A a a =-=-+241222,,,,,若{}1I C A =-,则a=__________。 10.已知集合{}{} A x y y x B x y y x ==-==()|()|,,,322那么集合A B I = 二、选择题(每题3分,共30分) 11、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 12、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 13.已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B U 为( ) A .{}1,2,4 B .{}2,3,4 C .{}0,2,4 D .{}0,2,3,4 14、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 15.已知集合U ={2,3,4,5,6,7},M ={3,4,5,7},N ={2,4,5,6},则 ( ) A .M ∩N ={4,6} B .M ∪N =U C .(?U N )∪M =U D .(?U M )∩N =N

高中数学集合测试题含答案和解析

集合测试题 请认真审题,仔细作答,发挥出自己的真实水平! 一、单项选择题 : 1. 设集合,则( ) A .{75}x x -<<-∣ B .{35}x x <<∣ C .{53}x x -<<∣ D .{|75}x x -<< 【答案】 C 【解析】 考点:其他不等式的解法;交集及其运算. 分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可. 解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}S T x x =-<

C 4.若{1,2}A {1,2,3,4,5}则满足条件的集合A 的个数是( ) A .6 B .7 C .8 D .9 【答案】 C 5.设P={x|x ≤8}, ,则下列关系式中正确的是( ). A .a P B .a P C .{a}P D .{a}P 【答案】 D 6. 已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A == ∈∈-∈,则B 中所含元素的个数为( ) A .3 B .6 C . 8 D .10 【答案】 D 【解析】 考点:元素与集合关系的判断. 专题:计算题. 分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项 解答:解:由题意,x=5时,y=1,2,3,4, x=4时,y=1,2,3, x=3时,y=1,2, ????∈?

高中数学不等式综合复习

不等式专题 一.不等式的基本性质 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 二.一元二次不等式 1.不等式的解法 (1)整式不等式的解法(根轴法). 步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论; 一元一次不等式)0(0≠>+a b ax 的解法与解集形式 当0>a 时,a b x - >, 即解集为?????? ->a b x x | 当00(a ≠0)解的讨论.

高一数学一元二次不等式解法练习题及答案.doc

高一数学一元二次不等式解法练习题及答案 例若<<,则不等式--<的解是1 0a 1(x a)(x )01 a [ ] A a x B x a .<< .<<11 a a C x a D x x a .>或<.<或>x a a 1 1 分析比较与的大小后写出答案. a 1 a 解∵<<,∴<,解应当在“两根之间”,得<<. 选. 0a 1a a x A 11 a a 例有意义,则的取值范围是 .2 x x 2--x 6 分析 求算术根,被开方数必须是非负数. 解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2. 例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________. 分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理. 解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知 -=-+=-=-=-?? ?????b a a ()()1211122×得

a b ==-1212 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2-+- -+-3132 511 3 122x x x x x x >>()() 分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤3 2 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 1 1-x [ ] A .{x|x >0} B .{x|x ≥1} C .{x|x >1} D .{x|x >1 或x =0} 分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分. 解不等式化为+->, 通分得>,即>, 1x 0001 111 22 ----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C . 说明:本题也可以通过对分母的符号进行讨论求解.

高一数学 集合与不等式练习题

高一数学 集合与不等式练习题 一、选择题 1*.设a,b ∈R ,集合{1,a+b,a}={0, a b ,b},则b-a 等于( ) A. 1 B.-1 C.2 D.-2 2*.设P 和Q 是两个集合,定义集合P-Q={x| Q x P x ?∈且,},如果P={x|x<0},Q={x||x-2|<1}.那么P-Q 等于( ) A. }10|{<2 二、非选择题(解答题做在背面) 4.已知集合A={x| 01832>-+x x },B={x|(x-k)(x-k-1) ≤0},若φ=?B A , 则k 的范围是__. 5*.已知集合M={ R a x ax R x ∈=+-∈,023|2}.(1)若集合M 中只有一个元素,求a 的值,并求出这个元素;(2)若集合M 中至多只有一个元素,求a 的取值范围。 6.设全集U=R ,集合M={m|方程012=--x mx 有实数根},集合N={m|方程0m 2=+-x x 有实数根},求N M C ?)(u 7*.重点题(1)若方程07)1(82 =-+++m x m x 有两个负根,求实数m 的取值范围。(2)若方程07)5(32=+-+x m x 的一个根大于4,一个根小于4,求m 的取值范围。(3)若方程01222=-+-t tx x 的两个实根都在-2和4之间求t 的取值范围。 8.设A={x|1

