概率论与数理统计(二)笔记
概率论与数理统计复习资料(二) (1)

<概率论>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 (必须写出分布的参数)。
2.设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为 。
3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。
4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。
5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。
6.设样本的频数分布为则样本方差2s =_____________________。
7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。
9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2, …,x n )落入W 的概率为0.15,则犯第一类错误的概率为_____________________。
10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。
11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;若已知10.95α-=,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。
概率论与数理统计第二章笔记

交通学院 学号1126002026 姓名 吕立正 课堂笔记第二章 随机变量及其分布 §1.随机变量与分布函数一、随机变量的概念定义:假设Ω为试验E 的样本空间,对任意的ω∈Ω都赋予一个实数X (ω)与之对应,则实值函数X ()称为随机变量,一般用X ,Y ,Z 或者,ξη 注:1、Z (ω)由ω唯一确定2、随机变量X 与实数x 的区别3、对实数x ,事件{X ≤x}有一定的概率,P{X ≤x} 二、分布函数定义:设(Ω, ,P )为概率空间,还为定义在Ω上的随机变量,对任意x ∈R ,一元实值函数F (x )= P{X ≤x},称为r ,v ,X 的概率分布函数,简称分布函数 注:1、F (x )= P{X ≤x},x ∈R2、分布函数是指描述随机变量分布的根本方法3、分布函数的性质性质1、(单调性)对任意的12X X ≤,有F (1X )≤F (2X ) 注:P (a X b <≤)=F (b )-F (a )P (a X b ≤≤)= F (b )-F (a )+P (X=a )P (a X b ≤<)= F (b )-F (a )+P (X=a )-P (X=b ) P (a X b <<)= F (b )-F (a )-P (X=b ) P (X a ≤)= F (a ) P (a X <)=1- F (a ) 性质2、(有界性):0≤F (x )1≤ 性质3、()lim ()1x F F x →+∞+∞==()lim ()0x F F x →-∞-∞==性质4、(右连续性) 对任意x ∈R ,有F (x+0)=F (x )证明:设x A ={X ≤x+ 1n} 则123......A A A ⊇⊇⊇且n ={}n A X x +∞=-∞⋂≤所以F(x)=P{X ≤x}=P(1n n A ∞=⋂)=lim ()n n P A →+∞=n +11lim (x+)=lim ()n n P X F x n→+∞→∞≤+由F(x)的单调性 F(x)=F(x+0)例:设r.v.X 的分布函数为F(x)=A+Barctanx x ∈R 求待定系数A.B 由F(+∞)=1 F(-∞)=0 得到lim (arctan )12x A B x A B π→+∞+=+=lim(arctan x)=a-02x A B B π→∞+= 所以A=12 B= 1π第二节 离散型r .v .及其分布一.基本概念定义:设X 为样本空间Ω的随机变量,若存在一个有限或可列无限集B ,使得P{X ∈B}=1则称X 为离散型r . v . 设其所有可列取值为{k X } K=1.2.3……n …则k P =P (X=k X ) K=1.2.3…..n …则称为X 的概率分布列[注]:1.概率分布列是描述离散型随机变量的概率分布的方法之一分布矩阵1212........................n n x x x p p p ⎛⎫⎪⎝⎭3.非负性:k P >0.k=1.2….. 归一性:K kP ∑=14.求离散型r . v . 分布列的步骤Step1:列出r . v . X 的所有可能取值 Step2:计算几个取值对应的概率例:甲乙两队进行比赛,规定谁先赢三局获胜。
概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

以X记“第1人维护的20台中同一时刻发生故障的台 数”以Ai ( i 1,2,3,4)表示事件“第i人维护的20台中 ,
发生故障时不能及时维修”, 则知80台中发生故障
而不能及时维修的概率为
三、几种常见离散型随机变量的概率分布
P ( A1 A2 A3 A4 ) P ( A1 )
三、几种常见离散型随机变量的概率分布
3、独立重复试验与二项分布 (1)独立重复试验
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
练习1 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用10ห้องสมุดไป่ตู้0小时已坏的灯泡数 . 把观察一个灯泡的使用 时数看作一次试验, “使用到1000小时已坏” P{X 1} =P{X=0}+P{X=1} 视为事件A .每次试验, A )3+3(0.8)(0.2)2 =(0.2出现的概率为0.8
本例中,n=20,p=0.2, 所以,(n+1)p=4.2, 故k0=4。
三、几种常见离散型随机变量的概率分布
练习3 设有80台同类型设备,各台工作是相互独立 的发生故障的概率都是 0.01,且一台设备的故障能 由一个人处理. 考虑两种配备维修工人的方法 , 其 一是由四人维护,每人负责20台; 其二是由3人共同 维护台80.试比较这两种方法在设备发生故障时不 能及时维修的概率的大小. 解 按第一种方法
概率论与数理统计第二章笔记

