全等三角形证明条件归类

合集下载

全等三角形证明判定方法分类总结

全等三角形证明判定方法分类总结

全等三角形(一)SSS【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于” 如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆(2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”.如图,在ABC ∆和DEF ∆中⎪⎩⎪⎨⎧===DF AC EF BC DE ABABC ∆∴≌DEF ∆【典型例题】例1.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点,︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求A C D D C A D ∠∠∠,,的度数及ACD ∆的面积.例2.如图,ABC ∆≌DEF∆,cm CE cm BC A 5,9,50==︒=∠,求EDF ∠的度数及CF 的长.例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠例4.如图AB=DE ,BC=EF ,AD=CF ,求证:(1)ABC ∆≌DEF ∆ (2)AB//DE ,BC//EFA D例5.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠ (角平分线的相关证明及性质)【巩固练习】1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )A 、①④B 、①②C 、②③D 、③④2.如图,ABD ∆≌CDB ∆,且AB 和CD 是对应边,下面四个结论中 不正确的是( )A 、CDB ABD ∆∆和的面积相等 B 、CDB ABD ∆∆和的周长相等C 、CBD C ABD A ∠+∠=∠+∠ D 、AD//BC 且AD=BC3.如图,ABC ∆≌BAD ∆,A 和 B 以及C 和D 分别是对应点,如果︒=∠︒=∠35,60ABD C ,则BAD ∠的度数为( )A 、︒85B 、︒35C 、︒60D 、︒804.如图,ABC ∆≌DEF ∆,AD=8,BE=2,则AE 等于( ) A 、6 B 、5 C 、4 D 、35.如图,要使ACD ∆≌BCE ∆,则下列条件能满足的是( ) A 、AC=BC ,AD=CE ,BD=BE B 、AD=BD ,AC=CE ,BE=BD C 、DC=EC ,AC=BC ,BE=AD D 、AD=BE ,AC=DC ,BC=EC6.如图,ABE ∆≌DCF ∆,点A 和点D 、点E 和点F 分别是对应点,则AB= ,=∠A ,AE= ,CE= ,AB// ,若BC AE ⊥,则DF 与BC 的关系是 .7.如图,ABC ∆≌AED ∆,若=∠︒=∠︒=∠︒=∠B A C C EA B B 则,45,30,40 ,=∠D ,=∠DAC .8,AE=AD ,则A B E∆ ACD ∆,所以=∠AEB ,=∠BAE ,=∠BAD .D 第4题图第5题图B第6题图第7题图 第8题图 第9题题图9.如图,ABC ∆≌DEF ∆,︒=∠90C ,则下列说法错误的是( ) A 、互余与F C ∠∠ B 、互补与F C ∠∠C 、互余与E A ∠∠D 、互余与D B ∠∠10.如图,ACF ∆≌DBE ∆,cm CD cm AD ACF E 5.2,9,110,30==︒=∠︒=∠,求D ∠的度数及BC 的长.11.如图,在ABD ABC ∆∆与中,AC=BD ,AD=BC ,求证:ABC ∆≌ABD ∆全等三角形(一)作业1.如图,ABC ∆≌CDA ∆,AC=7cm ,AB=5cm.,则AD 的长是( ) A 、7cm B 、5cm C 、8cm D 、无法确定2.如图,ABC ∆≌DCE ∆,︒=∠︒=∠62,48E A ,点B 、C 、E 在同一直线上,则ACD ∠的度数为( )A 、︒48B 、︒38C 、︒110D 、︒623.如图,ABC ∆≌DEF ∆,AF=2cm,CF=5cm ,则AD= .4.如图,ABE ∆≌ACD ∆,︒=∠︒=∠25,100B A ,求BDC ∠的度数.5.如图,已知,AB=DE ,BC=EF ,AF=CD ,求证:AB//CDAB CDE6.如图,已知AB=EF ,BC=DE ,AD=CF , 求证:①ABC ∆≌FED ∆②AB//EF7.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAE BAD ∠=∠FE全等三角形(二)【知识要点】定义:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”,几何表示如图,在ABC ∆和DEF ∆中,ABC EF BC E B DE AB ∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SAS DEF ∆【典型例题】【例1】 已知:如图,AB=AC ,AD=AE ,求证:BE=CD.【例2】 如图,已知:点D 、E 在BC 上,且BD=CE ,AD=AE ,∠1=∠2,由此你能得出哪些结论?给出证明.【例3】 如图已知:AE=AF ,AB=AC ,∠A=60°,∠B=24°,求∠BOE 的度数.【例4】 如图,B ,C ,D 在同一条直线上,△ABC ,△ADE 是等边三角形, 求证:①CE=AC+DC ; ②∠ECD=60°.【例5】如图,已知△ABC 、△BDE 均为等边三角形。