(完整版)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

高一数学不等式解法经典例题92436

实用文档 标准文案大全典型例题一 例1解不等式:(1)015223???xxx;(2)0)2()5)(4(32????xxx. 分析:如果多项式)(xf可分解为n个一次式的积,则一元高次不等式0)(?xf(或0)(?xf)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 0)3)(52(???xxx 把方程0)3)(52(???xxx的三个根3,25,0321????xxx顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部 分. ∴原不等式解集为??????????3025xxx或 (2)原不等式等价于 ??????????????????????2450)2)(4(050)2()5)(4(32xxxxxxxxx或 ∴原不等式解集为??2455???????xxxx或或 说明:用“穿根法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”, 其法如下图. 典型例题二 例2 解下列分式不等式: (1)22123????xx;(2)12731422?????xxxx 分析:当分式不等式化为)0(0)()(??或xgxf时,要注意它的等价变形

实用文档 标准文案大全①0)()(0)()(????xgxfxgxf ② 0)()(0)(0)()(0)(0)()(0)()(?????????????xgxfxfxgxfxgxgxfx gxf或或 (1)解:原不等式等价于 ????????????????????????????????????????0)2)(2(0)2)(2)(1)(6(0)2 )(2()1)(6(0)2)(2(650)2)(2()2()2(302232232xxxxxxxxxxxx xxxxxxxxxxxxx 用“穿根法” ∴原不等式解集为????????????,62,1)2,(。 (2)解法一:原不等式等价于 027313222?????xxxx21213102730132027301320)273)(132(222222??? ???????????????????????????????xxxxxxxxxxxxxxx或或或 ∴原不等式解集为),2()1,21()31,(??????。 解法二:原不等式等价于0)2)(13()1)(12(?????xxxx 0)2()13)(1)(12(???????xxxx 用“穿根法” ∴原不等式解集为),2()1,21()31,(?????? 典型例题三 实用文档 标准文案大全 例3解不等式242???xx 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的

中职数学集合与不等式综合测试题

中职数学集合与不等式综合测试题 一.选择题(12×5=60分) 1.已知全集U={-1,0,1,2},集合A={-1,2},B={0,2},则=( ) A.{0} B.{2} C.{-1,2} D.{-1,1} 2.下列关系中正确的是( ) A. B.{0}= C.a={a } D. 3.已知a<0,b>0,则下列各式成立的是( ) A.a-b>0 B.ab>0 C. D. 4.已知集合A={0,3,5},B={},则=( ) A.{3} B.{0,3,5} C.{0,1,2,3,4,5} D.{5} 5.已知集合M={},N={-1,0,7},则M N=( ) A.{-1,0,7,-7} B.{7} C.{-1,0,7} D.{-7,7} 6.已知集合M={},U=R,则=( ) A.{} B. C.{} D.{} 7.集合{x|-31},则a 必满足( ) A.a<-3 B.a<0 C.a ≤-3 D.a>-3 9.不等式的解集是( ) A. B. C. D. 10.不等式的解集是( ) B A C U )(Q ∈2ΦR Z ?0>a b a b 1 1>51-|≤<∈x N x B A 49|2=x x 31-2|x x 3|>x x N x ∈x x 222>+),(∞+1),(0-∞),(∞+∞-),(∞+006-x 5-2

A.(2,3) B.(-3,2) C.(-6,1) D.(-1,6) 11.“a=2”是“”的( )条件 A.充分 B.必要 C.充要 D.既非充分也非必要 12.下列结论正确的是( ) (1)若a>b,则ac>bc (2)若则a>b (3)若a>b ,c>d,则a+c>b+d (4)若a>b,c>d,则ac>bd (5)若a>b ,且ab ≠0,则 A.(3) (5) B.(1)(2)(3) C.(2)(3)(4)(5) D.(2)(3) 二.填空题(6×5=30分) 13.集合{}的区间表示____________________ 14.设U={绝对值小于4的整数},A={0,1,3},则=______________ 15.设A={x|-2b a 11<3|≥x x B A A C U },,,{d c b a A ? x x 12492>+)6)(2(42+++x x x 与)(2-3,2x x x +