概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。
在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。
二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。
根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。
离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。
2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。
对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。
通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。
三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。
这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。
2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。
这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。
四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。
通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。
通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。
个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。
通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。
结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。
《概率论与数理统计》第二章考点手册

《概率论与数理统计》第二章随机变量及其概率分布考点10 随机变量的概念(★三级考点,选择、填空)设Ω={ω}是试验的样本空间,如果对每个ω∈Ω,总有一个实数X(ω)与之对应,则称Ω上的实值函数X(ω)为E的一个随机变量。
随机变量常用X、Y、Z等表示。
考点11 离散型分布变量及其分布律(★★二级考点,选择、填空、计算)1.若随机变量X取值x1,x2,…,x n,…且取这些值的概率依次为p1,p2,…,p n,…,则称X为离散型随机变量,而称P{X=x k}=p k,(k=1,2,…)为X的分布律或概率分布。
可表为X~P{X=x k}=p k,(k=1,2,…),2.分布律的矩阵(表格)表示方法:3.分布律的性质1)p k ≥0,k=1,2,…;2)∑≥11kkp=考点12 0-1分布与二项分布(★★★一级考点,选择、填空)1.0-1分布设E是一个只有两种可能结果的随机试验,用Ω={ω1,ω2}表示其样本空间。
P({ω1})=p,P({ω2})=1-p记则称X服从参数p的(0-1)分布(或两点分布),记成X~B(1,p)。
2.二项分布设试验E只有两个结果AA或,记p=P(A),将试验E独立重复进行n次,则称这n次试验为n重伯努利试验。
若以X表示n重贝努里试验事件A发生的次数,则称X服从参数为n,p的二项分布。
记作X~B(n,p)其分布律为:),...,1,0(,)1(}{nkppkXP k nkknC=-==-考点13 泊松分布(★★★一级考点,选择、填空)1.泊松分布:设随机变量X所有可能取的值为:0,1,2,…,概率分布为:其中λ>0为常数,则称随机变量X 服从参数为λ的泊松分布,记为X~P (λ)。
2.二项分布与泊松分布的关系(泊松定理)对二项分布B (n ,p ),当n 充分大,p 又很小时,对任意固定的非负整数k ,有近似公式 .,!)1(), ( n k np e k p p C p n k k k n k k n <=»-=--,其中;l l l B 理解:泊松定理表明,泊松分布是二项分布的极限分布,当n 很大,p 很小时,二项分布就可近似地看成是参数λ=np 的泊松分布。
茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b
②
1 / 167
圣才电子书
十万种考研考证电子书、题库视频学习平台
P
X n Yn a b
③
P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果
概率论与数理统计笔记(重要公式)

r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0
设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba
概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计(二)笔记
经济数学基础二(概率论与数理统计)课程教学大纲
一、课程教学目的与基本要求
概率论与数理统计是高等学校(专科)经济、管理类及计算机类专业最重要的基础理论课之一。
本课程是我院经济、管理类及计算
机类专业继微积分课程之后的一门基础课。
通过本课程的学习,使学生获得概率论与数理统计的基本知识和基本运算技能。
教学中要贯彻“以应用为目的,以必需、够用为度”的原则,教学重点放在掌握概念,强化应用,培养技能上。
通过各教学环节逐渐培养学生具有比较熟练的分析问题和解决问题的能力,并为专业课程的定量分析打下基础。
1.要正确理解以下概念:
随机试验,随机事件、概率的古典定义、事件的独立性、一元随机变量、分布函数、二元随机变量、联合分布及边缘分布、随机变量相互独立性、随机变量的数字特征、总体与样本、统计量、两类错误、回归的基本概念
2. 要掌握下列基本理论、基本定理和公式:
概率的基本性质。
概率加法定理、乘法定理、全概率公式和贝叶斯公式、贝努里概型。
切比雪夫大数定律与贝努里大数定律、中心极限定理。
常用的统计量的分布。
参数估计的基本思想。
小概率原理。
3.熟练掌握下列运算法则和方法:
事件的关系与运算。
古典概型的概率计算。
一元随机变量的分布函数、二元随机变量的边缘分布计算。
标准正态分布表的查法。
随机变量的数学期望、方差、协方差计算。
4.应用方面:
用数学期望、方差的概念及性质解决具体问题的计算。
利用正态分布的理论解决具体问题。
用区间估计正确解决实际问题,并能解释其结果。
运用小概率原理,对具体问题做假设检验。
用一元线性回归方程及相关性检验解决实际问题。
二、课程主要内容
第一章随机事件及其概率(10学时)
1. 理解随机试验、随机事件的概念,了解样本空间的概念,掌握事件的关系与运算并会能灵活表达。
2. 了解概率的统计定义,理解概率的古典定义,会计算简单的古典概率。
3. 了解概率的公理化定义。
掌握概率的基本性质及概率加法定理。
4. 理解条件概率的概念,掌握概率的乘法定理,理解全概率公式和贝叶斯公式,并会运算和计算。
5. 理解事件的独立性概念,掌握贝努里概型,并会计算有关的概率问题。
第二章随机变量及其分布(8学时)
1. 理解随机变量的概念,了解离散型随机变量及分布律的概念和性质、连续型随机变量及概率密度的概念和性质。
2. 理解分布函数的概念和性质,会利用概率分布计算有关事件的概率
3. 理解0-1分布、二项分布,了解普哇松分布。
了解二项分布与普哇松分布的关系。
4. 了解均匀分布、指数分布,理解正态分布与标准正态分布的定义与关系。
熟练掌握标准正态分布表的查法,会解决具体问题。
5. 会求简单随机变量函数的概率分布。
第三章二维随机变量(8学时)
1. 理解二维随机变量的概念。
2. 了解联合分布的概念及性质,理解边缘分布的概念。
了解联合分布与边缘分布的关系。
3. 理解二维离散型随机变量,会求边缘分布律,了解二维连续型随机变量,会求边缘概率密度。
4. 理解随机变量相互独立性的概念及性质,并会应用。
第四章随机变量的数字特征(10学时)
1. 理解随机变量的数学期望与方差的概念,掌握它们的性质与计算。
2. 会计算随机变量函数的数学期望。
3. 掌握0-1分布、二项分布、普哇松分布、均匀分布、指数分布,正态分布的数学期望与方差
4. 了解协方差与相关系数的概念。
5. 了解切比雪夫不等式及其意义。
6. 了解切比雪夫大数定律与贝努里大数定律的内容与含义。
7. 了解中心极限定理的内容与含义。
第五章数理统计的基本概念(6学时)
1. 理解总体、个体、样本、统计量的概念。
了解直方图的作法。
3. 掌握样本均值、样本方差的计算。
4. 知道三种常见的分布:分布、分布、分布。
第六章参数估计(4学时)
1. 理解参数估计的基本思想,了解矩估计法与最大似然估计法,会运用这些方法估计未知参数。
2. 了解评价估计量的三个标准,会判别
无偏性。
3. 了解置信区间、置信度的概念。
掌握对正态总体均值与方差的区间估计。
会用区间估计正确解决实际问题,并能解释其结果。
第七章假设检验(4学时)
1. 理解假设检验的基本思想,掌握假设检验与区间估计的密切联系。
2. 掌握小概率原理,理解接受域、拒绝域。
了解假设检验中可能产生的两类错误。
3. 掌握对正态总体均值与方差的假设检验,会对相应的具体问题做假设检验。
第八章一元线性回归分析(4学时)
1. 了解回归概念。
2. 会建立一元线性回归方程并进行相关性检验。
3. 了解可线性化回归方程。
三、课程学时分配及教学环节安排表
授课内容提要学时备注
第一章随机事件及其概率10
第二章随机变量及其分布8
第三章二维随机变量8
第四章随机变量的数字特征10
第五章数理统计的基本概念 6
第六章参数估计 4
第七章假设检验 4
第八章一元线性回归分析 4
合计54
四、教材及主要参考书目
1. 教材:《概率论与数理统计》,上海高校《经济数学基础》编写组,立信会计出版社。
2. 参考书目:《概率论与数理统计学习与辅导》,上海高校《经济数学基础》编写组,立信会计出版社。