第九章 酶反应动力学
生物化学(第三版)第九章 酶促反应动力学课后习题详细解答_ 复习重点

第九章酶促反应动力学提要酶促反应动力学是研究酶促反应的速率以及影响此速率各种因素的科学。
它是以化学动力学为基础讨论底物浓度、抑制剂、pH、温度及激活剂等因素对酶反应速率的影响。
化学动力学中在研究化学反应速率与反应无浓度的关系时,常分为一级反应、二级反应及零级反应。
研究证明,酶催化过正的第一步是生成酶-底物中间产物,Michaelis-Menten该呢举中间产物学说的理论推导出酶反应动力学方程式,即Km、Vmax、kcat、kcat/Km。
Km是酶的一个特征常数,以浓度为单位,Km有多种用途,通过直线作图法可以得到Km及Vmax。
Kcat称为催化常数,又叫做转换数(TN值),它的单位为s-1,kcat值越大,表示酶的催化速率越高。
kcat/Km常用来比较酶催化效率的参数。
酶促反应除了单底物反应外,最常见的为双底物反应,按其动力学机制分为序列反应和乒乓反应,用动力学直线作图法可以区分。
酶促反应速率常受抑制剂影响,根据抑制剂与酶的作用方式及抑制作用是否可逆,将抑制作用分为可逆抑制作用及不可逆抑制作用。
根据可逆抑制剂与底物的关系分为竞争性抑制、非竞争性抑制及反竞争性抑制3类,可以分别推导出抑制作用的动力学方程。
竞争性抑制可以通过增加底物浓度而解除,其动力学常数Kˊm变大,Vmax不变;非竞争性抑制Km不变,Vˊmax变小;反竞争性抑制Kˊm及Vˊmax均变小。
通过动力学作图可以区分这3种类型的可逆抑制作用。
可逆抑制剂中最重要的是竞争性抑制,过度态底物类似物为强有力的竞争性抑制剂。
不可逆抑制剂中,最有意义的为专一性Ks型及kcat型不可逆抑制剂。
研究酶的抑制作用是研究酶的结构与功能、酶的催化机制、阐明代谢途径以及设计新药物的重要手段。
温度、pH及激活剂都会对酶促反应速率产生重要影响,酶反应有最适温度及最适pH,要选择合适的激活剂。
在研究酶促反应速率及测定酶的活力时,都应选择酶的最适反应条件。
习题1.当一酶促反应进行的速率为Vmax的80%时,在Km和[S]之间有何关系?[Km=0.25[S]]解:根据米氏方程:V=Vmax[S]/(Km+[S])得:0.8Vmax=Vmax[S]/(Km+[S])Km=0.25[S]2.过氧化氢酶的Km值为2.5×10-2 mol/L,当底物过氧化氢浓度为100mol/L时,求在此浓度下,过氧化氢酶被底物所饱和的百分数。
第九章 酶促反应动力学

第九章酶促反应动力学一、是非判断题1.酶促反应的初速度与底物浓度无关。
()2.当底物处于饱和水平时,酶促反应的速度与酶浓度成正比。
()3.某些酶的Km由于代谢产物存在而发生改变,而这些代谢产物在结构上与底物无关。
()4.在非竞争性抑制剂存在下,加入足量的底物,酶促的反应能够达到正常Vmax。
()5.碘乙酸因可与活性中心-SH以共价键结合而抑制巯基酶,而使糖酵解途径受阻。
()6.从鼠脑分离的己糖激酶可以作用于葡萄糖(K m=6×10-6mol/L)或果糖(K m=2×10-3mol/L),则己糖激酶对果糖的亲和力更高。
()7.K m是酶的特征常数,只与酶的性质有关,与酶浓度无关。
()8.K m是酶的特征常数,在任何条件下,K m是常数。
()9.K m是酶的特征常数,只与酶的性质有关,与酶的底物无关。
()10.一种酶有几种底物就有几种K m值。
()11.当[S]>>K m时,V趋向于V max,此时只有通过增加[E]来增加V。
()12.酶的最适pH值是一个常数,每一种酶只有一个确定的最适pH值。
()13.酶的最适温度与酶的作用时间有关,作用时间长,则最适温度高,作用时间短,则最适温度低。
()14.金属离子作为酶的激活剂,有的可以相互取代,有的可以相互拮抗。
()15.增加不可逆抑制剂的浓度,可以实现酶活性的完全抑制。
()16.竞争性可逆抑制剂一定与酶的底物结合在酶的同一部位。
()答案1.错。
2.对。
3.对。
4.错。
5.对。
6.错。
7.对。
8.错。
9.错。
10.对。
11.对。
12.错。
13.错。
14.对。
15.对。
16.错。
二、填空题1.影响酶促反应速度的因素有、、、、和。
2.丙二酸和戊二酸都是琥珀酸脱氢酶的抑制剂。
3.通常讨论酶促反应的反应速度时,指的是反应的速度,即时测得的反应速度。
4.pH值影响酶活力的原因可能有以下几方面:影响,影响,影响。
5.温度对酶活力影响有以下两方面:一方面,另一方面。
酶促反应动力学

第一节 酶促反应的动力学方程
一、化学动力学基础
1、反应分子数和反应级数 1)反应分子数
指在反应中真正相互作用的分子数。
A
P
A+B
P+Q
2)反应级数
指实验测得的反应速率与反应物浓度之间的关系,符合 哪种速率方程,则这个反应就是几级反应。
蔗糖 + H2O 蔗糖酶 葡萄糖 + 果糖
1
3)零级反应的特征
反应速率与反应物浓度无关。初始浓度增加,反应速度不变, 要使反应物减少一半所需完成的反应量增加,因此最后表现为半 衰期与初始浓度成正比。
二、底物浓度对酶促反应的影响
1、酶促反应初速度与底物浓度之间的关系 1903年Henri以蔗糖酶水解蔗糖为例,研究底物浓度与酶促反
应速度之间关系时,发现两者的关系符合双曲线关系。
k2
Km= (k2+k3)/k1
Km是[ES]的分解常数与生成常数的比值。 Km的真正含义是, Km越大意为着[ES]越不稳定,越容易分解。但不能说明[ES]是容 易分解成底物还是产物。
kcat/Km可表示为 [k3/(k2 + k3)]k1, k3/(k2 + k3)代表[ES] 分解成产 物的分解常数占[ES] 总分解常数的比值。 k3/(k2 + k3)越大,说明 [ES]越容易分解成产物。 k1是[ES] 生成常数。因此, kcat/Km数 值大不仅表示[ES]容易生成,还表示[ES]易分解成产物。真正代 表酶对某一特定底物的催化效率。所以,也称为专一性常数。 极限值是k1 ,意为[ES]不会再分解为底物。
酶的化学本质是蛋白质,因此,酶 对温度具有高度的敏感性,随着温度 的升高,分子的构象会逐渐地被破 坏,失去催化活性。
第9章酶促反应动力学

3 环境因素对酶反应的影响
温度 pH值 激活剂 抑制剂
① 温度对酶反应的影响
最适温度(optimum temperature ):受底物的种类、浓度, 溶液的离子强度, pH, 反应时间等的影响。
② pH对酶反应的影响
反 应反
应
速速 度
度
0
6
8
最适pH
pH 10 pH
最适pH(optimum pH):受到底物的种类、浓度、 缓冲液 的种类等影响。
第9章 酶促反应动力学
研究酶促反应的速率以及影响速率的各种因素
底物浓度对酶反应速率的影响 米氏方程
酶的抑制作用
环境因素对酶反应的影响
1 底物浓度对酶反应速率的影响
1.1米氏学说的提出
① 酶有被底物所饱和的现象
双曲线
② 酶-底物复合物学说(Enzyme-substrate complex)
1903年,Herin-Wurtz
1.4 米氏常数的求法
双倒数作图法(Lineweaver-Burk作图法)
以1/[S]为横坐标, 以1/v为纵坐标作图 缺点: 实验点过于集中于直线的左端, 作图不易十分准确。
2 酶的抑制作用
2.1 抑制作用
失活作用(inactivation):酶蛋白变性而引起
活力丧失。 变性剂对酶无选择性。
抑制作用(inhibition):酶的必须基团化学性
将(4)代入(3)
得:
当反应体系中的底物浓度极大,而使所有的酶分子都 以ES形式存在时,反应速度达到最大值(即最大反应 速度,V)。
将(6)代入(5)
得:
米氏方程式
Km--米氏常数(Michaelis-Menton constant) 表明当已知Km和Vmax时,酶反应速率与底物浓 度的定量关系。
生物化学-生化知识点_酶促反应动力学 (9章)

§2.8 酶促反应动力学(9章 P351)一一一底物浓度对酶反应速率的影响用反应初速度v对底物浓度[S]作图得P355 图9-6。
曲线分以下几段:一1一OA段:反应底物浓度较低时v与[S]成正比,表现为一级反应, v = k[S]。
根据酶底物中间络合物学说,酶催化反应时,首先和底物结合生成中间复合物ES,然后再生成产物P,并释放出E。
E + S = ES → P + EOA段上,底物浓度小,酶未被底物饱和,有剩余酶,反应速率取决于ES浓度,与[S]呈线性关系,v正比于[S]。
一2一AB段:反应速度不再按正比升高,表现为混合级反应。
此时酶渐渐为底物饱和,[E S]慢慢增加,v也慢慢增加,为分数级反应。
一3一BC段:反应速度趋于V max,为零级反应,酶促反应表现出饱和现象。
此时底物过量[S]>[E],[E]已全部转为[E S]而恒定,因此反应速率也恒定,为最大反应速率,V m为[E]所决定。
ax非催化反应无此饱和现象。
酶与底物形成中间复合物已得到实验证实。
一一一酶促反应力学方程式一1一米氏方程推导1913年Michaelis和Menten提出并推导出表示[S]与v之间定量关系的米氏方程V max[S]V =K m + [S]Km:米氏常数,物理意义为反应速率为最大速率V max一半时底物的浓度,单位与底物浓度同。
推导:酶促反应分两步进行。
k1 k3E + S ES → P + Ek2v = k3 [ES]一般k3为限速步骤 v = k3 [ES] … ①1.[ES] 生成速率:d[ES]/dt = k1([E] - [ES]) [S]2.[E S]分解速率:-d[ES] / dt = k2 [ES] + k3 [ES] = (k2 + k3) [ES]3.稳态下[ES]不变,ES生成速率和分解速率相等:k1 ([E]- [ES]) [S] = (k2+k3) [ES]4.引入K m:令K m = k2+k3 / k1代入K m = ([E]- [ES]) [S] / [ES] ,K m [ES] = [E] [S]- [S] [ES], [ES] (K m + S) = [E] [S],[ES] = [E] [S] / K m+[S],5.代入①式:v = k3 [ES] = k3 [E] [S] / K m + [S] … ②6.引入V max:为所有酶都被底物饱和时的反应速率,即此时[E]= [ES]V max = k3 [ES] = k3 [E]代入②式:v = V max [S] / K m + [S]米氏方程表示K m及V max已知时,v~[S]的定量关系。
第9章 酶促反应动力学

阶段,S的浓度可认为不变即 [S]=[St]。 k
4
ES 这步反应
E+S
ES
E+P
(二)酶促反应的动力学方程式 1、米氏方程的推导
1913年Michaelis和Menten提出反应速度与底 物浓度关系的数学方程式,即米-曼氏方程 式,简称米氏方程。
V ── K + [S]
Vmax=v+
v Km [S]
-3Km-2Km-Km
[S]
(三)多底物的酶促反应动力学
1.酶促反应按底物分子数分类: 分为单底物、双底物和三底物反应
2.多底物反应按动力学机制分类:
(1)序列反应或单-置换反应
①有序反应(ordered reactions)
领先底物
释放
释放
A和Q竞争地与自由酶结合
32.0
②可以判断酶的专一性和天然底物
Km值最小的底物——最适底物/天然底物 1/Km近似表示酶对底物的亲和力: 1/Km越大、亲和力越大
k2>>k3时
Km=
k2 + k3 k1
Km≈k2(分离能力)/k1(亲合能力)
E+S k1 ES k3 P+E
k2
Km越小,亲和力越强。
[S]很小时,反应速度就能达到很大。 性能优,代谢中这类酶更为重要
不可逆抑制剂又可分为非专一性不可逆抑制 剂(作用于一/几类基团)和专一性不可逆抑制剂 (作用于某一种酶的活性部位基团) (1) 非专一性不可逆抑制剂 ①重金属离子 Ag+ 、 Cu2+ 、 Hg2+ 、 Pb2+ 、 Fe3+ 高浓度时可使酶蛋白变性失活; 低浓度时对酶活性产生抑制。 ——通过加入EDTA解除
第9章 酶促反应动力学

Байду номын сангаас
思考与练习 1. 1/v对1/[S]的双倒数作图得到的直线斜率为1.2×103min,在1/v轴上的截距为2.0×10-2ml.min/ n mol。 计算Vmax和Km。 2. 一个二肽酶对二肽Ala-Gly和二肽Leu-Gly的Km分别为 2.8×10-4和3.5×10-2,哪一个二肽是酶的最适底物? 该酶的两个非竞争性抑制剂的Ki值分别为5.7×10-2 和2.6×10-4。哪一个是最强的抑制剂? 3. 根据米式方程求(a)Kcat为30s-1,Km为0.005M的酶, 在底物浓度为多少时,酶促反应的速度为1/4 Vmax? (b)底物浓度为1/2Km,2 Km和10 Km时,酶促反应 的速率分别相当于多少Vmax?
5.红细胞中的碳酸酐酶(相对分子质量为30 000)具有很 高的转换数。它催化C02的可逆水合反应: 此反应对CO2从组织运往肺部很重要。如果l0μ g的纯 碳酸酐酶在37℃下lmin内,以最大速度可催化0.3g CO2的水合反应,那么碳酸酐酶的转换数(Kcat)是多少
6. 酶溶液加热时,随着时间的推移,酶的催化活性逐 渐丧失。这是由于加热导致天然酶的构象去折叠。己糖 激酶溶液维持在45℃12分钟后,活性丧失百分之五十。 但是若己糖激酶与大量的底物葡萄糖共同维持在 45℃12分钟,则活性丧失仅为3%。请解释,为什么在 有底物存在下,己糖激酶的热变性会受到抑制? 7.新掰下的玉米的甜味是由于玉米粒中的糖浓度高。可 是掰下的玉米贮存几天后就不那么甜了,因为50%糖已 经转化为淀粉了。如果将新鲜玉米去掉外皮后浸入沸水 几分钟,然后于冷水中冷却,储存在冰箱中可保持其甜 味。这是什么道理?
4.枯草杆菌蛋白酶(相对分子质量27 600)是一种能催化 某些氨基酸酯和酰胺水解的细菌蛋白酶。对于合成的底 物N—乙酰—L—酪氨酸乙酯(Ac-Tyr-OEt),枯草杆菌蛋 白酶的Km和kcat分别为0.15mol/L和550 s-1。 (a) 当 枯 草 杆 菌 蛋 白 酶 的 浓 度 是 0 .40 g/L时 , AcTyr—OEt水解的Vmax是多少? (b)吲哚是枯草杆菌蛋白酶的竞争性抑制剂,抑制剂常 数Ki为0.05mol/L。当吲哚为6.25mmol/L时,计 算 Ac—Tyr-OEt 被 0 . 4 0 g/L 枯 草 杆 菌 蛋 白 酶 水 解 的 Vmax。 (c)计算0.40g/L枯草杆菌蛋白酶与0.25mol/L Ac— Tyr-OEt和1.0mol/L吲哚共同存在时的V。
第九章 酶促反应动力学

第九章酶促反应动力学(一)底物浓度对酶反应速率的影响用反应初速度v对底物浓度[S]作图得P355 图9-6。
曲线分以下几段:(1)OA段:反应底物浓度较低时v与[S]成正比,表现为一级反应, v = k[S]。
根据酶底物中间络合物学说,酶催化反应时,首先和底物结合生成中间复合物ES,然后再生成产物P,并释放出E。
E + S = ES →P + EOA段上,底物浓度小,酶未被底物饱和,有剩余酶,反应速率取决于ES浓度,与[S]呈线性关系,v正比于[S]。
(2)AB段:反应速度不再按正比升高,表现为混合级反应。
此时酶渐渐为底物饱和,[E S]慢慢增加,v也慢慢增加,为分数级反应。
(3)BC段:反应速度趋于V max,为零级反应,酶促反应表现出饱和现象。
此时底物过量[S]>[E],[E]已全部转为[E S]而恒定,因此反应速率也恒定,为最大反应速率,V max为[E]所决定。
非催化反应无此饱和现象。
酶与底物形成中间复合物已得到实验证实。
(二)酶促反应力学方程式(1)米氏方程推导1913年Michaelis和Menten提出并推导出表示[S]与v之间定量关系的米氏方程V max[S]V =K m + [S]Km:米氏常数,物理意义为反应速率为最大速率V max一半时底物的浓度,单位与底物浓度同。
推导:酶促反应分两步进行。
k1k3E + S ES →P + Ek2v = k3 [ES]一般k3为限速步骤v = k3 [ES] …①1.[ES] 生成速率:d[ES]/dt = k1([E] - [ES]) [S]2.[E S]分解速率:-d[ES] / dt = k2 [ES] + k3 [ES] = (k2 + k3) [ES]3.稳态下[ES]不变,ES生成速率和分解速率相等:k1 ([E]- [ES]) [S] = (k2+k3) [ES]4.引入K m:令K m = k2+k3 / k1代入K m = ([E]- [ES]) [S] / [ES] ,K m [ES] = [E] [S]- [S] [ES], [ES] (K m + S) = [E] [S],[ES] = [E] [S] / K m+[S],5.代入①式:v = k3 [ES] = k3 [E] [S] / K m + [S] …②6.引入V max:为所有酶都被底物饱和时的反应速率,即此时[E]= [ES]V max = k3 [ES] = k3 [E]代入②式:v = V max [S] / K m + [S]米氏方程表示K m及V max已知时,v~[S]的定量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非正比 不再增加速率
底物对酶促反应的饱和现象
证据:EM和X-ray diffraction observation, 如DNA polymerase I; 荧光光谱的变化p356; 物理性质如溶解度在形成 复合物后产生变化;分 离得到胰凝乳蛋白酶和底 物复合物的结晶;透析 和超速离心证据
第一节 概念 一、反应速率:单位时间内反应物或生成 物的浓度变化,通常用瞬时速率表示反应 速率。 V=-dc/dt,负号表示反应物浓度的减小; 或v=+dc/dt 二、反应分子数:是在反应中真正相互作 用的分子数目。一般为单分子反应,2分 子反应,3分子少见,大于3分子未发现。
元素衰变,分子重排,异构体互变是单分子反应, 符合:v=dc/dt=kc,其中c为mol/l,k是比例常数,谓 之反应速率常数。单位:s-1
酶促反应速度受各种因素影响:底物浓度、酶浓 度、温度、pH值、激活剂、抑制剂等。 酶促反应动力学是研究酶促反应的速度以及影响 酶反应速度的各种因素的科学。 The study of enzyme kinetics addresses the biological roles of enzymatic catalysts and how they accomplish their remarkable feats3)根据Km=(k2 + k3)/k1,若k3<<k2时,Km=Ks,则 ES分解即为反应的限速步骤,此时,Km值表示酶与 底物之间的亲和程度:成反比关系,Km值大表示亲 和程度小,酶的催化活性低; Km值小表示亲和程度 大,酶的催化活性高。 4)如果已知Km,可以计算某一底物浓度下,反应 速率相当于Vmax的百分率,生产上,底物浓度太小, 不经济,太大浪费底物。当v=Vmax时,反应速率与 [E0]成正比,如果某一酶Km已知,则任何底物下, 酶被底物饱和百分数为: fES=v/Vmax=[S]/(Km+[S])
显然kcat/Km是E 和S反应 形成产物的二级速率常数。
3. Km和Vmax的求法,米氏方程的作图:基本原则: 将米氏方程变化成相当于y=ax+b的直线方程,再用作 图法求出Km。