高一数学不等式知识点总结

高一数学不等式知识点总结 一、要点精析 1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比 较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a- b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右 两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进 行变形,或变形为一个常数,或变形为若干个因式的积,或变形为 一个或几个平方的和等等,其中变形是求差法的关键,配方和因式 分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。 应用范围:当被证的不等式两端是多项式、分式或对数式时一般使 用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+, a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是 判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、 指数式时,一般使用商值比较法。 2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从 “已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2B3…BnB,即从已知A逐步推演不等式成立的必要条件从而得 出结论B。

3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。用 分析法证明AB的逻辑关系为:BB1B1B3… BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明 A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分 析法证题是步步寻求上一步成立的充分条件。 4.反证法有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其 它性质,推出矛盾,从而肯定A>B。凡涉及到的证明不等式为否定 命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不 可能”等词语时,可以考虑用反证法。 5.换元法换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化 原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。 主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明, 当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑 三角代换,将两个变量都有同一个参数表示。此法如果运用恰当, 可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据 具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ, y=sinθ;②若x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);③对 于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量换元法:在对称式(任意交换两个字母,代 数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进 行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。 6.放缩法放缩法是要证明不等式A 二、难点突破

集合不等式试题及答案

集合与简易逻辑 不等式 1.已知),0(+∞=U ,}0sin |{>=x x A ,}1)1(log |{4>+=x x B ,=)(B C A U U A.}0|{π≤--<-=x x x q a x x A p ,且非p 是非q 的充分条件,则a 的取值范围为( ) A. -1-++;②)1(22 2--≥+b a b a ;③3322 a b a b ab +>+;④ 2>+a b b a 。上述4个式子中恒成立的有 ( ) (A )1个 (B )2个 (C )3个 (D )4个 6、对于实数a b 、,“()0b b a -≤”是“ 1a b ≥”成立的( ) (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分又不必要条件 7、若关于x 的不等式4)1(4 2 +≤+k x k 的解集是M ,则对任意实数k ,总有 ( ) A .2∈M ,0?M B .2?M ,0?M C .2?M ,0∈M D .2∈M ,0∈M 8、若A 为不等式组002x y y x ≤?? ≥??-≤? 表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫 过A 中的那部分区域的面积为 ( ) A . 34 B .1 C . 7 4 D .5 9、已知,,x y z R + ∈,230x y z -+=,则2 y xz 的最小值 . 10、记关于x 的不等式 01 x a x -<+的解集为P ,不等式11x -≤的解集为Q .

最新高一数学不等式练习题

高一数学不等式练习题 1、不等式1 1 2x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .()0,∞-?(2,)+∞ 2、不等式2 01x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-, 3、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( ) (A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3} 4 ) A. D. 5、不等式203x x ->+的解集是( ) (A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞) 6、若不等式210x ax ++≥对一切102x ?? ∈ ???,成立,则a 的最小值为( ) A.0 B.2- C.5 2- D.3- 7、设x 、y 为正数,则有(x+y)(1 x +4 y )的最小值为( ) A .15 B .12 C .9 D .6 8、.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( ) (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 9、下面给出的四个点中,位于???>+-<-+01, 01y x y x 表示的平面区域内的点是( ) (A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0) 10、已知函数()???≥ -<+-=01 1x x x x x f ,则不等式()()111≤+++x f x x 的解集是( ) (A) {}121|-≤≤-x x (B) { }1|≤x x (C) {}12|-≤x x (D) {}1212|-≤≤--x x

中职数学试卷:集合与不等式

《集合与不等式》测试 时间:90分钟 分数:150分 一、选择题(每题5分,共50分) 1.下列写法正确的是( ) A.0{(0,1)}∈ B.1{(0,1)}∈ C.(0,1){(0,1)}∈ D.(0,1){0,1}∈ 2.设集合M={a ,b},则满足M ∪N {a ,b ,c}的集合N 的个数为( ) A .1 B .4 C .7 D .8 3.b =c =0是抛物线y =ax 2+bx +c 经过原点的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 4.2--x 成立的( ) A .充分不必要条件 B .必要不充分条件 C.充要条件 D.非充分非必要条件 5.下列表示同一集合的是( ) A .{}M =(2,1),(3,2) {}N =(1,2),(2,3) B .{} {}M N ==1,22,1 C .{}2|1M y y x x R ==+∈, {}2|1N y y x x N ==+∈, D .{}2|1M x y y x x R ==-∈(,) , {}2|1N y y x x N ==-∈, 6.已知集合}{,,S a b c =中的三个元素是ABC ?的三边长,那么ABC ?一定不是 ( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 7.集合{}2|210,A x x x x R =--=∈的所有子集的个数为( ) A.4 B.3 C.2 D.1 8.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则=A C U ( ). A. ? B. {}2,4,6 C. {}1,3,6,7 D. {}1,3,5,7

集合不等式函数测试试卷.doc

集合不等式函数测试试卷 (: 120 分分:120分) 班姓名分 一.(本大共10 小;每小 4 分,共 40 分. 在每小出的四个中,只有 一是符合目要求的) 1.集合 {1,2, 3}的真子集共有() A、 5 个 B、 6 个 C、 7 个 D、 8 个 2.中的阴影表示的集合是() A .A C u B B.B C u A A B C.C u( A B) D.C u( A B) U 3. 以下五个写法中:①{0}∈{ 0,1,2};②{1,2};③{ 0,1,2 }={ 2,0,1 };④0 ; ⑤ A A ,正确的个数有() A .1 个B. 2 个C.3 个D. 4 个 4.已知y f x 是定义在 R 上的奇函数,则下列函数中为奇函数的是( ) ① y f x ② y f x ③ y xf x ④ y f x x A.①③B.②③C.①④D.②④ 5.函数y x 4 )| x | 的定域( 5 A.{ x | x 5} B.{ x | x 4} C.{ x | 4 x 5} D. x x 4且x 5 6.若函数f (x) x 1, ( x 0) , f ( 3) 的()f ( x 2), ( x 0) A .5 B.- 1 C.- 7 D .2 7.已知函数y f x , x a,b ,那么集合 x, y y f x , x a,b x, y x 2 中元素的个数?() A . 1B. 0C. 1 或 0D. 1 或 2 8.已知函数 f (x) 的定域 [ a, b] ,函数 y f (x) 的象如甲所示,函数y f ( x )

的象是乙中的()

集合、不等式基础测试题

集合、不等式测试卷 班级 姓名 得分 一、单项选择题(本大题共10小题,每小题4分,共40分) 1. 1、已知集},2|{N n n x x P ∈==,},4|{N n n x x T ∈==,则P T =U A. },4|{N n n x x ∈= B. },2|{N n n x x ∈= C. },|{N n n x x ∈= D. },4|{Z n n x x ∈= 2、01=-x 是012=-x 的 A .充要条件 B. 必要而非充分条件 C .充分而非必要条件 D. 既非充分也非必要条件] 3. 若a >b >0,c ∈R ,则下列不等式中不正确的是( ) A . a > b B . ab >b 2 C.a + c >b +c D. ac >bc 4. 已知集合{} 12≤-=x x A ,=B {}2>x x ,则=B A I A .{}32≤x x D . {}3≥x x 5. 设集合{|03,},M x x x N =≤<∈则M 的真子集个数为 A.3 B.6 C.7 D.8 的 是则有实根, 的方程关于>设q p a c bx ax x q a ac b p )0(0:,)0(04:.622≠=++≠- A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 {}{} {}2101,1,3,221.7....的值为 则实数若,,.已知集合D C B A x N M N M x -===I 8. 已知集合A={1,3,m },B={1,m},A ∪B=A ,则m= A.0或3 B.0或3 C.1或3 D.1或3 9.已知集合{}13M x x =-<,集合{} 260N x x x =--<,则A B =I A. {}23x x -<< B. {}24x x -<< C. {}3x x < D. {} 34x x << 10. 设集合{}|13,A x x x Z =-<∈,{}2|16,B x x x Z =≤∈ A B I = A . {1,2,3} B .{1,2,3,4} C . {-1,0,1,2,3} D .{0,1,2,3}

相关文档
最新文档