应用Matlab对含噪声语音信号进行频谱分析及滤波

合集下载

使用MATLAB进行信号处理与滤波

使用MATLAB进行信号处理与滤波

使用MATLAB进行信号处理与滤波信号处理与滤波是数字信号处理领域中的重要技术,而MATLAB是一种广泛应用于信号处理的工具。

本文将介绍如何使用MATLAB进行信号处理与滤波,包括信号采样、信号重构、频谱分析以及常用的滤波器设计和应用。

首先,我们先了解一下信号处理的基本概念。

信号处理是对信号进行采样、重构、滤波、增强、压缩等操作的过程。

信号可以是连续的或离散的,常常通过采样将连续信号转换为离散信号进行处理。

在MATLAB中,可以使用`plot`函数来绘制信号的波形图。

假设有一个正弦信号,我们可以通过以下代码绘制其波形图:```matlabfs = 1000; % 采样率为1000Hzt = 0:1/fs:1; % 时间向量,从0到1sf = 10; % 正弦信号的频率为10Hzx = sin(2*pi*f*t); % 构造正弦信号plot(t, x); % 绘制波形图xlabel('Time (s)'); % x轴标签ylabel('Amplitude'); % y轴标签title('Sinusoidal Signal'); % 图片标题```这段代码中,首先定义了采样率`fs`、时间向量`t`和信号频率`f`,然后使用`sin`函数构造了正弦信号`x`,最后通过`plot`函数绘制出信号的波形图。

在进行信号处理时,经常需要进行频谱分析来研究信号的频率特性。

MATLAB 提供了多种函数来计算信号的频谱,其中最常用的是`fft`函数。

以下代码演示了如何计算信号的频谱,并绘制频谱图:```matlabFs = 1000; % 采样率为1000HzT = 1/Fs; % 采样间隔L = 1000; % 信号长度为1000t = (0:L-1)*T; % 时间向量x = sin(2*pi*50*t) + 0.5*sin(2*pi*120*t); % 构造含有两个频率成分的信号Y = fft(x); % 对信号进行傅里叶变换P2 = abs(Y/L); % 计算双边频谱P1 = P2(1:L/2+1); % 取单边频谱P1(2:end-1) = 2*P1(2:end-1); % 幅度归一化f = Fs*(0:(L/2))/L; % 频率向量plot(f,P1); % 绘制频谱图title('Single-Sided Amplitude Spectrum of x(t)'); % 图片标题xlabel('Frequency (Hz)'); % x轴标签ylabel('Amplitude'); % y轴标签```这段代码中,首先定义了采样率`Fs`、采样间隔`T`、信号长度`L`和时间向量`t`,然后使用两个正弦信号相加的方式构造了含有两个频率成分的信号`x`,接着使用`fft`函数对信号进行傅里叶变换得到频谱`Y`,最后根据频谱进行幅度归一化并绘制频谱图。

基于Matlab的信号分析与数字滤波器设计

基于Matlab的信号分析与数字滤波器设计

基于Matlab的信号分析与数字滤波器设计作者:赵子曦来源:《电脑知识与技术》2021年第29期摘要:对于信号的时域分析只能获取部分信息,因此在频域作出信号频谱以辅助分析显得十分重要。

在进行频谱分析后,会发现信号包含复杂噪声,因此使用软件设计滤波器去噪。

在Matlab的基础上,本文首先采用经典的傅里叶变换对各类信号进行频谱分析,然后用窗函数法设计FIR数字滤波器。

在声音信号上的实验证明,本文设计的FIR数字滤波器可以有效压制噪声,提取良好声音信号。

关键词:信号频谱分析; Matlab;滤波器;信号去噪中图分类号:TP311 文献标识码:A文章编号:1009-3044(2021)29-0114-02进入21世纪以来,计算机技术飞速发展,大数据、物联网、人工智能(AI:Artificial Intelligence)成为学界、工业界的研究热点,随之对信号分析技术提出了更高的要求,也带来了新的机遇。

在摩尔定律的基础上,计算机有限的算力在复杂数据的处理上显得吃力,而现代数据处理又十分追求更高的效率、更快的速度和更准确的结果。

Matlab是工程领域应用广泛的一款成熟软件,它拥有强大的矩阵运算能力和科学数据处理能力,可以处理十分微小的电路信号,因此使用Matlab进行信号分析与处理、数字滤波器设计等对于电路分析、小信号分析、波形重整具有十分重要的意义。

1信号频域分析1.1离散傅里叶变换与窗函数实际上,计算机存储的所有数据都是离散的,它们需要运用时域和频域都是离散的离散傅里叶变换(Discrete Fourier Transform,DFT)进行处理。

