全等三角形证明判定方法分类总结
【数学知识点】全等三角形的判定与性质

【数学知识点】全等三角形的判定与性质经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
SSS(边边边):三边对应相等的三角形是全等三角形。
SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。
ASA(角边角):两角及其夹边对应相等的三角形全等。
AAS(角角边):两角及其一角的对边对应相等的三角形全等。
RHS(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。
(它的证明是用SSS原理)下列两种方法不能验证为全等三角形:AAA(角角角):三角相等,不能证全等,但能证相似三角形。
SSA(边边角):其中一角相等,且非夹角的两边相等。
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.能够完全重合的顶点叫对应顶点。
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应边上的中线相等。
7.全等三角形面积和周长相等。
8.全等三角形的对应角的三角函数值相等。
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
1、自行车架自行车架根据用途分类可以分为停放自行车架与汽车自行车架。
2、篮球架篮球架是篮球场地的必需设备。
篮球运动器材。
包括篮板和篮板支柱,架设在篮球场两端的中央。
目前使用的有液压式、移动式、固定式、吊式、海燕式、炮式等等。
3、相机三脚架三脚架是用来稳定照相机,以达到某些摄影效果,三脚架的定位非常重要。
三脚架按照材质分类可以分为木质、高强塑料材质,合金材料、钢铁材料、火山石、碳纤维等多种。
感谢您的阅读,祝您生活愉快。
全等三角形判定经典

11.2三角形全等的判定ABC DEF(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。
表示方法:如图所示,在△ABC 和△DEF 中,AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS )。
例1. 如图所示,AB =CD ,AC =DB 。
求证:△ABC ≌△DCB 。
A BCD分析:由已知可得AB =CD ,AC =DB ,又因为BC 是两个三角形的公共边,所以根据SSS 可得出△ABC ≌△DCB 。
证明:在△ABC 和△DCB 中,∵⎩⎨⎧AB =CD AC =DB BC =CB,∴△ABC ≌△DCB (SSS )评析:证明格式:①点明要证明的两个三角形;②列举两个三角形全等的条件(注意写在前面的三角形,条件也放在前面),用大括号括起来;③条件按照“SSS ”顺序排序;④得出结论,并把判断的依据注在后面。
“ASA ”。
表示方法:如图所示,在△ABC 和△DEF 中,B E BC EF C F∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )。
例2. 如图所示,AB ∥CD ,AF ∥DE ,BE =CF ,求证:AB =CD 。
ABEFCD分析:要证明AB =CD ,由于AB 、CD 分别是△ABF 和△DCE 的边,可尝试证明△ABF ≌△DCE ,由已知易证:∠B =∠C ,∠AFB =∠DEC ,下面只需证明有一边对应相等即可。
事实上,由BE =CF 可证得BF =CE ,由ASA 即可证明两三角形全等。
证明:∵AB ∥CD ,∴∠B =∠C (两直线平行,内错角相等) 又∵AF ∥DE ,∴∠AFC =∠DEB (同上) ∴∠AFB =∠CED (等角的补角相等)又∵BE =CF ,∴BE -EF =CF -EF ,即BF =CE 在△ABF 和△DCE 中,()()()B C BF CE AFB CED ∠=∠⎧⎪=⎨⎪∠=∠⎩已证已证已证∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等)角边”或“AAS ”。
三角形全等的判定SAS

03
三角形全等的其他判定方 法
SSS判定定理
总结词
三边对应相等的两个三角形全等。
详细描述
SSS判定定理,即边边边全等定理,是 三角形全等判定的一种方法。如果两 个三角形的三组对应边分别相等,则 这两个三角形全等。
ASA判定定理
总结词
两角及夹角对应相等的两个定理, 也是三角形全等判定的一种方法。如 果两个三角形的两组对应角分别相等, 并且这两组对应角的夹边相等,则这 两个三角形全等。
每种判定定理都有其特定的适用范围和条件,使用时需要根据实际情况选择合适 的判定方法。
02
SAS判定定理
什么是SAS判定定理
总结词
SAS判定定理是三角形全等判定的一种重要方法,它基于三角形的两边和夹角 来判断两个三角形是否全等。
详细描述
SAS判定定理,即Side-Angle-Side判定定理,是指在两个三角形中,如果一个 三角形的两边与另一个三角形的两边相等,并且这两个相等的边所夹的角也相 等,那么这两个三角形就是全等的。
3. 根据一组复杂的边角条件,构 造一个全等的三角形,并解决相 关的几何问题。
感谢您的观看
THANKS
三角形全等的重要性
01
三角形全等是几何学中的基本概 念之一,是研究几何图形性质的 基础。
02
在解决实际问题中,如测量、绘 图、建筑等领域,三角形全等定 理的应用十分广泛。
三角形全等的分类
根据不同的判定条件,三角形全等可以分为SSS(三边全等)、SAS(两边及夹角全 等)、ASA(两角及夹边全等)、AAS(两角及非夹边全等)和HL(直角边斜边全 等)等五种类型。
2. 利用SAS判定定理证明 两个三角形全等,并找出 对应边和对应角。
全等三角形证明判定方法分类总结.

