新初二等腰三角形基本概念与性质
等腰三角形的特性与性质

等腰三角形的特性与性质等腰三角形是指具有两边长度相等的三角形。
它是几何学中的重要概念,拥有许多独特的特性与性质。
本文将就等腰三角形的定义、特征、性质以及相关应用进行探讨。
一、等腰三角形的定义等腰三角形是指一个三角形,其中两边的长度相等。
根据等边三角形的定义可知,等腰三角形也属于等边三角形的一种特殊情况。
二、等腰三角形的特性1. 等腰三角形的底角相等:等腰三角形的两边相等,根据三角形内角和定理可知,其对应底角也必然相等。
2. 等腰三角形的两底角相等:根据等腰三角形底角相等的特性,可推出等腰三角形的两底角也相等。
3. 等腰三角形的顶角平分底边:等腰三角形的顶角可视为底边两底角对应的内角,因此顶角必然平分底边。
4. 等腰三角形的高线互相垂直:等腰三角形的高线即由顶角向底边所引的垂线,而根据垂直定理可知,高线与底边互相垂直。
三、等腰三角形的性质1. 等腰三角形的顶角,底角以及底边之间的关系:等腰三角形的两底角相等,而顶角又平分底边,因此等腰三角形的顶角和底角之和等于底边的一半,即顶角+底角=180°/2=90°。
2. 等腰三角形的高线与底边之间的关系:等腰三角形的顶角平分底边,因此高线将底边平分成两段相等的线段。
3. 等腰三角形的面积:等腰三角形的面积可通过基本公式S=1/2×底边长度×高线长度进行计算,由于高线与底边相等,所以面积公式简化为S=1/2×底边长度×高线长度/2,即S=1/4×底边长度×高线长度。
四、等腰三角形的应用等腰三角形由于其特殊的性质,在实际生活中具有广泛的应用。
例如在建筑设计中,许多建筑物的屋顶采用等腰三角形的形状,以增加建筑的稳定性和美观性。
此外,在地理测量中,等腰三角形的性质也常常用于测量高度和距离等。
总结:等腰三角形作为一种特殊的三角形,具有独特的特性与性质。
它的定义简单明了,拥有底角相等、两底角相等、顶角平分底边以及高线与底边相互垂直等特性。
等腰三角形的性质知识点

等腰三角形的性质知识点等腰三角形是指两条边长度相等的三角形。
在等腰三角形中,存在一些特殊的性质。
通过研究等腰三角形的性质,我们可以更好地理解和解决与等腰三角形相关的问题。
本文将对等腰三角形的性质进行详细的介绍和解释。
一、等腰三角形的定义等腰三角形是指具有两边边长相等的三角形。
其中,两条边被称为等腰三角形的腰,另一条边被称为底边。
等腰三角形的顶角角度被称为顶角。
在等腰三角形中,两个底角角度也是相等的。
二、等腰三角形的性质1. 等腰三角形的底角相等由于等腰三角形的两个腰相等,所以两个底角角度也相等。
这是等腰三角形最基本的性质之一。
可以用数学表达式表示为:∠A = ∠B。
2. 等腰三角形的顶角是单个顶角的两倍等腰三角形中,顶角的角度是单个顶角的两倍。
这意味着顶角的度数要大于底角的度数。
可以用数学表达式表示为:∠C = 2∠A 或∠C = 2∠B。
3. 等腰三角形的高线是对称轴等腰三角形的高线是从顶角垂直于底边的线段。
等腰三角形中的高线可以将底边分成两段等长的线段,并且高线本身也是对称轴。
这意味着等腰三角形对称于高线。
也就是说,将等腰三角形沿高线对折,两边将完全重合。
4. 等腰三角形的中位线相等等腰三角形的中位线是从底边中点垂直于底边的线段。
等腰三角形中的两个中位线相等,也就是说,中位线将底边分成两个等长的线段。
可以用数学表达式表示为:AC' = BC'。
5. 等腰三角形的旁切线相等等腰三角形的两个旁切线相等。
旁切线是从等腰三角形的两个顶点开始,切线与等腰三角形的两个腰相切的直线。
这意味着从顶点到切点的距离相等。
6. 等腰三角形的内角和等腰三角形的内角和等于180度。
假设等腰三角形的底角为x度,则顶角为2x度。
根据三角形内角和定理,我们知道三角形的内角和等于180度。
因此,x + x + 2x = 180°,解得x = 60°。
所以,等腰三角形的底角和顶角都是60度。
