向量证明三线共点与三点共线问题培训讲学

合集下载

平面向量的三点共线定理及其应用技巧

平面向量的三点共线定理及其应用技巧

思路探寻在解答平面向量问题时,经常要用到平面向量的运算法则、定理、几何意义、公式等.对于多点在同一直线上的问题,可以利用平面向量的三点共线定理进行求解.如图1,O 为直线外一点,在△OPA 中, AP =OP - OA ,设 OP =λ OA +μ OB ,则AP =λ OA +μ OB - OA =μ OB+(λ-1) OA =m ( OB - OA ),而在△OBA 中, AB = OB -OA ,即 AB =mAP ,所以A 、B 、P 三点共线.在平面中A 、B 、P 三点共线的充要条件是对于平面内任意一点的O ,存在唯一的一对实数x 、y ,使得 OP =x OA +yOB 且x +y =1.这就是平面向量的三点共线定理.该定理常用于判断三点是否共线,证明几个点是否在同一条直线上,求某个向量的表达式,求参数的值等.下面结合实例探讨一下如何运用平面向量三点共线定理解题.例1.已知O 为锐角三角形ABC 的外心,AB =3,AC =6,若 AO =x AB +yAC ,且3x +10y =5,求三角形ABC 的面积.解:由3x +10y =5,得3x 5+2y =1.由题意可得AO =x AB +y AC =3x 5(53 AB )+2y (12AC ),如图2,在直线AB ,AC 上取两点D ,E ,使得 AD =53 AB , AE =12 AC ,则 AO =3x 5 AD +2y AE ,又3x 5+2y =1,所以O ,D ,E 三点共线.因为O 为△ABC 的外心,且|| AE =|| EC ,则DE ⊥AC ,又|| AD =5,||AE =3,可得sin ∠BAC =45,故S △ABC =12×|| AB ×||AC ×sin ∠BAC=12×3×6×45=365.根据向量式的特点以及3x +10y =5联想到要三点共线定理,于是在直线AB 、AC 上取两点D 、E ,证明 AO =3x 5AD +2y AE ,即可根据三点共线定理证明O ,D ,E 三点共线,从而根据三角形外心的性质和面积公式求得问题的答案.例2.如图3所示,在△ABO 中,OC =14 OA , OD =12OB ,AD 与BC 相交于点M .设 OA =a ,OB =b ,试用 a 和 b 来表示向量 OM .解:设 OM =ma +nb ,则 AM = OM - OA =m a +n b - a =(m -1)a +nb ,AD = OD - OA =12 OB - OA =-a +12b ,因为A ,M ,D 三点共线,所以存在实数t ,使得 AM =tAD ,即(m -1)a →+n b →=t (-a →+12b →),所以ìíîïïm -1=-t ,n =t 2,消去t 得m +2n =1,又因为CM = OM - OC =(m -14)a →+n b →, CB = OB - OC =-14a →+b →,且B ,M ,C 三点共线,所以存在实数t 1,使得 CM =t 1CB ,即(m -14)a →+n b →=t 1(-14a →+b →),所以ìíîïïm -14=-14t 1n =t 1,消去t 1得4m +n =1,由上述两式得m =17,n =37,故 OM =17 a +37b .解答本题需抓住A ,M ,D 三点共线和B ,M ,C 三点共线这两个关键点,再将 OA 和OB 作为基底表示出其他向量,利用待定系数法来求参数的值.向量共线定理是平面向量中的一个重要定理.合理运用三点共线定理,往往能起到化繁为简的功效,使问题快速得解.同学们要重视三点共线定理,将其灵活地应用于解题当中.(作者单位:江苏省盐城市龙冈中学)图1图2图348Copyright ©博看网. All Rights Reserved.。

三点共线向量表示及其性质应用

三点共线向量表示及其性质应用

平面内三点共线的向量表示及其性质应用本文给出了三点共线向量表示的证法探究,以启迪思维和拓展思路之目的,另外又给出了三点共线向 量表示在解题中的应用。

,使得 PC= PA+( 1- )PB . 证法探究:分析: 初看欲证目标,始感实难下手。

我们不妨从结论出发探寻线路,欲 证 PC= PA + (1-) PB ,只需证PC = PA + PB - PBPC - PB = ( PA - PB )BC = BA BC // BA .这样证明思路有了。

证法:•••向量 BC 与向量 BA 共线,• BC = BA ,即 PC - PB = ( PA - PB ),PC = PA +PB - PB ,••• PC = PA + (1- ) PB .证毕,再思考一下实数 的几何意义究竟如何。