全等三角形(一)SSS【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形.2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等(2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于”如DEFABC∆∆与全等,记作ABC∆≌DEF∆(2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.【典型例题】例1.如图,ABC∆≌ADC∆,点B与点D是对应点,=∠BAC且︒=∠20B,1=∆ABCS,求ACDDCAD∠∠∠,,的度数ACD∆的面积.例2.如图,ABC∆≌DEF∆,cmCEcmBCA5,9,50==︒=∠,求EDF∠的度数及CF的长.例3.如图,已知:AB=AD,AC=AE,BC=DE,求证:CADBAE∠=∠例4.如图AB=DE,BC=EF,AD=CF,求证:(1)ABC∆≌DEF∆(2)AB//DE,BC//EF例5.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠【巩固练习】1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )A 、①④B 、①②C 、②③D 、③④2.如图,ABD ∆≌CDB ∆,且AB 和CD 是对应边,下面四个结论中 不正确的是( )A 、CDB ABD ∆∆和的面积相等 B 、CDB ABD ∆∆和的周长相等C 、CBD C ABD A ∠+∠=∠+∠ D 、AD//BC 且AD=BC3.如图,ABC ∆≌BAD ∆,A 和 B 以及C 和D 分别是对应点,如果︒=∠︒=∠35,60ABD C ,则BAD ∠的度数为( )A 、︒85B 、︒35C 、︒60D 、︒804.如图,ABC ∆≌DEF ∆,AD=8,BE=2,则AE 等于( ) A 、6 B 、5 C 、4 D 、35.如图,要使ACD ∆≌BCE ∆,则下列条件能满足的是() A 、AC=BC ,AD=CE ,BD=BE B 、AD=BD ,AC=CE ,BE=BDC 、DC=EC ,AC=BC ,BE=AD D、AD=BE ,AC=DC ,BC=EC 6.如图,ABE∆≌DCF ∆,点A 和点D 、点E 和点F 分别是对应点,则AB= ,=∠A ,AE= ,CE= ,AB// ,若BC AE ⊥,则DF 与BC 的关系是 . 7.如图,ABC ∆≌AED ∆,若=∠︒=∠︒=∠︒=∠BAC C EAB B 则,45,30,40 ,=∠D ,=∠DAC .8.如图,若AB=AC ,BE=CD ,AE=AD ,则ABE ∆ ACD ∆,所以=∠AEB ,=∠BAE ,=∠BAD .D第4题图第5题图B第6题图第7题图第8题图第9题题图9.如图,ABC ∆≌DEF ∆,︒=∠90C ,则下列说法错误的是( ) A 、互余与F C ∠∠ B 、互补与F C ∠∠C 、互余与E A ∠∠D 互余与D B ∠∠ 10.如图,ACF ∆≌DBE ∆,cm CD cm AD ACF E 5.2,9,110,30==︒=∠︒=∠,求D ∠的度数及BC 的长.11.如图,在ABD ABC ∆∆与中,AC=BD ,AD=BC ,求证:ABC ∆≌ABD ∆全等三角形(一)作业1.如图,ABC ∆≌CDA ∆,AC=7cm ,AB=5cm.,则AD 的长是( ) A 、7cm B 、5cm C 、8cm D 、无法确定2.如图,ABC ∆≌DCE ∆,︒=∠︒=∠62,48E A ,点B 、C 、E 在同一直线上,则ACD ∠的度数为( )A 、︒48B 、︒38C 、︒110D 、︒623.如图,ABC ∆≌DEF ∆,AF=2cm,CF=5cm ,则AD= . 4.如图,ABE ∆≌ACD ∆,︒=∠︒=∠25,100B A ,求BDC ∠的度数.5.如图,已知,AB=DE ,BC=EF ,AF=CD ,求证:AB//CD6.如图,已知AB=EF ,BC=DE ,AD=CF , 求证:①ABC ∆≌FED ∆②AB//EFAEAD CAB CDEACDFA C E FD7.