全等三角形知识点归纳

全等三角形知识点归纳

全等三角形知识点归纳全等三角形是初中数学中的重要内容,它对于解决几何问题有着关键作用。

下面就来对全等三角形的相关知识点进行一个全面的归纳。

一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

全等用符号“≌”表示,读作“全等于”。

二、全等三角形的性质1、全等三角形的对应边相等。

也就是说,如果两个三角形全等,那么它们相对应的边的长度是一样的。

2、全等三角形的对应角相等。

对应角的度数完全相同。

3、全等三角形的周长相等。

因为对应边相等,所以三条边相加的总和也相等。

4、全等三角形的面积相等。

由于形状和大小完全相同,所占的空间大小也就一样。

三、全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。

比如有三角形 ABC 和三角形 DEF,如果 AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。

2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

例如在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么这两个三角形全等。

3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC ≌三角形 DEF。

4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

比如三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,这两个三角形就是全等的。

5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

在直角三角形 ABC 和直角三角形 DEF 中,如果斜边 AC =斜边DF,直角边 BC =直角边 EF,那么这两个直角三角形全等。

四、寻找全等三角形的对应边和对应角的方法1、有公共边的,公共边是对应边。

例如三角形 ABC 和三角形 ABD,AB 就是两个三角形的公共边,是对应边。

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

三角形全等的判定方法(5种)例题+练习(全面)

三角形全等的判定方法(5种)例题+练习(全面)

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。

全等三角形判定公理以及推论

全等三角形判定公理以及推论

全等三角形判定公理以及推论一、全等三角形判定公理1. SSS(边边边)公理- 内容:三边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。