TD(Time-Domain)连续信号经采样后,通过快速傅里叶变换成为FD(Frequency-Domain)采样。

通过数学表达式绘图,不难看出输入DFT进行变换的时域信号和变换后输出的频域信号均为有限长序列,即主值序列。

在实际应用中常采用快速傅里叶变换计算DFT:连续周期、连续非周期、离散周期、离散非周期信号的频谱与 DFT之间的关系:时域上的信号是非周期的,则频域上的信号是连续的;时域上的信号是周期的,则频域上的信号是离散的;反之亦然。

matlab对语音信号的频谱分析及滤波资料

matlab对语音信号的频谱分析及滤波资料

一.综合实验题目应用MatLab对语音信号进行频谱分析及滤波二.主要内容录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;课程设计应完成的工作:1、语音信号的采集;2、语音信号的频谱分析;3、数字滤波器的设计;4、对语音信号进行滤波处理;5、对滤波前后的语音信号频谱进行对比分析;三.具体要求1、学生能够根据设计内容积极主动查找相关资料;2、滤波器的性能指标可以根据实际情况作调整;3、对设计结果进行独立思考和分析;4、设计完成后,要提交相关的文档;1)课程设计报告书(纸质和电子版各一份,具体格式参照学校课程设计管理规定),报告内容要涵盖设计题目、设计任务、详细的设计过程、原理说明、频谱图的分析、调试总结、心得体会、参考文献(在报告中参考文献要做标注,不少于5篇)。

2)可运行的源程序代码(电子版)四.进度安排在基本要求的基础上,学生可根据个人对该课程设计的理解,添加一些新的内容。

五.成绩评定(1)平时成绩:无故旷课一次,平时成绩减半;无故旷课两次平时成绩为0分,无故旷课三次总成绩为0分。

迟到15分钟按旷课处理(2)设计成绩:按照实际的设计过程及最终的实现结果给出相应的成绩。

(3)设计报告成绩:按照提交报告的质量给出相应的成绩。

课程设计成绩=平时成绩(30%)+设计成绩(30%)+设计报告成绩(40%)目录第一节实验任务 (3)第二节实验原理 (3)2.1 采样频率、位数及采样定理 (3)2.2 时域信号的FFT分析 (4)2.3 IIR数字滤波器设计原理 (4)2.4 FIR数字滤波器设计原理 (4)第三节实验过程 (5)3.1原始语音信号采样后的时域、频域分析 (5)3.2采样后信号的FFT变换分析 (7)3.3双线性变换法设计IIR数字滤波器 (8)3.4窗函数法设计FIR数字滤波器 (11)第四节心得体会 (14)第五节参考文献 (15)应用MatLab对语音信号进行频谱分析及滤波第一节实验任务录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号。

MATLAB对语音信号加随机噪声及去噪程序

MATLAB对语音信号加随机噪声及去噪程序
title('滤波后信号频谱');
subplot(2,2,3);plot(y_z);
title('滤波前信号的波形')
subplot(2,2,4);plot(x);
title('滤波后信号的波形')
%sound(x,fs,bits)%回放滤波后的音频
设计滤波器:
器常用的方法有:脉冲响应不变法和双线性变换法。
xlabel('时间轴')
ylabel('幅值A')
subplot(2,1,2);
plot(f,abs(y_zp(1:n/2)));%加噪语音信号的频谱图
title('加噪语音信号频谱图');
xlabel('频率Hz');
ylabel('频率幅值');
对加噪的语音信号进行去噪程序如下:
fp=1500;fc=1700;As=100;Ap=1;
%sound(y_z,fs)
%对加噪后的语音信号进行分析
n=length(y);%选取变换的点数
y_zp=fft(y_z,n);%对n点进行傅里叶变换到频域
f=fs*(0:n/2-1)/n;%对应点的频率
figure(2)
subplot(2,1,1);
plot(y_z);%加噪语音信号的时域波形图
title('加噪语音信号时域波形');
figure(3);
freqz(b,1);
(此前为低通滤波器设计阶段)——接下来为去除噪声信号的程序——
x=fftfilt(b,y_z);
X=fft(x,n);
figure(4);

如何使用Matlab进行信号处理和滤波

如何使用Matlab进行信号处理和滤波

如何使用Matlab进行信号处理和滤波信号处理和滤波在工程领域中扮演着重要的角色,它们可以帮助我们从一系列的数据中提取有用的信息,并消除噪声。

Matlab作为一种强大的工具,提供了丰富的函数和工具箱,可以方便地进行信号处理和滤波。

本文将介绍如何使用Matlab进行信号处理和滤波的基本方法,并使用实例进行演示。

一、Matlab的信号处理工具箱Matlab的信号处理工具箱是一个强大的工具集,它包含了许多用于处理各种类型信号的函数和算法。

通过引入信号处理工具箱,我们可以方便地处理音频、图像和视频信号,并进行频域分析、滤波和解调等操作。

在Matlab中,可以使用命令"toolbox"来查看已安装的工具箱,对于信号处理,我们需要确保已经安装了"Signal Processing Toolbox"。

如果没有安装,可以通过访问Matlab官方网站下载并安装。

二、信号处理的基本操作1. 读取和显示信号在进行信号处理之前,首先需要将信号加载进Matlab中。

可以使用函数"audioread"来读取音频信号,例如读取一个.wav格式的音频文件:```[x,Fs] = audioread('audio.wav');```其中,x是音频信号的数据,Fs是信号的采样率。