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAE BAD ∠=∠E全等三角形(二)【知识要点】定义:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”,几何表示如图,在ABC∆和DEF∆中,ABCEFBCEBDEAB∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SASDEF∆【典型例题】【例1】已知:如图,AB=AC,AD=AE,求证:BE=CD.【例2】如图,已知:点D、E在BC上,且BD=CE,AD=AE,∠1=∠2,由此你能得出哪些结论?给出证明.【例3】如图已知:AE=AF,AB=AC,∠A=60°,∠B=24°,求∠BOE的度数.【例4】如图,B,C,D在同一条直线上,△ABC,△ADE是等边三角形,求证:①CE=AC+DC;②∠ECD=60°.【例5】如图,已知△ABC、△BDE均为等边三角形。
三角形全等的课程标准

三角形全等的课程标准三角形是几何学中基础而重要的概念之一,而全等三角形则是三角形的一个重要属性。
在教学中,我们需要了解和掌握三角形全等的课程标准,以便正确理解和应用相关知识。
本文将介绍三角形全等的课程标准,以及相关的性质和应用。
一、全等三角形的定义在欧几里得几何中,两个三角形全等意味着它们的所有对应边和对应角都相等。
具体来说,当两个三角形相互重合时,它们就是全等的。
据此,我们可以推导出以下三角形全等的判定条件:1. SSS判定法:若一个三角形的三条边分别与另一个三角形的三条边相等,则这两个三角形全等。
2. SAS判定法:若一个三角形的两边和夹角分别与另一个三角形的两边和夹角相等,则这两个三角形全等。
3. ASA判定法:若一个三角形的两个夹角和边分别与另一个三角形的两个夹角和边相等,则这两个三角形全等。
4. AAS判定法:若一个三角形的两个角和一边分别与另一个三角形的两个角和一边相等,则这两个三角形全等。
二、全等三角形的性质了解全等三角形的性质,不仅有助于我们判断两个三角形是否全等,还能帮助我们解决一些相关的几何问题。
1. 对应部分相等性质:全等三角形的对应边相等,对应角相等。
2. 对称性质:如果三角形ABC和三角形DEF全等,那么三角形DEF和三角形ABC也全等。
3. 转置性质:如果三角形ABC和三角形DEF全等,那么三角形BCA和三角形EFD、三角形CAB和三角形FDE也全等。
4. 脚性质:如果两个三角形的一个角全等,并且两个边的长度成比例,那么这两个三角形全等。
三、全等三角形的应用全等三角形的应用广泛,包括但不限于以下几个方面:1. 构造几何:利用全等三角形的性质,可以进行各种构造,如平行线的构造、中位线的构造等。
2. 三角函数:全等三角形的性质与三角函数密切相关。
在解决三角函数相关问题时,可以利用全等三角形的性质进行推导和计算。
3. 证明问题:在几何证明中,全等三角形经常被用来证明两个几何图形的相等性和特殊性质。
全等三角形证明判定方法分类归纳

全等三角形证明判定方法分类归纳一、直接证明法直接证明法是指通过对已知条件进行计算和推理,直接得出两个三角形全等的结论。
常用的直接证明法有以下几种:1.SSS判定法SSS判定法是指如果两个三角形的三边分别相等,则这两个三角形全等。
证明思路:设两个三角形ABC和DEF,已知AB=DE,BC=EF,AC=DF,要证明ΔABC≌ΔDEF。
通过SSS判定法可知,只需要证明∠ABC=∠DEF,∠BAC=∠EDF,∠ACB=∠DFE即可。
这个可以通过角的和为180°进行计算和推理得到。
2.SAS判定法SAS判定法是指如果两个三角形的两个边分别相等,并且这两个边夹角相等,则这两个三角形全等。
证明思路:设两个三角形ABC和DEF,已知AB=DE,∠ABC=∠DEF,AC=DF,要证明ΔABC≌ΔDEF。
通过SAS判定法可知,只需要证明BC=EF即可。
这个可以通过边与角关系进行计算和推理得到。
3.ASA判定法ASA判定法是指如果两个三角形的两个角分别相等,并且这两个角的夹边相等,则这两个三角形全等。
证明思路:设两个三角形ABC和DEF,已知∠BAC=∠EDF,AC=DF,∠ABC=∠DEF,要证明ΔABC≌ΔDEF。
通过ASA判定法可知,只需要证明AB=DE即可。
这个可以通过角与角关系进行计算和推理得到。