考察向量等式BC= BA ,结合图形,易知,当点 C在线段AB 上时,则BC 与BA 同向,有0W < 1;当点C 在线段AB 延长线上时,则 BC 与BA 反向, 有 <0;当点C 在线段BA 延长线上时,则 BC 与BA 同向,有 > 1. 此例题逆命题亦成立,即已知A , B , C 是平面内三个点, P 是平面内任意一点, 若存在实数 ,,有PC = PA + PB , 且 +=1,则A , B , C 三点共线.故此逆命题可作三点共线判定方法。

为方便起见,我们将两命题作为性质叙述如下: 性质1:已知A , B , C 是平面内三个点, P 是平面内任意一点,若 A , B , C 三点共线,则存在实数,使得 PC = PA + (1-) PB .或叙述为:已知A , B , C 是平面内三个点, P 是平面内任意一点,若 A , B , C 三点共线,则存在实数,使得 PC = PA + PB ,则有 +=1.性质2 :已知 A , B , C 是平面内三个点, P 是平面内任意一点,若存在实数, ,有PC= PA + PB ,且 + =1,则 A , B , C 三点共线.三点共线性质在解题中的应用:例1 •如图,在 ABC 中,点O 是BC 的中点,过点O 的直线分别交直线 AB 、 的两点M 、N ,若AB = mAM , AC =nAN ,则m n 的值为 ________________________ . 1——.解析:连结AO ,因为点O 是BC 的中点,所以有 AO = 1AB mAM2 2 21 1 因为M 、O 、N 三点共线,所以-m -n 1,故m n2 .221 uuir例题:如图,A ,B ,C 是平面内三个点, P 是平面内任意一点,若点 C 在直线AB 上,则存在实数1=1-=,简便求出m n 的值.例2 (湖北省2011届高三八校第一次联考)如图uuir 2,在厶 ABC 中, AN」NC,点P是BC上3的一点,若uuuAPuuu 2 uur mABAC , 则实数m的值为( )11, 9 B_5 小3 r 2A.— c.— D.—11 111 11uuu解:Q B, P,N 三点共线,又Q APuuumAB 2 UULT AC 11UUU 2 mAB— 11UULT 4AN UUU 8 UULT mAB AN 118 3m 1 m ,故选C 11 11 例3 (广东省2015届高三六校联考) 所示: 点G 是厶OAB 的重心,动点,且P 、G 、Q 三点共线•设 OP xOA , OQ yOB , 证明:Q 因为G 是VOAB 的重心, UUL T OG 1 UUU 2(OAUUU QOP uuu xOA UUU 1 UUU OA OP x UULT QOQ UUU yOB UUL T OG1 UUU 3(OA UULT OB) 1 1 uuu 3(XOP1 UULT -OQ) yUULT OG1 UUU OP 3x Q 分别是边OA 、OB 上的 BUUUOB) UU UOB1 证明:- 1 -是定值; 3?O Q又Q P,G,Q 三点共线, 13x例4.如图,在 ABC 中, OC !OA , 4 OD 2OB , OA a,OB AD 与BC 交于M 点,设(I)用a , b 表示OM ; (n)在已知线段 AC 上取一点 ■ - 4 OF qOB .求证:一 7pE , 37q 在线段BD 上取一点 F ,使EF 过点 解析:(I )因为B 、M 、C 三点共线, 1 — — 1 所以存在实数 m 使得OM = mOC (1 pOA ,M •设 0E m)OB=m OA (1 m)OB=— ma (1 m)b ;又因为 A 、M 、D 三点共线,所以存在实数 4 4 n 使得OM =nOA (11 m n, n)OD = na 1(1 n)b •由于a , b 不共线,所以有 42 1 m 弓(1 n), 解得,47, 1 7•故OM = 7(n)因为 1a 3b 7 E 、M 、F 三点共线,所以存在实数 pa (1)qb •结合(I),易得出 (1 使得OM = OE 1 7,消去、 3 )q 7,(1 )OF得, 7P 2 1 • 7q 点评:本题是以a , b 作为一组基底,其他向量都由它们线性表示•解(I) 中的实数,n 的几何意义为:m=^ = 4 |BC| 7 n =1 DM 1 =1, m , n €( o , 1 );解(n)中的实数 |DA| 7 |FM|FE| 7p例5.如图, AP平行四边形 ABCD 中,点P 在线段AB 上,且 m , Q 在线段ADPB 上,且AQ QD PR n , BQ 与CP 相交于点",求怎的值. QD解析:设PR =RC冲PR ,则= PC 1 • 1,BR =_1BA .BC+( 1-) BP .因为 APm ,所以BP1 ---- BA , m 111PB且 BR= ----BC +-p AQ又•••nAD=n BC , • BQ'BA AQ ,即 BQn BC BA.又••• BRQDn 1n 1n 1与BQ 共线,n 1 =0,解得n1 n 1 (1)(m'(m 1)(n1)'点评:我们先要确定好组基底BA, BC ,看准BR , BQ 如何由它们线性表示;而欲求目标数值, 因 P, R,C三点共线,中途要以 BP,BC 作基底,BR 由它们线性表出时,分析清楚该两基底系数所表示的几何意义,由性质1,得BR =——BC +( 1 -------------- )BP ;最终BR 与BQ 都得转化到由BA, BC 两基底线性表示,1 1此时容易由共线向量性质列出等式,从而求出结果.例6 (汕头市东山中学 2014届高三第二次模拟考试)所示,在平行四边形 ABCD 中,uuu 1 uuu LULT 1 LULTUUU rUUUT r LULTAE-AB , AF — AD ,CE 与 BF 相交于 G 点,记 ABa ,ADb ,贝U AG3 42 r 1 r2 r3 r3 r 1 r4 r orA. -a 丄匕B. -a -bC. -aD. 4a -b77 77 7777'<■分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很 容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共 线定理求解。