By rearrangements of the M-M eq, the hyperbolic Curve can be transformed into a straight-line equation. These transformation include (1) the Lineweaver-Burk double-reciprocal plot, the best know transformation
5)根据Km大小,可以判断某一代谢途径的方向和途 径。GDH之NAD+ Km=2.5x10-5;NADH为1.8x10-5 对于一系列反应来说,Km大小可以判断反应的限速 步骤。 6)可用于判断反应级数:当[S]<0.01Km时,反应为一 级反应; 当[S]>100Km时,ν=Vmax,反应为零级反应; 当0.01Km<[S]<100Km时,为混合级反应。 Vmax的意义:同一种酶,但底物不同,则Vmax也不 同,并且受pH,温度,离子强度的影响。
二、酶促反应动力学方程式
1913年,德国化学家Michaelis和Menten根据中间产物 学说对酶促反应的动力学进行研究, 推导出了表示整个反应中底物 浓度和反应速度关系的著名公 式,称为米氏方程。
V=
Vmax [S] Km + [S]
1925, Briggs and Haldane修正: •根据中间产物学说,酶促反应分两 步进行:
双分子反应很多,符合v=dc/dt=kc1c2, c1,c2分别 代表两种反应物的浓度。即与A、B成正比
三、反应级数:根据整个化学反应的速率服从哪 种分子反应速率方程式,则这个反应即为几级反 应。 如果反应速率能用单分子反应的速率方程式表示, 该反应即为一级反应;反应速率与反应物浓度无 关的反应谓之零级反应。 凡是反应速率能用双分子速率方程描述,则为二
一级反应半衰期与初始浓度无关, 与速率常数成反比。
二级反应:反应物浓度二次方或两个反应物浓度
乘积成正比的反应。最常见的反应。
二级反应半衰期与初始浓度成反比,即初始浓 度越大则半衰期越短,这是二级反应的重要特 征。 零级反应速率与初始浓度无关,半衰期与初始 浓度成正比,即初始浓度越高,则半衰期越长。
级反应。
但还需要区别对待,如蔗糖水 解: 蔗糖 + H2O 葡萄糖 + 果糖,由于稀溶液水比蔗糖多 的多,故可以视为一级反应。 故反应速率只决定于蔗糖浓度: v=kcsucrose。 四、各级反应的特征:
一级反应:反应速率只与反应物 浓度一次方成正比的反应。
t 1/2为一般反应物转变为产物所 需要的时间,谓之半衰期
第二节 底物浓度对反应速率的影响 一、中间复合物学说 Henri 1903年蔗糖酶水解实验:酶浓度不变,改 变底物浓度,开始为一级反应,中间为混合级反 应,最后,底物浓度无论如何增加,反应速率不 再增加,为零级反应。 表明酶可以被饱和,形成 中间产物: S+E ES P+E 。 正比关系
当S很大时,Vmax=k3[E],此时,酶被底物饱和, k3表示酶被底物饱和时,每个酶分子转换底物的 分子数,又谓之转换数(TN),又常常被称为催 化常数kcat. kcat数值越大,则酶的催化效率越高。 生理条件下,大多数酶不会被底物所饱和, [S]/Km一般介于0.01-0.1之间,根据 Vmax=k3[ET]=kcat[ET],当[S]<<Km,则有:
总的酶量
当反应速度等于最大速度一半时,即 V = 1/2 Vmax, Km = [S] 上式表示,米氏常 数是反应速度为 最大值的一半时 的底物浓度。单位是mol/L
2. 动力学参数的意义 米氏常数的意义:
1)它是酶的一个重要的特征物理常数,其大小与 酶的性质有关而与酶浓度无关。Km值只是在固定的 底物,一定的温度和pH条件下,一定的缓冲体系中 测定的,不同条件下具有不同的Km值。不同的酶具 有不同Km值,它是酶的一个重要的特征物理常数。 2)Km可以判断酶的专一性和天然底物。一个酶有几 个底物,就由几个Km,其中Km最小的底物为其最适 底物,即天然底物。