二、间接证明法间接证明法是指通过假设两个三角形不全等,然后推出与已知条件矛盾的结论,从而得出两个三角形全等的结论。
常用的间接证明法有以下几种:1.矛盾法假设三角形ABC和DEF不全等,然后通过对已知条件进行计算和推理,得出一个与已知条件矛盾的结论,进而推出两个三角形全等的结论。
2.割取法假设三角形ABC和DEF不全等,然后取一个边分别作其平行线或垂线,进而构造出等腰三角形或等边三角形,从而推出两个三角形全等的结论。
三、利用全等条件证明法利用全等条件证明法是指在已知两个三角形之间有一个或多个角、边、角边相等的关系时,可以根据全等条件推出两个三角形全等的结论。
全等三角形证明判定方法分类归纳

全等三角形(一)SSS【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于” 如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆(2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”. 【典型例题】例1.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求ACD D CAD ∠∠∠,,的度数及ACD ∆的面积.例2.如图,ABC ∆≌DEF ∆,cm CE cm BC A 5,9,50==︒=∠,求EDF∠的度数及CF 的长.例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠例4.如图AB=DE ,BC=EF ,AD=CF ,求证:(1)ABC ∆≌DEF ∆ (2)AB//DE ,BC//EF例5.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠【巩固练习】1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )A 、①④B 、①②C 、②③D 、③④ 2.如图,ABD ∆≌CDB ∆,且AB 和CD 是对应边,下面四个结论中 不正确的是( )A 、CDB ABD ∆∆和的面积相等B 、CDB ABD ∆∆和的周长相等C 、CBD C ABD A ∠+∠=∠+∠ D 、AD//BC 且AD=BC3.如图,ABC ∆≌BAD ∆,A 和B 以及C 和D 分别是对应点,如果︒=∠︒=∠35,60ABD C ,则BAD ∠的度数为( )A 、︒85B 、︒35C 、︒60D 、︒804.如图,ABC ∆≌DEF ∆,AD=8,BE=2,则AE 等于( ) A 、6 B 、5 C 、4 D 、3D第3题图第4题图第5题图B第6题图5.如图,要使ACD ∆≌BCE ∆,则下列条件能满足的是( ) A 、AC=BC ,AD=CE ,BD=BE B 、AD=BD ,AC=CE ,BE=BD C 、DC=EC ,AC=BC ,BE=AD D 、AD=BE ,AC=DC ,BC=EC 6.如图,ABE ∆≌DCF ∆,点A 和点D 、点E 和点F 分别是对应点,则AB= ,=∠A ,AE= ,CE= ,AB// ,若BC AE ⊥,则DF 与BC 的关系是 . 7.如图,ABC ∆≌AED ∆,若=∠︒=∠︒=∠︒=∠BAC C EAB B 则,45,30,40 ,=∠D ,8.如图,若AB=AC,BE=CD,AE=AD ,则ABE ∆ ACD ∆,所以=∠AEB,=∠BAE ,=∠BAD .9.如图,ABC ∆≌DEF ∆,︒=∠90C ,则下列说法错误的是( ) A 、互余与F C ∠∠ B 、互补与F C ∠∠C 、互余与E A ∠∠D 互余与D B ∠∠10.如图,ACF ∆≌DBE ∆,cm CD cm AD ACF E 5.2,9,110,30==︒=∠︒=∠,求D ∠的度数及BC 的长.11.如图,在ABD ABC ∆∆与中,AC=BD ,AD=BC ,求证:ABC ∆≌ABD ∆D第7题图第8题图第9题题图全等三角形(一)作业1.如图,ABC ∆≌CDA ∆,AC=7cm ,AB=5cm.,则AD 的长是( ) A 、7cm B 、5cm C 、8cm D 、无法确定2.如图,ABC ∆≌DCE ∆,︒=∠︒=∠62,48E A ,点B 、C 、E 在同一直线上,则ACD ∠的度数为( )A 、︒48B 、︒38C 、︒110D 、︒623.