等腰三角形的基本概念

等腰三角形的基本概念等腰三角形是几何学中常见的一种三角形形状。
它具有特殊的性质和特点,是我们学习几何的基础内容之一。
在本文中,我们将探讨等腰三角形的定义、性质以及其在几何中的应用。
1. 定义等腰三角形是一个具有两条边相等的三角形。
通常,这两条相等的边被称为等腰边,而与这两条边不相等的边被称为底边。
等腰三角形的顶角是与底边不相邻的两个角,而底边上的角则是与该边相邻的两个角。
2. 性质等腰三角形有一些独特的性质,这些性质使得我们能够更好地理解和应用它们。
2.1 对称性等腰三角形具有对称性。
即,如果我们将等腰三角形绕着顶角进行旋转180度,它仍然与原来的三角形完全相同,并且两者重合。
这种对称性使得等腰三角形在几何问题中有着重要的作用。
2.2 顶角性质等腰三角形的顶角是相等的。
由于等腰三角形具有两条边相等的特点,顶角的相等性可以由等边的对称性推导出来。
这个性质在解决几何问题时经常用到。
2.3 底角性质等腰三角形的底角是相等的。
底角是指与底边相邻的两个角,它们的度数是相等的。
这一性质可以由等腰三角形的对称性和两条边相等的特点推导出来。
3. 应用等腰三角形在几何学中有着广泛的应用。
以下是一些常见的应用场景:3.1 定义和判定在学习几何学时,我们常常需要定义和判定等腰三角形。
通过分析三角形的边长并比较它们的相等性,我们可以准确地判断一个三角形是否为等腰三角形。
3.2 问题解决在解决几何问题时,等腰三角形经常被用作中间步骤或关键步骤。
通过利用等腰三角形的特性,我们可以得到一些等式或等角关系,从而推导出问题的解答。
3.3 图形构造等腰三角形的对称性使得它在图形构造中非常有用。
例如,在绘制对称图形时,我们可以通过画一条等腰三角形的等腰边作为对称轴,从而得到完美的对称效果。
总结:等腰三角形是几何学中的基本概念之一,它具有对称性、顶角和底角的相等性等重要性质。
在几何学中,我们经常需要定义和判定等腰三角形,并利用其特性来解决问题或进行图形构造。
新初二等腰三角形基本概念与性质

个性化教学辅导教案教师姓名学生姓名上课时间学科数学年级新初二教材版本浙教课称名称等腰三角形基本概念与性质教学目标1、认知目标:⑴使学生理解掌握等腰三角形的性质定理及其推理。
⑵学会运用等腰三角形的性质解决有关证明和计算问题;2、能力目标:培养观察能力、分析能力、联想能力、表达能力;教学重点教学难点课堂教学过程-等腰三角形(★★★)1、掌握等腰三角形的判定级基本性质;2、会运用‘‘三线合一’’性质进行解题;(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
八年级上册数学等腰三角形知识点总结必看

八年级上册数学等腰三角形知识点总结必看
八年级上册数学等腰三角形知识点总结必看
八年级上册数学等腰三角形知识点
一、等腰三角形知识点
1.等腰三角形的性质
1.等腰三角形的两个底角相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的.一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
二、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边):等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
这以上是小编为大家提供的八年级上册数学等腰三角形知识点总结。
等腰三角形的性质

等腰三角形的性质等腰三角形是初中数学中经常出现的一个概念,它有着许多独特的性质和特点。
在数学学习中,了解和掌握等腰三角形的性质对于解题和推理都具有重要的作用。
本文将从几个方面对等腰三角形的性质进行详细的介绍和说明。
一、等腰三角形的定义等腰三角形是指具有两边相等的三角形。
具体来说,如果一个三角形的两条边的长度相等,那么这个三角形就是等腰三角形。