- 作用:当我们知道两个三角形的三条边分别相等时,就可以直接判定这两个三角形全等。

这是全等三角形判定中最基本的一种方法,不需要考虑角的大小。

2. SAS(边角边)公理- 内容:两边和它们的夹角对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,那么△ABC≌△DEF。

这里的角必须是两条边的夹角。

- 作用:如果已知两个三角形有两条边相等且这两条边所夹的角也相等,就可以判定它们全等。

在实际解题中,经常需要通过已知条件找出对应的边和角是否满足该公理。

3. ASA(角边角)公理- 内容:两角和它们的夹边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,∠B = ∠E,BC = EF,∠C = ∠F,那么△ABC≌△DEF。

这里的边是两个角的夹边。

- 作用:当我们知道两个三角形有两个角以及这两个角的夹边相等时,可以判定这两个三角形全等。

在证明三角形全等时,如果能找到这样的角和边的关系,就可以使用该公理。

4. AAS(角角边)推论- 内容:两角和其中一角的对边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,∠A = ∠D,∠B = ∠E,BC = EF,那么△ABC≌△DEF。

这里是两个角相等,并且其中一个角的对边相等。

- 作用:在有些情况下,当我们知道两个三角形的两个角相等,且其中一个角的对边相等时,可以使用该推论判定全等。

它是ASA公理的一种延伸,在证明过程中可以根据已知条件灵活运用。

5. HL(斜边、直角边)公理(适用于直角三角形)- 内容:斜边和一条直角边对应相等的两个直角三角形全等。

- 例如:在Rt△ABC和Rt△DEF中,∠C = ∠F = 90°,AB = DE,AC = DF,那么Rt△ABC≌Rt△DEF。

全等三角形经典证明方法归类

全等三角形经典证明方法归类

全等三角形经典证明方法归类1.SSS法则(边边边):给定两个三角形,如果它们的三条边分别相等,那么这两个三角形全等。

2.SAS法则(边角边):给定两个三角形,如果它们的两条边和夹角分别相等,那么这两个三角形全等。

3.ASA法则(角边角):给定两个三角形,如果它们的两条角和一边分别相等,那么这两个三角形全等。

4.AAS法则(角角边):给定两个三角形,如果它们的两条角和另一条边的对应角分别相等,那么这两个三角形全等。

5.RHS法则(直角边和斜边):给定两个三角形,如果它们的一个角是直角,而且两个直角的边分别相等,那么这两个三角形全等。

6.HL法则(斜边和斜边对应的直角):给定两个直角三角形,如果它们的斜边相等,而且其中一个直角边和另一个直角边分别相等,那么这两个三角形全等。

除了以上六种经典的证明方法外,还存在一些其他的证明方法,如:7.余弦定理:如果在两个三角形中,对应的两边和夹角的余弦值都相等,那么这两个三角形全等。

8.正弦定理:如果在两个三角形中,对应的两边和夹角的正弦值都相等,那么这两个三角形全等。

9.星形相等法则:如果两个三角形的对应边分别相等,而且两组对边之间的夹角相等,那么这两个三角形全等。

10.平移法:如果两个三角形中一对边平行且等长,并且另外两对边也分别平行,则这两个三角形全等。

11.旋转法:如果两个三角形中一对边对应相等,并且另外两个角分别相等,则这两个三角形全等。

12.镜像对称法:如果两个三角形对应边的长度相等,并且一个三角形的两个角和对应的另一个三角形的两个角之和都等于180度,则这两个三角形全等。

这些全等三角形的证明方法在几何学中被广泛应用,并且有着重要的理论和实际意义。

通过这些证明方法,我们可以判断两个三角形是否全等,从而在解决几何问题时提供有效的理论依据。

三角形全等的几个条件

三角形全等的几个条件

三角形全等的几个条件
1. 全等条件一,SSS(边-边-边)条件。

当两个三角形的三条边分别相等时,这两个三角形是全等的。

2. 全等条件二,SAS(边-角-边)条件。

当两个三角形的一对对应边相等,夹角相等,另一对对应边相等时,这两个三角形是全等的。

3. 全等条件三,ASA(角-边-角)条件。

当两个三角形的一对对应角相等,夹边相等,另一对对应角相等时,这两个三角形是全等的。

4. 全等条件四,AAS(角-角-边)条件。

当两个三角形的两对对应角相等,另一对对应边相等时,这两个三角形是全等的。

这些条件是用来判断两个三角形是否全等的基本依据。

在几何学中,通过这些条件可以快速判断两个三角形是否全等,从而推导出它们的性质和关系。

这些条件在解决各种相关问题时都具有重要的作用。

全等三角形证明方法归类

全等三角形证明方法归类

全等三角形证明方法归类1.SSS判定法(边边边法):通过已知三角形的三条边相等来证明两个三角形全等。

这种方法是最直接的证明方法之一,一般需要在已知的三条边相等的基础上利用欧几里得几何学中的定理、推论来进行论证。

例如,假设有两个三角形ABC和DEF,已知AB=DE,BC=EF,AC=DF,我们需要证明三角形ABC和DEF全等。

首先根据SSS判定法,我们可以得出AB=DE,BC=EF,AC=DF,此时我们可以利用欧几里得几何学中的定理,如等腰三角形的底角相等、等角的对边相等等来证明两个三角形的对应角相等,从而得出两个三角形全等。

2.SAS判定法(边角边法):通过已知两边和夹角相等来证明两个三角形全等。

这种方法也是常用的证明方法之一,一般需要在已知两边和夹角相等的基础上利用欧几里得几何学中的定理、推论来进行论证。

例如,假设有两个三角形ABC和DEF,已知AB=DE,∠BAC=∠EDF,BC=EF,我们需要证明三角形ABC和DEF全等。

首先根据SAS判定法,我们可以得出AB=DE,∠BAC=∠EDF,BC=EF,此时我们可以利用欧几里得几何学中的定理,如等腰三角形的底角相等、等角的对边相等等来证明两个三角形的对应角相等,从而得出两个三角形全等。

3.ASA判定法(角边角法):通过已知两角和边长相等来证明两个三角形全等。

这种方法也是常用的证明方法之一,一般需要在已知两角和边长相等的基础上利用欧几里得几何学中的定理、推论来进行论证。

例如,假设有两个三角形ABC和DEF,已知∠BAC=∠EDF,AC=DF,∠ABC=∠DEF,我们需要证明三角形ABC和DEF全等。

首先根据ASA判定法,我们可以得出∠BAC=∠EDF,AC=DF,∠ABC=∠DEF,此时我们可以利用欧几里得几何学中的定理,如等腰三角形的底角相等、等角的对边相等等来证明两个三角形的对应角相等,从而得出两个三角形全等。

4.RHS判定法:通过已知两个直角三角形的斜边和一个锐角相等来证明两个三角形全等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形证明条件归类初学三角形全等证明,根据已知条件找到证明全等的三个条件是难点。

如何才能找到证明全等证明的三个条件呢?从三角形全等证明的四种证明方法(边角边、角边角、角角边、边边边)来看:已知两边对应相等,第三个条件可以找已知两边的夹角对应相等,或找第三边对应相等;如果告诉了两个角对应相等,第三个条件找两个角的夹边对应相等,或是已知的两个角中的某个角的对应边相等;已知一边和一角对应相等,第三个条件可能是对应相等角的另一边对应相等,或是另一角对应相等。

分析以上这些情况,找第三个条件分两种情况:一是再找一组对应边相等,二是再找一组对应角相等。

对应边相等的情形从题目给定的条件来看分以下几种情况:一是公共边是第三个条件例1:如图,在ABD ABC ∆∆与中,AC=BD ,AD=BC ,求证:ABC ∆≌ABD ∆ 证明:△ABD 和△BAC 中:∵ BD=ACBC=ADAB=BA(公共边)∴ ABC ∆≌ABD ∆(SSS ) 二是相等对应边+公共边的和对应相等是第三个条件例1:如图2,已知AC=DF, ∠A=∠D,AE=BD, 求证:ΔABC ≌ΔDEF证明:∵AE=BD∴ AE+EB=BD+EB (即AB=DE )在△ABC 和△DEF 中∵AC=DF ∠A=∠D AB=DE∴ΔABC ≌ΔDEF (SAS )例2如图:AB=CD ,AE=DF ,CE=FB 。

求证:AF=DE 。

∵CE=FB ∴CE+EF=EF+FB (即CF=BE )∵AB=DC AE=DF CF=BE∴△ABE ≌△CDF (SSS )∴AF=DE 三是相等对应边-公共边的差对应相等是第三个条件 例1:如图:DF=CE ,AD=BC ,∠D=∠C 。

求证:△AED ≌△BFC 。

证明:∵DF=CE ,∴DF-EF=CE-EF ,即DE=CF ,在△AED 和△BFC 中,∵ AD=BC , ∠D=∠C ,DE=CF BF D 第F E D C BA F E DC B A∴△AED ≌△BFC (SAS )四是等边三角形的三边相等(等腰三角形两腰相等)是第三个条件例1:如图5,△ABC 和△CDE 都是等边三角形,求证:△ACD ≌△BCE 。

证明:∵△ABC 和△CDE 都是等边三角形 ∴AC=BC CD=CE ∠ACB=∠DCE=60°∴∠ACB+∠ACE =∠DCE+∠ACE (即∠BCE=∠ACD )在△ACD 和△BCE 中,∵ AC=BC ∠BCE=∠ACD CD=CE ,∴△ACD ≌△BCE (SAS ) 五是添加辅助线与对应的线段相等是第三个条件例1已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC ∴∠EAD =∠CAD∵AE =AC AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD ∴AE =AB+BD∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C六是二次证全等找到对应的线段相等是第三个条件例1已知:如图,∠A=∠D=90°,AE=DE .求证:△ABC ≌△DCB .证明:∵∠A=∠D AE=DE ∠AEB=∠DEC (对顶角)∴△AED ≌△ACD (ASA ) ∴EC=EB∴EC+AE=EB+DE (即AC=DB ) 在Rt △ABC 和Rt △DCB 中∵∠A=∠D=90° AC=DB BC=BC (公共边) ∴△ABC ≌△DCB (HL)七是中点等分线段对应相等是第三个条件例1,如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,求证:△AED ≌△EBC .证明:∵DC ∥AB ∴∠CDE =∠AED∵DE =DE ,DC =AE ∴△AED ≌△EDC 第5A B C D E O E DCB A∵E 为AB 中点 ∴AE =BE ∴BE =DC∵DC ∥AB ∴∠DCE =∠BEC∵CE =CE ∴△EBC ≌△EDC ∴△AED ≌△EBC八是其他情形对应角相等的情形从题目给定的条件来看分以下几种情况:一是公共角相等是第三个条件例1. 如图,CA ⊥BF 于A ,BE ⊥CF 于E ,若AC =BE求证:△AFC ≌△EFB证明:∵CA ⊥BF BE ⊥CF ∴∠CAF=∠BEF =90°在 △AFC 和△EFB 中∵∠CAF=∠BEF ∠F=∠ F (公共角) AC =BE∴△AFC ≌△EFB (AAS )二是对顶角相等是第三个条件例1如图:AE 、BC 交于点M ,F 点在AM 上,∠CFM=∠E BE=CF 。

求证:△BEM ≌△CFM证明:∵∠CFM=∠E ∠CMF=∠BME (对顶角) BE=CF∴△BEM ≌△CFM (AAS ) 三是平行线截得的同位角或内错角相等是第三个条件例1. 已知:∠1=∠2,EF//AB ,∠B=∠ACD CD=DE求证:△EFD ≌△DAC证明∵EF//AB∴∠1=∠EFD ∠B=∠FED∵∠1=∠2 ∠B=∠ACD∴∠EFD=∠2 ∠FED=∠ACD在△EFD 和△DAC 中∵∠EFD=∠2 ∠FED=∠ACD CD=DE∴△EFD ≌△DAC 四是同角(或等角)的余角(或补角)相等是第三个条件例1.已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CFB A CD F 2 1E MF E C BA∵CE⊥AB ∴∠CEB=∠CEF=90°∵EB=EF,CE=CE ∴△CEB≌△CEF ∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD ∴∠DAC=∠FAC又∵AC=AC ∴△ADC≌△AFC(SAS)∴AD=AF ∴AE=AF+FE=AD+BE例2.在△ABC中,︒AD⊥=AC=,直线MN经过点C,且MN∠90ACB,BC于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①∆;∆≌CEBADC(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.(2)略五是垂直相交的角是90°是第三个条件例1:如图,DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.求证:MB=MD,ME=MF(1)∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.在Rt△DEM和Rt△BFM中∵∠DME=∠BMF ∠DEC=∠BFA DE=BF∴RtCBFM (AAS ) ∴MB=MD ,ME=MF (2)略六是角平分线分得的角对应相等是第三个条件例1如图,在△ABC 中,AD 平分∠BAC ,∠1=∠2, 求证:△ABD ≌△ACD 证明:∵AD 平分∠BAC ∴∠BAD=∠CAD ,∵∠1=∠2 AD=AD ∠BAD=∠CAD ∴△ABD ≌△ACD (ASA )七是相等对应角+公共角的和对应相等是第三个条件例1.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

求证:△ABF ≌△AEC ;证明:∵AE ⊥AB ,AF ⊥AC , ∴∠BAE=∠CAF=90°∴∠BAE+∠BAC=∠CAF+∠BAC ,即∠EAC=∠BAF在△ABF 和△AEC 中,∵AE=AB ,∠EAC=∠BAF ,AF=AC , ∴△ABF ≌△AEC (SAS ), 八是相等对应角+相等对应角和对应相等是第三个条件 例1如图,已知∠1=∠2,∠3=∠4,求证:△ABC ≌△DCB证明:∵∠1=∠2,∠3=∠4∴∠1+∠3=∠2+∠4(即∠ABC=∠DCB )在△AOB 和△DOC 中∵∠ABC=∠DCB BC=BC ∠4=∠3∴△ABC ≌△DCB 九是等边三角形的三个角都等于60度(等腰三角形两底角相等)是第三个条件例1:如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:△CFD ≌△BED .证明:作CG ⊥AB,交AD 于H, 则∠ACH=45º,∠BCH=45º∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE又∵AC=CB, ∠ACH=∠B=45º ∴△ACH ≌△CBE, ∴CH=BE又∵∠DCH=∠B=45º CD=DB∴△CFD ≌△BED十是添加辅助线与对应的角相等是第三个条件A EB MC F .3421D C BA十一是二次证全等找到对应的角相等是第三个条件 例1.AB=AC ,DB=DC ,F 是AD 的延长线上的一点。

求证:BF=CF 证明:在△ABD 与△ACD 中 ∵AB=AC BD=DC AD=AD∴△ABD ≌△ACD (SSS )∴∠ADB=∠ADC ∴∠BDF=∠FDC在△BDF 与△FDC 中∵BD=DC ∠BDF=∠FDC DF=DF∴△FBD ≌△FCD十二计算角的度数找到对应的角相等是第三个条件 例1.如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

求证:BQ+AQ=AB+BP解:延长AB 至D ,使BD =BP ,连DP在等腰△BPD 中,可得∠BDP =40°从而∠BDP =40°=∠ACP△ADP ≌△ACP (ASA ) 故AD =AC又∠QBC =40°=∠QCB 故 BQ =QCBD =BP 从而BQ+AQ=AB+BP例2 D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。

求证△CDE ≌△ADF证明:连接D ,D 为等腰Rt ABC ∆斜边AB 的中点,故有CD ⊥AB ,CD =DA CD 平分∠BCA =90°,∠E CD =∠DCA =45°由于DM ⊥DN ,有∠EDN =90°由于 CD ⊥AB ,有∠CD A =90°从而∠CDE =∠FD A DE ≌△ADF (ASA ) 十三其他情形无论是找对应边相等还是找对应角相等,难点中的难点是找出隐含的条件,像前面的公共边相等,公共角相等,对顶角相等这些类型,我们可以把已知条件和问题结合起来,先找到需要证明全等的三角形,在找证明全等的条件。

相关文档
最新文档