如图,ABC ∆≌DEF ∆,AF=2cm,CF=5cm ,则AD= .4.如图,ABE ∆≌ACD ∆,︒=∠︒=∠25,100B A ,求BDC ∠的度数.5.如图,已知,AB=DE ,BC=EF ,AF=CD ,求证:AB//CD6.如图,已知AB=EF ,BC=DE ,AD=CF ,求证:①ABC ∆≌FED ∆②AB//EFAB D EACDFACEFD7.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAE BAD ∠=∠E全等三角形(二)【知识要点】 定义:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”,几何表示如图,在ABC ∆和DEF ∆中,ABC EF BC E B DE AB ∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SAS DEF ∆【典型例题】【例1】 已知:如图,AB=AC ,AD=AE ,求证:BE=CD.【例2】 如图,已知:点D 、E 在BC 上,且BD=CE ,AD=AE ,∠1=∠2,由此你能得出哪些结论?给出证明.【例3】 如图已知:AE=AF ,AB=AC ,∠A=60°,∠B=24°,求∠BOE 的度数.CADBE C【例4】如图,B,C,D在同一条直线上,△ABC,△ADE是等边三角形,求证:①CE=AC+DC;②∠ECD=60°.【例5】如图,已知△ABC、△BDE均为等边三角形。
三角形及全等三角形知识点总结

三角形及全等三角形知识点总结
三角形是我们初中数学学习中的重要内容之一。
在数学中,三
角形是由三条边以及夹角组成的图形。
本文将对三角形以及全等三
角形的相关知识进行总结。
一、三角形的定义和性质
1. 定义:三角形是由三条线段组成的图形,每个线段都称为三
角形的边,而它的端点则称为三角形的顶点。
2. 性质:
a. 三角形的内角和等于180度:一个三角形的三个内角之和等于180度。
b. 外角性质:三角形的一个内角的补角为另外两个角的外角。
c. 内角和外角之间的关系:一个三角形的三个内角和三个外角之和都是360度。
二、三角形的分类
根据三角形的边长以及角度的不同,三角形可以分为以下几种类型。
1. 根据边长分类:
a. 等边三角形:三条边都相等的三角形。
b. 等腰三角形:两条边相等的三角形。
c. 普通三角形:三条边都不相等的三角形。
2. 根据角度分类:
a. 直角三角形:一个内角为90度的三角形。
b. 钝角三角形:一个内角大于90度的三角形。
c. 锐角三角形:三个内角都小于90度的三角形。
三、全等三角形的概念和判定条件
全等三角形是指有相同大小和形状的三角形。
两个三角形全等的条件是:
1. SSS判定条件:两个三角形的三条边分别对应相等。
2. SAS判定条件:两个三角形的两条边和夹角分别对应相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识要点】
1.全等图形定义:两个能够重合的图形称为全等图形.
2.全等图形的性质:
(1)全等图形的形状和大小都相同,对应边相等,对应角相等
(2)全等图形的面积相等
3.全等三角形:两个能够完全重合的三角形称为全等三角形
(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于” 如 全等,记作 ≌
1.如图,已知AB=AC,AD=AE,BF=CF,求证: ≌ 。
2.如图,△ABC,△BDF为等腰直角三角形。求证:(1)CF=AD;(2)CE⊥AD。
3.如图,AB=AC,AD=AE,BE和CD相交于点O,AO的延长线交BC于点F。
求证:BF=FC。
4.已知:如图1,AD∥BC,AE=CF,AD=BC,E、F在直线AC上,求证:DE∥BF。
A、6 B、5 C、4 D、3
5.如图,要使 ≌ ,则下列条件能满足的是( )
A、AC=BC,AD=CE,BD=BE B、AD=BD,AC=CE,BE=BD
C、DC=EC,AC=BC,BE=AD D、AD=BE,AC=DC,BC=EC
6.如图, ≌ ,点A和点D、点E和点F分别是对应点,则AB=, ,AE=,CE=,AB//,若 ,则DF与BC的关系是.