向量证明三线共点与三点共线问题

向量证明三线共点与三点共线问题

用向量证明三线共点与三点共线问题山东徐鹏三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,简捷得多.证明A、B、C三点共线,只要证明AB与AC共线即可,即证明AB线共点一般须证两线交点在第三条直线上.图1使得OC OA OB ;反之,也成立.证明:如图1 ,若OA、.OB ;、OC 的终点A、B、C共线,则AB BC BC mAB BC OC OB AB OB OA OC OB m(OB OA) OC mOA (1 m)OB m, 1 m, ,,且1, OC OA OB OC OA OB 1, 1 OC OA (1 )OB OC OB OA OB BC BA BC和BA OA OB OC例2.. -片证明:三角形的三条中线父于点.证明:女口图 2 ,D、E、F分另U是ABC 三边上的中证明:若向量OA、OB、OC的终点A B C共线,则存在实数,且用向量法解决则AC •证明三C占八、、♦设CA a,CB b,AD BE G.设AG AD, BG BE.则AG AB BG (b a) BE (b a) (BC 】CA) b a1 ■ (?a b)2(0a (1 —*■ ■-)b,又AG , AD (AC CD) (a 12b)• 1 Ka b212 1所以 2 解得311 22 3则CG CA AG a 2 AD a2( -V 1- a b) a3 3 2 3 3CF 1 a !b,所以CG 2CF ,所以G在中线CF上,所以三角形三条中线交于一点223。

向量证明三线共点与三点共线问题[技巧]

向量证明三线共点与三点共线问题[技巧]

用向量证明三线共点与三点共线问题山东 徐鹏三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则简捷得多.证明A 、B 、C 三点共线,只要证明AB 与AC 共线即可,即证明AC AB λ=.证明三线共点一般须证两线交点在第三条直线上.例1. 证明:若向量OA 、OB 、OC 的终点A 、B 、C 共线,则存在实数λ、μ,且1=+μλ,使得OB OA OC μλ+=;反之,也成立.证明:如图1,若OA 、OB 、OC 的终点A 、B 、C 共线,则AB //BC ,故存在实数m,使得AB m BC =,又OB OC BC -=,OA OB AB -=,故)(OA OB m OB OC -=-,OB m OA m OC )1(++-=.令,1,m m +=-=μλ则存在,1,,=+μλμλ且使得OB OA OC μλ+=.若OB OA OC μλ+=,其中,1=+μλ则λμ-=1,OB OA OC )1(λλ-+=.从而有OC -OB =λ(OA -OB ),即BA BC λ=.又因为BA BC 和有公共点B,所以A 、B 、C 三点共线,即向量OA 、OB 、OC 的终点A 、B 、C 共线.例2. 证明:三角形的三条中线交于一点.证明:如图2,D 、E 、F分别是A B C ∆三边上的中AOBC图1点.设BE BG AD AG G BE AD b CB a CA μ===⋂==,,,.设.则=-+-=++-=+-=+=)21()21()()(b a a b CA BC a b BE a b BG AB AG μμμb a )1(1(21μμ-+-),又b a b a CD AC AD AG λλλλλ21)21()(+-=+-=+==⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-=-3232121121μλμλμλ解得所以则b a b a a AD a AG CA CG 3131)21(3232+=+-+=+=+= b a CF 2121+=,所以CF CG 32=,所以G 在中线CF 上,所以三角形三条中线交于一点.ABCEDF 图2G。

共线向量基本定理三点共线

共线向量基本定理三点共线

共线向量基本定理三点共线
三点共线定理:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。

共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。

证明过程:
AC=OC-OA=λOA+μOB-OA=μOB+(λ-1)OA=μ(OB-OA)。

而AB=OB-OA,即AB=μAC,故A、B、C三点共线。

共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上。

所以称为共线向量。

共线向量基本定理为如果a≠0,那么向量b 与a共线的充要条件是:存在唯一实数λ,使得b=λa。

证明三点共线的向量定理

证明三点共线的向量定理

证明三点共线的向量定理证明三点共线的向量定理1. 引言在几何学中,共线是指多个点在同一条直线上。

证明三点共线的向量定理是一种常用的方法,它利用向量的性质来判断三个点是否在同一条直线上。

本文将深入探讨这个定理,通过提供详细的解释和举例,帮助您全面了解这一概念。

2. 向量的基本概念在开始证明之前,我们先了解一些基本的向量概念。

向量是有大小和方向的量,通常用箭头来表示。

向量可以表示为有序数对 (a, b),其中a 和 b 分别表示向量在水平和垂直方向上的分量。

在这里,我们使用巴斯克定理,这是一个三角学中的基本定理,通过它我们可以找到一个向量的模长和方向。

3. 证明三点共线的向量定理现在我们来证明三个点是否共线的向量定理。

假设有三个点A(x1, y1)、B(x2, y2) 和 C(x3, y3)。

根据向量的定义,我们可以将向量 AB 表示为向量 a = (x2 - x1, y2 - y1),向量 BC 表示为向量 b = (x3 - x2, y3 -y2)。

如果这两个向量是平行的,那么向量 a 和向量 b 的比例关系为 a= k * b,其中 k 是一个常数。

这意味着点 A、B 和 C 共线。

为了证明这一点,我们可以计算向量 a 和向量 b 的比值,如果比值等于常数 k,那么三个点就共线。

具体计算如下:a = (x2 - x1, y2 - y1)b = (x3 - x2, y3 - y2)k = a / b = (x2 - x1) / (x3 - x2) = (y2 - y1) / (y3 - y2)如果比值 k 等于常数,那么三个点 A、B 和 C 就共线。

4. 举例说明为了更好地理解上述证明过程,我们举个例子来计算三个点是否共线。

假设有三个点 A(1, 2)、B(3, 4) 和 C(5, 6)。

我们可以计算向量 a 和向量 b 的比值:a = (3 - 1, 4 - 2) = (2, 2)b = (5 - 3, 6 - 4) = (2, 2)k = a / b = (2 - 1) / (2 - 1) = 1由于比值 k 等于常数 1,所以点 A、B 和 C 是共线的。

平面向量三点共线定理证明

平面向量三点共线定理证明

平面向量三点共线定理证明平面向量三点共线定理是指,在平面上,若给定三个向量 a、b 和 c,如果存在实数 k 和 l,使得 a = kb + lc,则称向量 a、b 和 c 共线。

换句话说,如果存在两个实数 k 和 l,使得 a 是向量 b 和向量 c 的线性组合,那么这三个向量是共线的。

为了证明这一定理,我们可以使用向量的坐标表示以及向量共线的性质。

假设给定三个向量a=(x1,y1)、b=(x2,y2)和c=(x3,y3)。

我们知道,两个向量共线是指它们的方向相同或相反。

因此,我们先证明如果a和b共线,且a和c共线,那么a、b和c三个向量共线。

首先,假设a和b共线,即存在实数k1和l1,使得a=k1b+l1c。

同样地,假设a和c共线,即存在实数k2和l2,使得a=k2b+l2c。

然后,我们将这两个等式相减,得到:a-a=(k1b+l1c)-(k2b+l2c)0=(k1-k2)b+(l1-l2)c根据向量等式的传递性,上述等式成立当且仅当系数相等,即:k1-k2=0且l1-l2=0这意味着k1=k2且l1=l2将这些相等的系数代回前面的等式中,我们得到:a=k1b+l1c因此,我们证明了a、b和c三个向量共线。

接下来,我们证明反过来也成立:如果a、b和c三个向量共线,那么a和b共线,且a和c共线。

假设 a、b 和 c 三个向量共线,即存在实数 k 和 l,使得 a = kb+ lc。

我们可以将b和c表示为a和c的线性组合:b=(1/k)a-(l/k)c然后,我们可以看到:a = k((1/k)a - (l/k)c) + lc将a替换为b和c的线性组合:a = a - lc + lc上述等式成立。

因此,我们证明了反过来的结论:如果a、b和c三个向量共线,那么a和b共线,且a和c共线。

综上所述,我们证明了平面向量三点共线定理的两个方向。

最后,值得注意的是,我们假设了a、b和c三个向量不同于零向量。

这是因为零向量与任何向量都共线,而我们关注的是非零向量的共线性。

向量的三点共线定理

向量的三点共线定理

向量的三点共线定理一、概念向量的三点共线定理,又称之为向量的共线定理,是向量理论中的一个基本定理。

它描述了在三维空间中,如果三个点A、B、C由向量OA、OB、OC表示,并且存在实数λ和μ,使得OC = λOA + μOB,且λ+ μ= 1,则这三个点A、B、C是共线的。

二、定义定义1:共线向量,也称为平行向量,是指方向相同或相反的非零向量。

在平面或空间中,如果两个向量有相同的方向或相反的方向,则这两个向量被称为共线向量。

定义2:如果三个点A、B、C满足OC = λOA + μOB,其中λ和μ是实数,并且λ+ μ= 1,则称这三个点A、B、C是共线的。

三、性质性质1:若三点A、B、C共线,则它们的位置向量之间存在线性关系,即OC = λOA + μOB,且λ+ μ= 1。

性质2:若向量a与向量b共线,则存在唯一实数k,使得a = kb。

特别地,当k = 1时,a与b方向相同;当k = -1时,a与b方向相反。

性质3:共线向量的模长之比等于它们对应分量之比,即若a = kb,则|a|/|b| = |k|。

四、特点特点1:向量的三点共线定理是向量线性组合的一个特殊情况,它揭示了向量之间的线性关系与点的几何位置之间的关系。

特点2:该定理提供了一种通过向量运算判断三点是否共线的方法,为向量在空间中的应用提供了便利。

特点3:向量的三点共线定理与平面几何中的三点共线定理具有类似的性质,但向量的表达方式更具一般性,可以推广到三维空间乃至更高维的向量空间。

五、规律规律1:如果三点A、B、C共线,那么它们的位置向量OA、OB、OC之间存在唯一的线性关系,使得OC = λOA + μOB,且λ+ μ= 1。

这个线性关系中的λ和μ是唯一的,除非A、B、C三点重合。

规律2:在三维空间中,如果三个向量a、b、c满足a = λb + μc,且λ+ μ= 1,则这三个向量是共面的。

特别地,当这三个向量是三个点的位置向量时,这三个点共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量证明三线共点与三点共线问题
用向量证明三线共点与三点共线问题
山东 徐鹏
三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则简捷得多.
证明A 、B 、C 三点共线,只要证明AB 与AC 共线即可,即证明
AC AB λ=.证明三线共点一般须证两线交点在第三条直线上.
例1. 证明:若向量OA 、OB 、OC 的终点A 、B 、C 共线,则存在实数λ、
μ,且1=+μλ,使得OB OA OC μλ+=;反之,也成
立.
证明:如图1,若OA 、OB 、OC 的终点A 、B 、C 共线,则AB //BC ,故存在实数m,使得AB m BC =,又OB OC BC -=,OA OB AB -=,故
)(OA OB m OB OC -=-,OB m OA m OC )1(++-=.令,1,m m +=-=μλ则存在,1,,=+μλμλ且使得OB OA OC μλ+=. 若OB OA OC μλ+=,其中,1=+μλ则λμ-=1,OB OA OC )1(λλ-+=.从而有OC -OB =λ(OA -OB ),即BA BC λ=.又因为BA BC 和有公共点B,所以
A 、
B 、
C 三点共线,即向量OA 、OB 、OC 的终点A 、B 、C 共线.
例2. 证明:三角形的三条中线交于一点.
A
O
B
C
图1
证明:如图2,D 、E 、F 分别是ABC ∆三边上的中
点. 设BE BG AD AG G BE AD b CB a CA μ===⋂==,,,.设.则
=-+-=++-=+-=+=)2
1()21()()(b a a b CA BC a b BE a b BG AB AG μμμ b a )1(1(21μμ-+-),又b a b a CD AC AD AG λλλλλ2
1)21()(+-=+-=+== ⎪⎪⎩
⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-=-3232121121μλμλμλ解得所以 则b a b a a AD a AG CA CG 3
131)21(3232+=+-+=+=+= b a CF 2121+=,所以CF CG 3
2=,所以G 在中线CF 上,所以三角形三条中线交于一点.
A
B C
E
D
F 图G。

相关文档
最新文档