等腰三角形的第三条边称为底边,两边相等的边称为腰。
二、1. 两底角相等:等腰三角形的两个底角(即底边两侧的角)相等。
这是等腰三角形最基本的性质之一,可以通过实际测量、推理或几何证明来验证。
2. 顶角平分底边:等腰三角形的顶角(即顶点处的角)可以将底边平分。
这意味着,从顶点到底边的两个等分点,与底边两端的两个顶点连线,构成的两条线段相等。
3. 高线重合:等腰三角形的高线(从顶点垂直于底边的线段)与底边重合。
这是因为等腰三角形的高线与底边垂直,且高线的长度等于底边两侧的腰的一半。
4. 对称性:等腰三角形具有对称性。
即以等腰三角形的顶点为中心,将等腰三角形绕顶点旋转180度,可以得到与原等腰三角形完全相同的图形。
三、等腰三角形的应用等腰三角形的性质在解题和推理中有着广泛的应用。
以下是几个例子:1. 利用等腰三角形的性质求解角度:当已知一个三角形是等腰三角形时,可以利用两底角相等的性质来求解其他角度的大小。
例如,已知一个三角形的两边相等,可以推断出其余两个角的大小。
2. 利用等腰三角形的性质求解边长:当已知一个三角形是等腰三角形时,可以利用顶角平分底边的性质来求解底边的长度。
例如,已知一个三角形的顶角和底边的一半,可以求解出底边的长度。
3. 利用等腰三角形的性质进行证明:在几何证明中,等腰三角形的性质经常被用来推导和证明其他定理。
例如,可以利用等腰三角形的两底角相等的性质来证明两条线段相等或两个角相等。
四、总结等腰三角形是初中数学中重要的概念之一,它具有许多独特的性质和特点。
等腰三角形性质

等腰三角形性质等腰三角形是初中数学中一个重要的概念,它具有许多特点和性质。
在本文中,我将为大家详细介绍等腰三角形的性质,并通过具体的例子来加深理解。
一、等腰三角形的定义和性质等腰三角形是指两边长度相等的三角形。
它的性质有以下几点:1. 两底角相等:等腰三角形的两个底角(即底边两侧的角)相等。
这是等腰三角形的最基本性质之一。
例如,我们可以考虑一个等腰三角形ABC,其中AB=AC。
根据定义,我们可以得出∠B=∠C。
这个性质可以通过实际测量角度来验证。
2. 顶角平分底边:等腰三角形的顶角(即顶点的角)平分底边。
这意味着顶角的两个角度与底边的两个角度相等。
例如,我们可以考虑一个等腰三角形ABC,其中AB=AC。
根据定义,我们可以得出∠A=∠B=∠C。
这个性质可以通过实际测量角度来验证。
3. 等腰三角形的高线:等腰三角形的高线是从顶点到底边中点的线段,它与底边垂直。
例如,我们可以考虑一个等腰三角形ABC,其中AB=AC。
我们可以通过实际绘制图形来验证高线的垂直性。
二、等腰三角形的应用等腰三角形的性质在数学中有广泛的应用。
下面,我将介绍一些常见的应用情况。
1. 判定等腰三角形:当我们遇到一个三角形,需要判断它是否为等腰三角形时,可以利用等腰三角形的性质进行判断。
例如,我们可以考虑一个三角形ABC,其中AB=AC。
根据等腰三角形的性质,我们可以得出∠A=∠B=∠C,从而判定这个三角形为等腰三角形。
2. 求等腰三角形的面积:当给定等腰三角形的底边长度和高线长度时,我们可以利用等腰三角形的性质求解其面积。
例如,我们可以考虑一个等腰三角形ABC,其中AB=AC,高线AD与底边BC垂直,且AD=h。
根据等腰三角形的性质,我们可以得出BC=2AD。
因此,等腰三角形的面积S=1/2×BC×h=AD×h。
三、等腰三角形的拓展等腰三角形的性质还可以进一步拓展到其他几何概念中。
1. 等腰梯形:等腰梯形是指两边平行且等长的梯形。
等腰三角形的性质

等腰三角形的性质等腰三角形是指具有两条边长度相等的三角形。
等腰三角形的性质是数学中的重要概念之一,它具有许多有趣的特点和性质。
本文将介绍等腰三角形的性质及其相关定理。
一、等腰三角形的定义等腰三角形是指具有两条边长度相等的三角形。
在等腰三角形中,这两条边被称为腰,而另外一条边称为底边。