1.在△ABC和△ 中,若AB= ,AC= ,还要加一个角的条件,使△ABC≌△ ,那么你加的条件是( )
A.∠A=∠ B.∠B=∠ C.∠C=∠ D.∠A=∠
2.下列各组条件中,能判断△ABC≌△DEF的是()
A.AB=DE,BC=EF;CA=CD B.CA=CD;∠C=∠F;AC=EF
C.CA=CD;∠B=∠E D.AB=DE;BC=EF,两个三角形周长相等
(2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.
(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.
(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
4.如图,点C是AB中点,CD∥BE,且CD=BE,试探究AD与CE的关系。
5.如图,AE是 AB=AC
(1)若D是AE上任意一点,则△ABD≌△ACD,说明理由.
(2)若D是AE反向延长线上一点,结论还成立吗?请说明理由.
6.如图,已知AB=AC,EB=EC,请说明BD=CD的理由
全等三角形(二)作业
【例3】 如图已知:AE=AF,AB=AC,∠A=60°,∠B=24°,求∠BOE的度数.
【例4】 如图,B,C,D在同一条直线上,△ABC,△ADE是等边三角形,
求证:①CE=AC+DC; ②∠ECD=60°.
【例5】如图,已知△ABC、△BDE均为等边三角形。求证:BD+CD=AD。
【巩固练习】
如图,在 和 中
≌
【典型例题】
例1.如图, ≌ ,点B与点D是对应点, ,且 , ,求 的度数及 的面积.
例2.如图, ≌ , ,求 的度数及CF的长.
例3.如图,已知:AB=AD,AC=AE,BC=DE,求证:
例4.如图AB=DE,BC=EF,AD=CF,求证:
(1) ≌
(2)AB//DE,BC//EF
求证:① ≌
②AB//EF
7.如图,已知AB=AD,AC=AE,BC=DE,求证:
全等三角形(二)
【知识要点】
定义:SAS
两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”,几何表示
如图,在 和 中,
≌
【典型例题】
【例1】 已知:如图,AB=AC,AD=AE,求证:BE=CD.
【例2】 如图,已知:点D、E在BC上,且BD=CE,AD=AE,∠1=∠2,由此你能得出哪些结论?给出证明.
5. 如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,
求证:(1)BE=DC,(2)BE⊥DC.
6、已知,如图A、F、C、D四点在一直线上,AF=CD,AB//DE,且AB=DE,求证:(1)△ABC≌△DEF (2)∠CBF=∠FEC
A、①④ B、①② C、②③ D、③④
2.如图, ≌ ,且AB和CD是对应边,下面四个结论中
不正确的是( )
A、 的面积相等
B、 的周长相等
C、
D、AD//BC且AD=BC
3.如图, ≌ ,A和B 以及C和D分别是对应点,如果 ,则 的度数为( )
A、 B、
C、 D、
4.如图, ≌ ,AD=8,BE=2,则AE等于( )
7.如图, ≌ ,若 , , .
8.如图,若AB=AC,BE=CD,AE=AD,则 ,所以 , , .
9.如图, ≌ , ,则下列说法错误的是( )
A、 B、
C、 D、
10.如图, ≌ , ,求 的度数及BC的长.
11.如图,在 中,AC=BD,AD=BC,求证: ≌
全等三角形(一)作业
1.如图, ≌ ,AC=7cm,AB=5cm.,则AD的长是( )
3.阅读理解题:
如图:已知AC,BD相交于O,OA=OB,OC=OD.
那么△AOD与△BOC全等吗?请说明理由.△ABC与△BAD全等吗?请说明理由.
小明的解答:
△AOD≌△BOC
而△BAD=△AOD+△ADB△ABC=△BOC+△AOB
所以△ABC≌△BAD
(1)你认为小明的解答有无错误;
(2)如有错误给出正确解答;
A、7cm B、5cm C、8cm D、无法确定
2.如图, ≌ , ,点B、C、E在同一直线上,则 的度数为( )
A、 B、 C、 D、
3.如图, ≌ ,AF=2cm,CF=5cm,则AD=.
4.如图, ≌ , ,求 的度数.
5.如图,已知,AB=DE,BC=EF,AF=CD,求证:AB//CD
6.如图,已知AB=EF,BC=DE,AD=CF,
例5.如图,在 D、E分别为AC、AB上的点,且BE=BC,DE=DC,求证:(1) ;
(2)BD平分 (角平分线的相关证明及性质)
【巩固练习】
1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )