(完整版)解三角形测试题(附答案)
(完整版)解三角形练习题及答案

第一章 解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).A .90°B .120°C .135°D .150°2.在△ABC 中,下列等式正确的是( ).A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin BC .a ∶b =sin B ∶sin AD .a sin A =b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ).A .1∶2∶3B .1∶∶23C .1∶4∶9D .1∶∶234.在△ABC 中,a =,b =,∠A =30°,则c 等于( ).515A .2B .C .2或D .或55551055.已知△ABC 中,∠A =60°,a =,b =4,那么满足条件的△ABC 的形状大小 ( 6).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形6.在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ).A .锐角三角形B .直角三角形C .钝角三角形D .形状不能确定7.在△ABC 中,若b =,c =3,∠B =30°,则a =( ).3A .B .2C .或2D .233338.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B =30°,△ABC 的面积为,那么b =( ).23A .B .1+C .D .2+231+3232+39.某人朝正东方向走了x km 后,向左转150°,然后朝此方向走了3 km ,结果他离出发点恰好km ,那么x 的值是().3A .B .2C .或2D .3333310.有一电视塔,在其东南方A 处看塔顶时仰角为45°,在其西南方B 处看塔顶时仰角为60°,若AB =120米,则电视塔的高度为().A .60米B .60米C .60米或60米D .30米33二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = .12.在△ABC 中,∠A =105°,∠B =45°,c =,则b = .213.在△ABC 中,∠A =60°,a =3,则= .CB A cb a sin sin sin ++++14.在△ABC 中,若a 2+b 2<c 2,且sin C =,则∠C = .2315.平行四边形ABCD 中,AB =4,AC =4,∠BAC =45°,那么AD = 63.16.在△ABC 中,若sin A ∶sinB ∶sinC =2∶3∶4,则最大角的余弦值=.三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =,解此三角形.618.在△ABC 中,已知b =,c =1,∠B =60°,求a 和∠A ,∠C .319. 根据所给条件,判断△ABC 的形状.(1)a cos A =b cos B ;(2)==.A a cos B b cos Cccos 20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为 α,由cos α==,得 α=60°,kk k k k 85249+64+25222⨯⨯21∴最大角和最小角之和为180°-60°=120°.2.B 3.B 4.C 5.C 6.C 7.C 8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2+++23+30sin 212++222ac c a b ac bc a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3+2+)+(+6+2++22代入后消去a ,c ,得b 2=4+2,∴b =+1,故选B .339.C 10.A 二、填空题11.5.612.2.13.2.3解析:设===k ,则=k ===2A asin B b sin Cc sin C B A c b a +sin +sin sin ++A a sin ︒60sin 3.314..32π15.4.316.-.41三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C =sin 45°=·=.26262223∵c sin A =×=,a =2,c =,<2<,6223636∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°.故b =sin B ,所以b =+1或b =-1,Aasin 33∴b =+1,∠C =60°,∠B =75°或b =-1,∠C =120°,∠B =15°.33解法2:由余弦定理得b 2+()2-2b cos 45°=4,66∴b 2-2b +2=0,解得b =±1.33又()2=b 2+22-2×2b cos C ,得cos C =±,∠C =60°或∠C =120°,621所以∠B =75°或∠B =15°.∴b =+1,∠C =60°,∠B =75°或b =-1,∠C =120°,∠B =15°.3318.解析:已知两边及其中一边的对角,可利用正弦定理求解.解:∵=,B b sin Ccsin ∴sin C ===.b Bc sin ⋅360sin 1︒⋅21∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a ==2,22+c b即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得a cos A =b cos B a ·()=b ·()a 2c 2-a 4-b 2c 2+b 4=0,⇒bc a c b 2222-+acc b a 2222+-⇒∴(a 2-b 2)(c 2-a 2-b 2)=0,∴a 2-b 2=0或c 2-a 2-b 2=0,∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.解法2:由正弦定理得sin A cos A =sin B cos B sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =π-2∠B ,∠A ,∠B ∈(0,π) ⇒∠A =∠B 或∠A +∠B =,⇒2π∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得==,A A R cos sin 2B BR cos sin 2C C R cos sin 2∴==,A A cos sin B Bcos sin CC cos sin 即tan A =tan B =tan C .∵∠A ,∠B ,∠C ∈(0,π),∴∠A =∠B =∠C ,∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c .解:由正弦定理= 及∠A =2∠C ,得A asin Cc sin =,即=,C a 2sin C c sin C C a cos sin 2⋅C csin ∴cos C =.ca2由余弦定理cos C =,abc b a 2222-+∵b =4,a +c =8,∴a +c =2b ,∴cos C ===,)()(c a a c c a a ++4++222)())((c a a c a c a +4+3+5a c a 43+5∴=,c a2ac a 43+5整理得(2a -3c )(a -c )=0,∵a ≠c ,∴2a =3c .又∵a +c =8,∴a =,c =.524516。
三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
三角函数与解三角形测试题(含答案解析)

三角函数与解三角形本试卷分第一卷(选择题)和第二卷(非选择题)两局部。
总分值150分。
考试时间120分钟。
第一卷(选择题 共50分)一、选择题(本大题共10个小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符号题目要求的。
)1.角α终边上一点P ,则2sin 23tan αα-=〔 〕A .1--B .1-C .-D .0[答案] D 2.y=(sin x+cos x )2-1是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数[答案] D[解析] y =(sin x +cos x )2-1=2sin x cos x =sin2x ,所以函数y =(sin x +cos x )2-1是最小正周期为π的奇函数.3.把函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象向左平移π6个单位,再将图像上全部点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为y =sin x ,则 ( )A .ω=2,φ=π6B .ω=2,φ=-π3C .ω=12,φ=π6D .ω=12,φ=π12[答案] B[分析] 函数y =sin(ωx +φ)经过上述变换得到函数y =sin x ,把函数y =sin x 的图象经过上述变换的逆变换即可得到函数y =sin(ωx +φ)的图象.[解析] 把y =sin x 图象上全部点的横坐标缩小到原来的12倍得到的函数解析式是y =sin2x ,再把这个函数图象向右平移π6个单位,得到的函数图象的解析式是y =sin2⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π3,与函数比拟得ω=2,φ=-π3. [点评] 此题考查三角函数图象的变换,试题设计成逆向考查的方法更能考查出考生的分析解决问题的灵敏性,此题也可以根据比拟系数的方法求解,根据的变换方法,经过两次变换后函数y =sin(ωx +φ)被变换成y =sin ⎝⎛⎭⎫ωx 2+ωπ6+φ比拟系数也可以得到问题的答案. 4.tan α=2,则2sin 2α+1sin2α= ( )A.53 B .-134C.135D.134[答案] D[解析] ∵tan α=2,∴2sin 2α+1sin2α=3sin 2α+cos 2α2sin αcos α=3tan 2α+12tan α=134.5.函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最大值是2,则ω的最小值等于( )A.23B.32 C .2 D .3[答案] C[解析] 由条件知f ⎝⎛⎭⎫π4=2sin π4ω=2,∴ω=8k +2,∵ω>0,∴ω最小值为2. 6.假设函数f (x )=sin ωx +cos ωx (ω>0)的最小正周期为1,则它的图像的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B.⎝⎛⎭⎫π8,0 C .(0,0) D.⎝⎛⎭⎫-π4,0 [答案] A[分析] 把函数化为一个角的一种三角函数,根据函数的最小正周期求出ω的值,根据对称中心是函数图象与x 轴的交点进行检验或直接令f (x )=0求解.[解析] f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,这个函数的最小正周期是2πω,令2πω=1,解得ω=2,故函数f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫2x +π4,把选项代入检验知点⎝⎛⎭⎫-π8,0为其一个对称中心.[点评] 函数y =A sin(ωx +φ)的图象的对称中心,就是函数图象与x 轴的交点. 7.函数y =A sin(ωx +φ)+m (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x=π3是其图象的一条对称轴,则符合条件的函数解析式是 ( ) A .y =4sin ⎝⎛⎭⎫4x +π6 B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2 D .y =2sin ⎝⎛⎭⎫4x +π6+2[答案] D[解析] 由最大值为4,最小值为0得⎩⎪⎨⎪⎧ A +m =4-A +m =0,∴⎩⎪⎨⎪⎧A =2m =2, 又因为正周期为π2,∴2πω=π2,∴ω=4,∴函数为y =2sin(4x +φ)+2,∵直线x =π3为其对称轴,∴4×π3+φ=π2+k π,k ∈Z ,∴φ=k π-5π6,取k =1知φ=π6,应选D.8.cos(x ―π6)=― 3 3 ,则cosx+cos(x ―π3)的值是 ( )A 、― 2 3 3B 、± 2 33C 、―1D 、±19.△ABC 中,a =1,b =2,B =45°,则角A 等于 ( )A .150°B .90°C .60°D .30°[答案] D[解析] 根据正弦定理得1sin A =2sin45°,∴sin A =12,∵a <b ,∴A 为锐角,∴A =30°,应选D.10.函数y =A sin(ωx +φ)+b 的一局部图象如下图,如图A >0,ω>0,|φ|<π2,则( )A .φ=-π6B .φ=-π3C .φ=π3D .φ=π6[答案] D[解析] 由图可知⎩⎪⎨⎪⎧ A +b =4-A +b =0,∴⎩⎪⎨⎪⎧A =2b =2, 又T 4=5π12-π6=π4,∴T =π,∴ω=2, ∴y =2sin(2x +φ)+2,将⎝⎛⎭⎫5π12,2代入得sin ⎝⎛⎭⎫5π6+φ=0,结合选项知选D. 第二卷(非选择题 共90分)二、填空题(本大题共5个小题,每题5分,共25分,把正确答案填在题中横线上) 11.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2.12.在△ABC 中,假设a =b =1,c =3,则∠C =________.[解析] cos C =a 2+b 2-c 22ab =1+1-32=-12,∴C =2π3.13.假设tan α=2,tan(β-α)=3,则tan(β-2α)的值为________.[答案] 17[解析] tan(β-2α)=tan[(β-α)-α] =tan (β-α)-tan α1+tan (β-α)·tan α=3-21+3×2=17.14.f (x )=2sin ⎝⎛⎭⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围是________. [答案] [-1,2][解析] f (x )在[0,π2]上有两个不同零点,即方程f (x )=0在[0,π2]上有两个不同实数解,∴y =2sin ⎝⎛⎭⎫2x -π6,x ∈[0,π2]与y =m 有两个不同交点, ∵0≤x ≤π2,∴-π6≤2x -π6≤5π6,∴-12≤sin(2x -π6)≤1,∴-1≤y ≤2,∴-1≤m ≤2.15.对于函数f (x )=2cos 2x +2sin x cos x -1(x ∈R )给出以下命题: ①f (x )的最小正周期为2π; ②f (x )在区间[π2,5π8]上是减函数;③直线x =π8是f (x )的图像的一条对称轴;④f (x )的图像可以由函数y =2sin2x 的图像向左平移π4而得到.其中正确命题的序号是________(把你认为正确的都填上).[答案] ②③[解析] f (x )=cos2x +sin2x =2sin ⎝⎛⎭⎫2x +π4,最小正周期T =π;由2k π+π2≤2x +π4≤2k π+3π2(k ∈Z )得k π+π8≤x ≤k π+5π8,故f (x )在区间[π2,5π8]上是减函数;当x =π8时,2x +π4=π2,∴x =π8是f (x )的图象的一条对轴称;y =2sin2x 的图象向左平移π4个单位得到的图象对应函数为y =2sin2⎝⎛⎭⎫x +π4,即y =2sin ⎝⎛⎭⎫2x +π2,因此只有②③正确. 三、解答题(本大题共6个小题,共75分,解容许写出文字说明,证明过程或演算步骤) 16.(本小题总分值12分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的局部图象如下图.(1)求函数f (x )的解析式;(2)假设f ⎝⎛⎭⎫α2=45,0<α<π3,求cos α的值. [解析] (1)由图象知A =1f (x )的最小正周期T =4×⎝⎛⎭⎫5π12-π6=π,故ω=2πT =2 将点⎝⎛⎭⎫π6,1代入f (x )的解析式得sin ⎝⎛⎭⎫π3+φ=1, 又|φ|<π2,∴φ=π6故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6 (2)f ⎝⎛⎭⎫α2=45,即sin ⎝⎛⎭⎫α+π6=45,又0<α<π3, ∴π6<α+π6<π2,∴cos ⎝⎛⎭⎫α+π6=35. 又cos α=[(α+π6)-π6]=cos ⎝⎛⎭⎫α+π6cos π6+sin ⎝⎛⎭⎫α+π6sin π6=33+410. 17.(本小题总分值12分) )cos 2,sin (cos ),sin ,sin (cos x x x b x x x a -=+=,设b a x f ⋅=)(.(1)求函数)(x f 的单调增区间;〔2〕三角形ABC 的三个角,,A B C 所对边分别是,,a b c ,且满足(),103A fB π==+=,求边c .[解析](1) b a x f ⋅=)( =x x x x x x cos 2sin )sin (cos )sin (cos ⋅+-⋅+ =x x x x cos sin 2sin cos 22+- =x x 2sin 2cos +=)2sin 222cos 22(2x x +=cos2cossin 2)44x x ππ+=)42sin(2π+x ………………………………3分由()f x 递增得:222242k x k πππππ-+≤+≤+即3,88k x k k Z ππππ-+≤≤+∈ ∴)(x f 的递增区间是3[,],88k k k Z ππππ-++∈ 。
解三角形(含答案)

解三角形一、单选题(共9道,每道11分)1.由下列条件解△ABC,其中有两解的是( )A.b=20,A=45°,C=80°B.a=30,c=28,B=60°C.a=12,c=15,A=120°D.a=5,,A=30°答案:D解题思路:试题难度:三颗星知识点:解三角形2.在△ABC中,已知下列条件解三角形,其中有唯一解的是( )A.A=30°,a=6,b=10B.A=30°,a=1,b=2C.A=133°,a=22,b=25D.A=90°,a=5,c=10答案:B解题思路:试题难度:三颗星知识点:解三角形3.在△ABC中,,则角B的解的个数是( )A.0B.1C.2D.不确定答案:C解题思路:试题难度:三颗星知识点:解三角形4.在△ABC中,a,b,c分别是角A,B,C的对边,若,,则B=( )A.45°或135°B.135°C.45°D.不确定答案:C解题思路:试题难度:三颗星知识点:解三角形5.在△ABC中,已知,则C=( )A.30°B.60°C.120°D.30°或150°答案:A解题思路:试题难度:三颗星知识点:解三角形6.在△ABC中,角A,B,C的对边分别为a,b,c,若,,B=45°,则角A=( )A.30°B.30°或105°C.60°D.60°或120°答案:D解题思路:试题难度:三颗星知识点:解三角形7.在△ABC中,角A,B,C的对边分别为a,b,c,如果满足的三角形恰有一个,则a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:解三角形8.若满足的△ABC有两个,那么a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:解三角形9.如果满足∠ABC=60°,AC=12,BC=a的△ABC恰有一个,那么a的取值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:解三角形。
解三角形练习题(含答案)

一、选择题1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为()A、正三角形B、直角三角形C、等腰三角形或直角三角形D、等腰直角三角形2、已知中,,,则角等于A .B . C. D .3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞) B.(0,2)C.(2,) D.()4、,则△ABC的面积等于A . B. C .或 D .或5、在中,,则角C的大小为A.300B.450C.600D.12006、的三个内角、、所对边长分别为、、,设向量,,若,则角的大小为()A. B . C. D.7、若ΔABC的内角A、B、C所对的边a、b、c满足,则ab的值为()A. B. C.1 D.8、在中,若,且,则是( )A.等边三角形B.等腰三角形,但不是等边三角形C.等腰直角三角形D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则=A .B . C. D .10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ).A.等边三角形 B.直角三角形C.锐角三角形 D.钝角三角形11、在△中,,,,则此三角形的最大边长为()A. B. C. D.12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c2b2)tanB=ac,则角B=()A .B .C .或D .或13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则()A .B .C . D.14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为()A、1B、2C、3D、015、在钝角中,a,b,c分别是角A,B,C的对边,若,则最大边c的取值范围是( ) (A .B .C . D.16、(2012年高考(上海理))在中,若,则的形状是()A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定.17、在△ABC中,a=15,b=10, ∠A=,则()A. B . C. D .18、在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则角A= ()A. B . C . D .19、()A. B.C.D.20、给出以下四个命题:(1)在中,若,则;(2)将函数的图象向右平移个单位,得到函数的图象;(3)在中,若,,,则为锐角三角形;(4)在同一坐标系中,函数与函数的图象有三个交点;其中正确命题的个数是() A.1 B.2 C.3 D.421、若△ABC的对边分别为、、C且,,,则b=()A、5B、25C 、D 、22、设A、B、C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是()A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能23、设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定24、在中,若,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形25、在△ABC中,已知A=,BC=8,AC=,则△ABC的面积为▲A.B.16 C.或16 D .或26、在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足c sin A =a cos C,则sin A+sin B的最大值是( )A.1B. C. D.3二、填空题27、在△ABC中,角A、B、C的对边分别为a、b、c, 已知A=, a=, b=1,则c= .28、已知△ABC的面积 .29、在△ABC中,角A、B、C所对的对边分别为a、b、c ,若,则A= 。
解三角形综合练习题(含答案),精心整理,真心推荐

解三角形综合练习题1. △ABC 中,角A,B,C 的对边分别为a,b,c ,且sin 2B−C 2+sinBsinC =34. (1)求角A ;(2)若b+c =2,求△ABC 的周长的取值范围;(3)若c =4,且△ABC 为锐角三角形,求△ABC 面积的取值范围;(4)若a =4,且△ABC 为锐角三角形,求△ABC 面积的取值范围.2. △ABC 中,角A,B,C 的对边分别为a,b,c ,且b a+c +sinC sinA+sinB =1.(1)求角A ;(2)若△ABC 的顶点在单位圆上,且b≥a ,求2b -c 的取值范围;(3)若BC =√7, AC =2,求AC 边上的高.3. △ABC 中,角A,B,C 的对边分别为a,b,c .且√3asinAcosB −bcos 2A +b =0.(1)求角B ;(2)若b =6,求BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ 的最小值; (3)若b =2√3,求△ABC 面积的最大值.4. △ABC中,角A,B,C的对边分别为a,b,c.且tanA+tanB=2sinC.cosA(1)求角B;(2)若b=√3,求a2+c2的取值范围;(3)若b=√3,求AC边中线BM长度的最大值..5. △ABC中,角A,B,C的对边分别为a,b,c.且acosB-bcosA=3c5(1)求tanA的值;tanB(2)求tan(A-B)的最大值.=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2 6.设双曲线x2−y23为锐角三角形,则|PF1|+|PF2|的取值范围是参考答案1. (1)A=π3;(2)[3,4);(3)( 2√3,8√3) ;(4)(8√33,4√3]2. (1)A=π3;(2)[√3,2√3);(3)3√323. (1)B=2π3;(2)﹣6;(3)√34. (1)B=π3;(2)(3,6];(3)325. (1) 4;(2)34;6. (2√7,8)。
(完整版)高中数学解三角形(有答案)

解三角形一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18 B.19 C.16 D.172.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.183.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B的大小()A.30°B.60°C.120°D.150°4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1 B..C..D..27.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.79.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A的取值范围是()A.B.C.D.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC的面积为,则边a的值为()A.B.C.D.320.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B ()A.B.C.D.二.解答题(共10小题)21.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.23.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA ﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.25.(2014•兴安盟一模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A ﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.参考答案与试题解析一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18 B.19 C.16 D.17考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,把a,c,cosB的值代入求出b的值,即可确定出三角形ABC周长.解答:解:∵△ABC中,a=3,c=8,B=60°,∴b2=a2+c2﹣2accosB=9+64﹣24=49,即b=7,则△ABC周长为3+8+7=18,故选:A.点评:此题考查了余弦定理,熟练掌握余弦定理是解本题的关键.2.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.18考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,将a,b及cosB的值代入,得到关于c的方程,求出方程的解即可得到c的值.解答:解:∵a=3,c=9,B=60°,∴由余弦定理b2=a2+c2﹣2accosB,即:b2=9+64﹣24,即b=7,则a+b+c=18故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.3.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B的大小()A.30°B.60°C.120°D.150°考点:余弦定理.专题:解三角形.分析:利用余弦定理表示出cosB,把已知等式变形后代入计算求出cosB的值,即可确定出B的度数.解答:解:∵在△ABC中,b2﹣a2﹣c2=ac,即a2+c2﹣b2=﹣ac,∴cosB==﹣,则∠B=150°,故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A=,由此可得△ABC的形状.解答:解:△ABC的内角A,B,C所对的边分别为a,b,c,∵bcosC+ccosB=asinA,则由正弦定理可得sinBcosC+sinCcosB=sinAsinA,即sin(B+C)=sinAsinA,可得sinA=1,故A=,故三角形为直角三角形,故选B.点评:本题主要考查正弦定理以及两角和的正弦公式、诱导公式的应用,根据三角函数的值求角,属于中档题.5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.考点:正弦定理.专题:计算题;解三角形.分析:利用正弦定理可求得sinA,结合题意可求得角A.解答:解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选D.点评:本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1 B..C..D..2考点:正弦定理.专题:解三角形.分析:由已知可先求C,然后结合正弦定理可求解答:解:∵A=30°,B=105°,∴C=45°∵a=1.由正弦定理可得,则c===故选B点评:本题主要考查了正弦定理在求解三角形中的简单应用,属于基础试题7.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.考点:正弦定理.专题:解三角形.分析:利用余弦定理列出关系式,把c,b,以及cosB的值代入求出a的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:∵在钝角△ABC中,已知AB=c=,AC=b=1,∠B=30°,∴由余弦定理得:b2=a2+c2﹣2accosB,即1=a2+3﹣3a,解得:a=1或a=2,当a=1时,a=b,即∠A=∠B=30°,此时∠C=120°,满足题意,△ABC的面积S=acsinB=;当a=2时,满足a2=c2+b2,即△ABC为直角三角形,不合题意,舍去,则△ABC面积是.故选:B.点评:此题考查了正弦定理,余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.7考点:余弦定理.专题:解三角形.分析:由△ABC的面积S△ABC=,求出AC=1,由余弦定理可得BC,计算可得答案.解答:解:∵S△ABC==×AB×ACsin60°=×2×AC×,∴AC=1,△ABC中,由余弦定理可得BC==,故选A.点评:本题考查三角形的面积公式,余弦定理的应用,求出AC,是解题的关键.9.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A的取值范围是()A.B.C.D.考点:余弦定理.专题:解三角形.分析:知道两边求角的范围,余弦定理得到角和第三边的关系,而第三边根据三角形的构成条件是有范围的,这样转化到角的范围.解答:解:利用余弦定理得:4=c2+8﹣4ccosA,即c2﹣4cosAc+4=0,∴△=32cos2A﹣16≥0,∵A为锐角∴A∈(0,],故选:C.点评:此题属于解三角形题型,解题思路为:利用余弦定理解答三角形有解问题,知道两边求角的范围,余弦定理得到角和第三边的关系,而第三边根据三角形的构成条件是有范围的,这样转化到角的范围,有一定难度.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.考点:正弦定理.专题:计算题.分析:结合已知,根据正弦定理,可求AC解答:解:根据正弦定理,,则故选B点评:本题主要考查了正弦定理在解三角形中的应用,属于基础试题11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°考点:正弦定理的应用.专题:计算题.分析:先根据正弦定理将题中所给数值代入求出sinB的值,进而求出B,再由角B的范围确定最终答案.解答:解:由正弦定理得,∴B=45°或135°∵AC<BC,∴B=45°,故选B.点评:本题主要考查了正弦定理的应用.属基础题.正弦定理在解三角形中有着广泛的应用,要熟练掌握.12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.考点:正弦定理.分析:根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.解答:解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.点评:正弦定理可把边的关系转化为角的关系,进一步可以利用三角函数的变换,注意利用三角形的边角关系确定所求角的范围.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)考点:正弦定理;等比数列的通项公式.专题:解三角形.分析:设==q,则由任意两边之和大于第三边求得q的范围,可得的取值范围解答:解:设==q,则==q+q2,则由,求得<q<,∴<q2<,∴1<q+q2<2+,故选:D.点评:本题考查数列与三角函数的综合应用,是基础题.解题时要认真审题,仔细解答,注意三角形三边关系的灵活运用14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()B.C.1D.A.﹣考点:余弦定理;正弦定理.专题:解三角形.分析:根据正弦定理,将条件进行化简即可得到结论.解答:解:∵3a=2b,∴b=,根据正弦定理可得===,故选:D.点评:本题主要考查正弦定理的应用,比较基础.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°考点:正弦定理.专题:计算题.分析:根据所给的等式和正弦定理,得到要求角的正弦和余弦相等,由根据这是一个三角形的内角得到角的度数只能是45°.解答:解:∵,又由正弦定理知,∴sinB=cosB,∵B是三角形的一个内角,∴B=45°,故选B.点评:本题考查正弦定理,是一个基础题,解题时注意当两个角的正弦值和余弦值相等时,一定要说清楚这个角的范围,这样好确定角度.16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.考点:正弦定理;函数的值域.专题:计算题.分析:由正弦定理得,再根据△ABC是锐角三角形,求出B,cosB的取值范围即可.解答:解:由正弦定理得,∵△ABC是锐角三角形,∴三个内角均为锐角,即有,0<π﹣C﹣B=π﹣3B<解得,又余弦函数在此范围内是减函数.故<cosB<.∴<<故选A点评:本题考查了二倍角公式、正弦定理的应用、三角函数的性质.易错点是B角的范围确定不准确.17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°考点:正弦定理;余弦定理.分析:本题考查的知识点是正弦定理和余弦定理,由在△ABC中,如果,我们根据正弦定理边角互化可以得到a=c,又由B=30°,结合余弦定理,我们易求出b与c的关系,进而得到B与C的关系,然后根据三角形内角和为180°,即可求出A角的大小.解答:解:∵在△ABC中,如果∴a= c又∵B=30°由余弦定理,可得:cosB=cos30°===解得:b=c则B=C=30°A=120°.故选D.点评:余弦定理:a2=b2+c2﹣2bccosA,b2=a2+c2﹣2accosB,c2=a2+b2﹣2abcosC.余弦定理可以变形为:cosA=(b2+c2﹣a2)÷2bc,cosB=(a2+c2﹣b2)÷2ac,cosC=(a2+b2﹣c2)÷2ab18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.考点:正弦定理;二倍角的余弦.分析:根据正弦定理得到sinA:sinB,因为∠A:∠B=1:2,利用二倍角的三角函数公式得到A和B的角度,代入求出cos2B即可.解答:解:依题意,因为a:b=1:,所以sinA:sinB=1:,又∠A:∠B=1:2,则cosA=,所以A=30°,B=60°,cos2B=﹣故选A点评:考查学生灵活运用正弦定理解决数学问题的能力,以及灵活运用二倍角的三角函数公式化简求值的能力.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC的面积为,则边a的值为()A.B.C.D.3考点:正弦定理.专题:解三角形.分析:根据正弦定理的面积公式,结合题中数据算出边c=4,再由余弦定理a2=b2+c2﹣2bccosA的式子算出a2=13,即可算出边a的长度.解答:解:∵△ABC中,∠A=60°,b=1,∴可得△ABC的面积为S=bcsinA=×1×c×sin60°=解之得c=4根据余弦定理,得a2=b2+c2﹣2bccosA=1+16﹣2×1×4×cos60°=13,所以a=(舍负)故选C点评:本题给出三角形一边、一角和面积,求边a的长度.着重考查了正弦定理的面积公式和利用余弦定理解三角形等知识,属于基础题.20.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B ()A.B.C.D.考点:正弦定理.专题:计算题;解三角形.分析:由已知结合正弦定理可得,,然后利用余弦定理可得,cosB==﹣,可求B解答:解:∵asinA+csinC+asinC=bsinB,∴由正弦定理可得,由余弦定理可得,cosB==﹣∵0<B<π∴B=.故选:D.点评:本题主要考查了正弦定理、余弦定理在求解三角形中的应用,属于基础题.二.解答题(共10小题)21.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.考点:正弦定理.专题:解三角形.分析:(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.解答:解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.点评:本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.考点:正弦定理;两角和与差的正切函数.分析:本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.解答:解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.点评:在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.23.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA ﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.考点:正弦定理;二倍角的正弦;二倍角的余弦.专题:解三角形.分析:(Ⅰ)△ABC中,由条件利用二倍角公式化简可得﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).求得tan(A+B)的值,可得A+B的值,从而求得C的值.(Ⅱ)由sinA=求得cosA的值.再由正弦定理求得a,再求得sinB=sin[(A+B)﹣A]的值,从而求得△ABC的面积为的值.解答:解:(Ⅰ)∵△ABC中,a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB,∴﹣=sin2A﹣sin2B,即cos2A﹣cos2B=sin2A﹣sin2B,即﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).∵a≠b,∴A≠B,sin(A﹣B)≠0,∴tan(A+B)=﹣,∴A+B=,∴C=.(Ⅱ)∵sinA=<,C=,∴A<,或A>(舍去),∴cosA==.由正弦定理可得,=,即=,∴a=.∴sinB=sin[(A+B)﹣A]=sin(A+B)cosA﹣cos(A+B)sinA=﹣(﹣)×=,∴△ABC的面积为=×=.点评:本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.25.(2014•兴安盟一模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.考点:正弦定理;同角三角函数基本关系的运用.专题:计算题.分析:利用正弦定理化简已知条件,根据三角形的内角和定理及诱导公式化简,由sinC不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可得到B的度数,(Ⅰ)根据余弦定理,由b,cosB和a+c的值,求出ac的值,然后利用三角形的面积公式,由ac的值和sinB的值即可求出三角形ABC的面积;(Ⅱ)由求出的B的度数,根据三角形的内角和定理得到A+C的度数,用A表示出C,代入已知的等式,利用诱导公式及两角和的正弦函数公式化为一个角的正弦函数,根据A的范围求出这个角的范围,由正弦函数的值域即可得到所求式子的取值范围.解答:解:由已知及正弦定理得:(2sinC﹣sinA)cosB﹣sinBcosA=0,即2sinCcosB﹣sin(A+B)=0,在△ABC中,由sin(A+B)=sinC故sinC(2cosB﹣1)=0,∵C∈(0,π),∴sinC≠0,∴2cosB﹣1=0,所以B=60°(3分)(Ⅰ)由b2=a2+c2﹣2accos60°=(a+c)2﹣3ac,即72=132﹣3ac,得ac=40(5分)所以△ABC的面积;(6分)(Ⅱ)因为==,(10分)又A∈(0,),∴,则sinA+sin(C﹣)=2sin(A+)∈(1,2].点评:此题考查学生灵活运用正弦定理及诱导公式化简求值,灵活运用三角形的面积公式及两角和的正弦函数公式化简求值,掌握正弦函数的值域,是一道中档题.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.考点:正弦定理.专题:计算题.分析:(I)由可求sinB=且B为锐角,由b=2,a=考虑利用正弦定理可求sinA,结合三角形的大边对大角且a<b可知A<B,从而可求A,(II)由,b=2利用余弦定理可得,b2=a2+c2﹣2accosB,把已知代入,结合a2+c2≥2ac可求ac的范围,在代入三角形的面积公式可求△ABC面积的最大值.解答:解:∵∴sinB=且B为锐角(I)∵b=2,a=由正弦定理可得,∴∵a<b∴A<B∴A=30°(II)由,b=2利用余弦定理可得,b2=a2+c2﹣2accosB∴从而有ac≤10∴∴△ABC面积的最大值为3点评:本题(I)主要考查了利用正弦定理及三角形的大边对大角解三角形(II)利用余弦定理及基本不等式、三角形的面积公式综合求解三角形的面积.考查的是对知识综合运用.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A ﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(Ⅰ)三角形ABC中,由条件化简可得sinA=2sinC,故有a=2c.再由b2=ac=2c2,求得cosB=的值.(Ⅱ)根据b=,b2=ac=2c2,求得c和a的值,求得sinB=的值,再根据△ABC的面积S=ac•sinB,计算求得结果.解答:解:(Ⅰ)三角形ABC中,∵sinB+sin(A﹣C)=2sin2C,∴sin(A+C)+sin(A﹣C)=4sinCcosC,sinA=2sinC,∴a=2c.又因为b2=ac=2c2,∴cosB==.(Ⅱ)∵b=,b2=ac=2c2,∴c=,∴a=.又∵sinB==∴△ABC的面积S=ac•sinB=.点评:本题主要考查两角和差的三角公式、正弦定理、余弦定理的应用,属于中档题.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.解答:解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.点评:此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值.解答:解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:(1)先利用正弦定理把题设等式中的边转化成角的正弦,利用二倍角公式和两角和公式整理求得sinB=sin2C,进而根据B,C的范围,求得B+2C=π,判断出A=C,即三角形为等腰三角形.(2)利用平面向量的性质,依据已知条件求得a2+c2+2ac•cosB=4,根据a的值求得cosB的值.解答:解:(1)由及正弦定理,得,即sinBsinA﹣sinBsin2C=sinAsin2C﹣sinBsin2C,即sinBsinA=sinAsin2C,因为A是三角形内角,所以sinA≠0,可得sinB=sin2C,∵,∴,∴B+2C=π,∵A+B+C=π,∴A=C,△ABC为等腰三角形.(2)∵∴B∈(0,),∴cosB∈(,1)由(1)可知a=c,由,得a2+c2+2ac•cosB=4,∴a2=,∴=cosB=a2•cosB==2﹣∈(,1)(12分).点评:本题主要考查了正弦定理的应用.解题的关键是利用正弦定理进行了边角问题的转化.。
(完整版)解三角形练习题(含答案)

一、选择题1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为()A、正三角形B、直角三角形C、等腰三角形或直角三角形D、等腰直角三角形2、已知中,,,则角等于A .B .C .D .3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞) B.(0,2)C.(2,) D.()4、,则△ABC的面积等于A .B .C .或D .或5、在中,,则角C的大小为A.300B.450C.600D.12006、的三个内角、、所对边长分别为、、,设向量,,若,则角的大小为()A .B .C .D .7、若ΔABC的内角A、B、C所对的边a、b、c 满足,则ab的值为()A .B . C.1 D .8、在中,若,且,则是( )A.等边三角形B.等腰三角形,但不是等边三角形C.等腰直角三角形D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则=A .B .C .D .10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ).A.等边三角形 B.直角三角形C.锐角三角形 D.钝角三角形11、在△中,,,,则此三角形的最大边长为()A. B. C. D.12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c 2b2)tanB=ac,则角B=()A .B .C .或D .或13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则()A .B .C .D .14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为()A、1B、2C、3D、015、在钝角中,a,b,c分别是角A,B,C 的对边,若,则最大边c的取值范围是( ) (A .B .C .D .16、(2012年高考(上海理))在中,若,则的形状是()A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定.17、在△ABC中,a=15,b=10, ∠A=,则()A .B .C .D .18、在△ABC中,内角A,B,C的对边分别是a,b,c ,若,,则角A= ()A .B .C .D .19、()A. B. C. D.20、给出以下四个命题:(1)在中,若,则;(2)将函数的图象向右平移个单位,得到函数的图象;(3)在中,若,,,则为锐角三角形;(4)在同一坐标系中,函数与函数的图象有三个交点;其中正确命题的个数是() A.1 B.2 C.3 D.421、若△ABC的对边分别为、、C 且,,,则b=()A、5B、25C 、D 、22、设A、B、C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是()A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能23、设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定24、在中,若,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形25、在△ABC中,已知A=,BC=8,AC=,则△ABC的面积为▲A.B.16 C .或16 D .或26、在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足c sin A =a cos C,则sin A+sin B的最大值是( )A.1 B. C. D.3二、填空题27、在△ABC中,角A、B、C的对边分别为a、b、c, 已知A=, a=, b=1,则c= .28、已知△ABC 的面积 .29、在△ABC中,角A、B、C所对的对边分别为a、b 、c,若,则A= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形单元测试题
一、选择题:
1、在△ABC 中,a =3,b =7,c =2,那么B 等于(
)
A . 30°
B .45°
C .60°
D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )
A .310+
B .(
)
1310
-
C .13+
D .310
3、在△ABC 中,a =32,b =22,B =45°,则A 等于(
)
A .30°
B .60°
C .30°或120°
D . 30°或150° 4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( )
A .无解
B .一解
C . 二解
D .不能确定 5、在△ABC 中,已知bc c b a ++=2
2
2
,则角A 为(
)
A .
3
π B .
6π C .32π D . 3
π或32π
6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是(
)
A .()10,8
B .
(
)
10,8
C .
(
)
10,8
D .
()8,10
8、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .正三角形 9、△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围( )
A .2>x
B .2<x
C .33
4
2<
<x D . 33
42≤
<x 10、在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a
②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A 其中成立的个数是 ( )
A .0个
B .1个
C .2个
D .3个 11、在△ABC 中,3=AB
,1=AC ,∠A =30°,则△ABC 面积为 ( )
A .
2
3 B .
4
3
C .
2
3
或3 D .
43 或2
3
A
C
B 0150 30米 20米 12、已知△AB
C 的面积为
2
3
,且3,2==c b ,则∠A 等于 ( ) A .30°
B .30°或150°
C .60°
D .60°或120°
13、已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( )
A . 14
B .142
C .15
D .152
14、某市在“旧城改造”中计划内一块如图所示的三角形空
地上种植草皮以美化环境,已知这种草皮每平方米a 元,则
购买这种草皮至少要( ) A . 450a 元 B .225a 元 C . 150a 元 D . 300a 元
15、甲船在岛B 的正南方A 处,AB =10千米,甲船以每小
时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( )
A .
7
150
分钟 B .
7
15
分钟 C .21.5分钟 D .2.15分钟
16、飞机沿水平方向飞行,在A 处测得正前下方地面目标C 得俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的水平距离为( )
A . 5000米
B .50002 米
C .4000米
D .24000 米
17、在△ABC 中,10sin =a °,50sin =b °,
∠C =70°,那么△ABC 的面积为( ) A .
64
1
B .
32
1 C .
16
1 D .
8
1 18、若△ABC 的周长等于20,面积是310,A =60°,则BC 边的长是( ) A . 5 B .6 C .7 D .8
19、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( )
A .51<<x
B .135<<x
C .50<<x
D .513<<x
20、在△ABC 中,若
c
C
b B a A sin cos cos =
=,则△ABC 是( ) A .有一内角为30°的直角三角形
B .等腰直角三角形
C .有一内角为30°的等腰三角形
D .等边三角形
二、填空题
21、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 22、在△ABC 中,===B c a ,2,33150°,则b =
23、在△ABC 中,A =60°,B =45°,12=+b a ,则a = ;b =
24、已知△ABC 中,===A b a ,209,181121°,则此三角形解的情况是 25、已知三角形两边长分别为1和3,第三边上的中线长为1,则三角形的外接圆半径为 .
26、在△ABC 中,()()()6:5:4::=+++b a a c c b ,则△ABC 的最大内角的度数是 三、解答题
27、在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,33
20
,5的情况下,求相应角C 。
28、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322
=+-x x 的两个根,且
()1cos 2=+B A 。
求:(1)角C 的度数; (2)AB 的长度。
29、在△ABC 中,证明:2
2221
12cos 2cos b a b B a A -
=-。
解三角形单元测试答案
一、选择题
二、填空题
21、2:3:1 22、7 23、61236-,24612- 24、无解 25、1 26、120°
三、解答题
27、解:由正弦定理得BC BC A AB C 10
sin sin =
= (1)当BC =20时,sinC =2
1
;AB BC > C A >∴ 30=∴C °
(2)当BC =
33
20
时, sinC =23; AB BC AB <<︒•45sin C ∴ 有两解 ︒=∴60C 或120°
(3)当BC =5时,sinC =2>1; C ∴不存在
28、解:(1)()[]()2
1
cos cos cos -=+-=+-=B A B A C π ∴C =120°
(2)由题设:
⎩⎨
⎧=+=3
22
b a ab
︒-+=•-+=∴120cos 2cos 22
22
2
2ab b a C BC AC BC AC AB
()()
102322
2
22=-=-+=++=ab b a ab b a
10=∴AB
29、证明:
⎪⎪⎭⎫ ⎝⎛---=---=-222222222222sin sin 21
1sin 21sin 212cos 2cos b B a
A b a b
B a A b B a A 由正弦定理得:2
222sin sin b
B
a A = 2
2221
12cos 2cos b
a b B a A -=-∴。