由于两条腰的长度相等,所以等腰三角形的底角也必然相等。
二、等腰三角形的性质1. 等腰三角形的底角相等:由等腰三角形的定义可知,两条腰的长度相等,因此底角也必然相等。
这是等腰三角形最基本的性质之一。
2. 等腰三角形的顶角平分底角:在等腰三角形中,顶角与底角之间的关系十分特殊。
根据平分角的性质,等腰三角形的顶角将平分底角,使得等腰三角形的顶角等于底角的一半。
3. 等腰三角形中,顶角、底边、高线之间存在特殊关系:等腰三角形中,高线是从顶角向底边作垂直线,垂足处的线段被称为高线。
根据等腰三角形的性质,高线将底边平分,并且高线与底边垂直。
4. 等腰三角形的两条腰上的高线相等:等腰三角形的两条腰上的高线长度相等。
因为两条腰的长度相等,所以它们与底边构成的高线长度也必然相等。
5. 等腰三角形的两边夹角相等:等腰三角形的两边夹角等于顶角的一半。
这是等腰三角形中重要的定理之一,也是许多证明问题中的关键。
6. 等腰三角形中,高线、中线、角平分线重合:在等腰三角形中,高线、中线和角平分线三者的垂足点重合。
这是等腰三角形中有趣的性质之一。
三、等腰三角形的应用1. 利用等腰三角形的性质求解几何问题:等腰三角形的性质可以应用于各种几何问题的求解过程中。
例如,通过已知条件推导等腰三角形的性质,进而解决其他相关问题。
2. 构造等腰三角形:在实际应用中,有时候需要根据具体要求构造等腰三角形。
通过利用等腰三角形的性质,可以在平面上进行精确的构造,满足特定的需求。
4. 证明几何定理:在数学证明中,等腰三角形的性质往往被用作证明其他几何定理的基础,通过运用等腰三角形的特性来推导其他结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初二等腰三角形基本概念与性质-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN个性化教学辅导教案教师姓名 学生姓名 上课时间 学科数学年级新初二教材版本浙教课称名称 等腰三角形基本概念与性质教学目标1、认知目标:⑴使学生理解掌握等腰三角形的性质定理及其推理。
⑵学会运用等腰三角形的性质解决有关证明和计算问题; 2、能力目标:培养观察能力、分析能力、联想能力、表达能力; 教学重点 教学难点课 堂 教 学 过 程-等腰三角形(★★★)1、掌握等腰三角形的判定级基本性质;2、会运用‘‘三线合一’’性质进行解题;知识结构(-)等腰三角形的性质 1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出等腰三角形的概念和性质(★★★)已知:如图,ABC ∆中,AB CD AC AB ⊥=,于D 。
求证:DCB 2B AC ∠=∠。
A 1 2D BCE 3解析:欲证角之间的倍半关系,结合题意,观察图形,BAC ∠是等腰三角形的顶角,于是想到构造它的一半,再证与DCB ∠的关系。
证明:过点A 作B C AE ⊥于E ,AC AB = 所以BAC 2121∠=∠=∠(等腰三角形的三线合一性质) 因为 90B 1=∠+∠又AB CD ⊥,所以 90CDB =∠所以 90B 3=∠+∠(直角三角形两锐角互余)所以31∠=∠(同角的余角相等) 即DCB 2B AC ∠=∠(★★★)如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有( ) A. 6个 B. 7个 C. 8个 D. 9个A 36° E DFBC解析:由已知条件根据等腰三角形的性质和三角形内角和的度数可求得等腰三角形有8个,故选择C 。
(★★★)如图,ABC ∆中, 100=∠=A AC AB ,,BD 平分ABC ∠。
求证:B C B D AD =+。
AD1 B 2E FC解析:从要证明的结论出发,在BC 上截取B D B F =,只需证明AD CF =,考虑到21∠=∠,想到在BC 上截取B A B E =,连结DE ,易得,则有FD A D =,只需证明CF DE =,这就要从条件出发,通过角度计算可以得出DE DF CF ==。
证明:在BC 上截取B D B F B A B E ==,,连结DE 、DF 在AB D ∆和EB D ∆中,B D B D 21B E B A =∠=∠=,,80DEF 100A BED DE AD )SAS (EBD ABD =∠∴=∠=∠=∴∆≅∆∴,又 100A AC AB =∠=,40)100180(21C ABC =-=∠=∠∴ 20402121=⨯=∠=∠∴ 而B F B D =80)20180(21)2180(21BDF BFD =-=∠-=∠=∠∴ AD BD FC BF BC FCDF DE AD FCDF C FDC 404080C DFE FDC 40C 80DFE DFDE 80DFE DEF +=+=∴===∴=∴∠=∠∴=-=∠-∠=∠∴=∠=∠∴=∴=∠=∠∴,即B C B D AD =+(★★★)如图,已知△ABC 中,AB=AC ,BD=BC ,AD=DE=EB 。
求∠A的度数。
解析:本题有较多的等腰三角形的条件,最好用列方程组的方法来求解,应当在图形上标出各未知数,可使解题过程清晰明了。
解:设∠A=x ,∠EBD=y ,∠C=z ∵AB=AC ∴∠ABC=∠C=z ∵BD=BC ∴∠C=∠BDC=z ∵BE=DE∴∠EBD=∠EDB=90°A B CDE xyzx y z∵AD=DE ∴∠A=∠AED=x又∵∠BDC=∠A+∠ABD ,∠AED=∠EBD+∠EDB (三角形的外角等于和它不相邻的两个内角的和) ∠A+∠ABC+∠ACB=180°(三角形内角和为180°)∴⎪⎩⎪⎨⎧=+++==1802z z x y x z y x 解得x=45° 即:∠A=45°(★★★)已知:如图,∠C=90°,BC=AC ,D 、E 分别在BC 和AC 上,且BD=CE ,M 是AB 的中点。
求证:△MDE 是等腰三角形。
分析:要证△MDE 是等腰三角形,只需证MD=ME 。
连结CM ,可利用△BMD ≌△CME 得到结果。
证明:连结CM ∵∠C=90°,BC=AC ∴∠A=∠B=45° ∵M 是AB 的中点∴CM 平分∠BCA (等腰三角形顶角的平分线和底边上的中线重合) ∴∠MCE=∠MCB=21∠BCA=45° ∴∠B=∠MCE=∠MCB∴CM=MB (等角对等边) 在△BDE 和△CEM 中⎪⎩⎪⎨⎧=∠=∠=CM BM MCE B CE BD ∴△BDM ≌△CEM (SAS ) ∴MD=ME ∴△MDE 是等腰三角形AB CDEM1:等腰三角形中,在计算角的度数时往往是设其中一个角为X度,然后用X表示其他角,利用三角形的内角和为180度来解出X。
计算边长时也是如此。
但要注意分类讨论的情况,同时还要注意检验三角形的两边之和大于第三边。
2:在证明线段或角度相等时,常用的方法就是证全等,在找全等的条件时要与等腰三角形的性质结合起来。
要时刻注意等腰三角形2腰相等,2底角相等,最重要的是"三线合一"的性质。
我来试一试!如图,在ABC∆中,ACAB=,D、E分别为AC、AB边中点,BD、CE交于O点。
求证:点O在BC的垂直平分线上。
分析:欲证本题结论,实际上就是证明OCOB=。
而OB、OC在ABC∆中,于是想到利用等腰三角形的判定角等,那么问题就转化为证含有21∠∠、的两个三角形全等。
证明:因为在ABC∆中,ACAB=所以ACBAB C∠=∠(等边对等角)又因为D、E分别为AC、AB的中点,所以EBDC=(中线定义)在BCD∆和CBE∆中,⎪⎩⎪⎨⎧=∠=∠=)(CBBC)(EBCDCB)(EBDC公共边已证已证所以)SAS(CBEBCD∆≅∆所以21∠=∠(全等三角形对应角相等)。
所以OCOB=(等角对等边)。
即点O在BC的垂直平分线上。
1、如图,在△ABC中,点D是BC边上一点,∠BAD=80°,AB=AD=DC,则∠C= 25 度。
D2、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的大小是45 度。
3、如图,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC的度数为 30 度。
4、如图,AM、BN分别是∠EAB、∠DBC的平分线,若AM=BN=AB,则∠BAC的度数为12度。
M5、如图,在△ABC 中,AB=BC ,在BC 上取点M ,在MC 上取点N ,使MN=NA ,若 ∠BAM=∠NAC ,则∠MAC= 60 度。
6、如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE=0.5(AB+AD ),则∠ ABC+∠ADC 的度数是 180 度。
(★★★)如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
求证:M 是BE 的中点。
AD1 BM C E解析:欲证M 是BE 的中点,已知DM ⊥BC ,所以想到连结BD ,证BD =ED 。
因为△ABC 是等边三角形,∠DBE =21∠ABC ,而由CE =CD ,又可证∠E =21∠ACB ,所以∠1=∠E ,从而问题得证。
证明:因为三角形ABC 是等边三角形,D 是AC 的中点 所以∠1=21∠ABC 又因为CE =CD ,所以∠CDE =∠E 所以∠ACB =2∠E 即∠1=∠E所以BD =BE ,又DM ⊥BC ,垂足为M所以M 是BE 的中点 (等腰三角形三线合一定理)(★★★)如图,已知:ABC ∆中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。
ABCD解析:题中所要求的BAC ∠在ABC ∆中,但仅靠AC AB =是无法求出来的。
因此需要考虑DB AD =和CA DC =在题目中的作用。
此时图形中三个等腰三角形,构成了内外角的关系。
因此可利用等腰三角形的性质和三角形的内外角关系定理来求。
解:因为AC AB =,所以C B ∠=∠ 因为DB AD =,所以C DAB B ∠=∠=∠;因为CD CA =,所以CDA CAD ∠=∠(等边对等角) 而 DAB B ADC ∠+∠=∠ 所以B DAC B ADC ∠=∠∠=∠22, 所以B 3B AC ∠=∠又因为 180=∠+∠+∠BAC C B即 180B 3C B =∠+∠+∠ 所以 36B =∠ 即求得 108BAC =∠(★★★★)如图,ABC ∆是等边三角形,BC BD 90CBD ==∠, ,则1∠的度数是________。
CA 1DB2 3解析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。
解:因为ABC ∆是等边三角形所以 60ABC BC AB =∠=,因为B C B D =,所以B D A B = 所以23∠=∠在AB D ∆中,因为 60ABC 90CBD =∠=∠, 所以 150ABD =∠,所以 152=∠ 所以 75ABC 21=∠+∠=∠(★★★★)ABC ∆中, 120A AC AB =∠=,,AB 的中垂线交AB 于D ,交CA 延长线于E ,求证:BC 21DE =。
E A 3 1 2 D BFC证明:过点A 作BC 边的垂线AF ,垂足为F 。
在ABC ∆中, 120BAC AC AB =∠=, 所以 30C B =∠=∠所以BC 21BF 6021==∠=∠, (等腰三角形三线合一性质)。
所以 603=∠(邻补角定义)。
所以31∠=∠又因为ED 垂直平分AB ,所以 30E =∠(直角三角形两锐角互余)。
AB 21AD =(线段垂直平分线定义)。
又因为AB 21AF =(直角三角形中 角所对的边等于斜边的一半)。