读取完成后,可以使用函数"soundsc"来播放信号,并使用函数"plot"来绘制信号的波形图:```soundsc(x,Fs);plot(x);```2. 频谱分析频谱分析可以帮助我们了解信号的频率特性。

在Matlab中,可以使用函数"fft"进行快速傅里叶变换(FFT),将信号从时域转换到频域。

例如,对于上文中读取的音频信号x,可以使用以下代码计算其频谱:```X = fft(x);```频谱的结果是一个复数向量,表示信号在不同频率上的幅值和相位。

应用Matlab对含噪声语音信号进行频谱分析及滤波

应用Matlab对含噪声语音信号进行频谱分析及滤波

应用Matlab对含噪声的语音信号进行频谱分析及滤波
一、实验内容
录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。

二、实现步骤
1.语音信号的采集
利用Windows下的录音机,录制一段自己的话音,时间在1 s内。

然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,(可用默认的采样频率或者自己设定采样频率)。

2.语音信号的频谱分析
要求首先画出语音信号的时域波形;然后对语音号进行快速傅里叶变换,得到信号的频谱特性。

在采集得到的语音信号中加入正弦噪声信号,然后对加入噪声信号后的语音号进行快速傅里叶变换,得到信号的频谱特性。

并利用sound试听前后语音信号的不同。

分别设计IIR和FIR滤波器,对加入噪声信号的语音信号进行去噪,画出并分析去噪后的语音信号的频谱,并进行前后试听对比。

3.数字滤波器设计
给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz(可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。

matlab fft谱分析实验报告

matlab fft谱分析实验报告

matlab fft谱分析实验报告Matlab FFT谱分析实验报告引言谱分析是一种常用的信号处理技术,用于研究信号的频率成分和能量分布。

傅里叶变换是一种常见的谱分析方法,而Matlab中的FFT函数则是实现傅里叶变换的强大工具。

本实验旨在通过使用Matlab中的FFT函数对不同类型的信号进行谱分析,探索其在实际应用中的作用和价值。

实验方法1. 生成信号首先,我们使用Matlab中的函数生成几种不同类型的信号,包括正弦信号、方波信号和噪声信号。

通过调整信号的频率、幅度和噪声水平,我们可以模拟不同的实际场景。

2. 调用FFT函数接下来,我们使用Matlab中的FFT函数对生成的信号进行频谱分析。

FFT函数将信号从时域转换到频域,提供了信号在不同频率上的能量分布情况。

3. 绘制频谱图通过调用Matlab中的绘图函数,我们可以将FFT函数输出的频谱数据可视化为频谱图。

频谱图通常以频率为横轴,能量或幅度为纵轴,展示了信号在不同频率上的能量分布情况。

实验结果1. 正弦信号的频谱分析我们首先对一个频率为50Hz、幅度为1的正弦信号进行频谱分析。

结果显示,该信号在50Hz附近有一个明显的峰值,表示信号主要由50Hz频率成分组成。

2. 方波信号的频谱分析接下来,我们对一个频率为10Hz、幅度为1的方波信号进行频谱分析。

由于方波信号包含丰富的谐波成分,频谱图中出现了多个峰值,每个峰值对应一个谐波成分。

3. 噪声信号的频谱分析最后,我们对一个包含高斯噪声的信号进行频谱分析。

噪声信号的频谱图呈现出平坦的能量分布,没有明显的峰值。

这说明噪声信号在各个频率上都有一定的能量分布,没有明显的频率成分。

讨论与分析通过对不同类型信号的频谱分析,我们可以得出以下结论:1. 正弦信号的频谱图呈现出一个明显的峰值,表示信号主要由该频率成分组成。

这对于识别和分析周期性信号非常有用。

2. 方波信号的频谱图呈现出多个峰值,每个峰值对应一个谐波成分。

应用MATLAB对信号进行频谱分析及滤波

应用MATLAB对信号进行频谱分析及滤波

应用MATLAB对信号进行频谱分析及滤波频谱分析和滤波是信号处理中常用的技术,可以帮助我们了解信号的频率特性并对信号进行去噪或增强。

MATLAB是一个强大的数学计算和工程仿真软件,提供了各种工具和函数用于频谱分析和滤波。

频谱分析是通过将信号在频域上进行分解来研究信号的频率特性。

MATLAB提供了几种进行频谱分析的函数,包括FFT(快速傅里叶变换)、periodogram和spectrogram等。

下面将以FFT为例,介绍如何使用MATLAB进行频谱分析。

首先,我们需要先生成一个信号用于频谱分析。

可以使用MATLAB提供的随机信号生成函数来生成一个特定频率和幅度的信号。

例如,可以使用以下代码生成一个包含两个频率成分的信号:```MATLABFs=1000;%采样率t=0:1/Fs:1;%时间向量,从0秒到1秒,采样率为Fsf1=10;%第一个频率成分f2=50;%第二个频率成分A1=1;%第一个频率成分的幅度A2=0.5;%第二个频率成分的幅度x = A1*sin(2*pi*f1*t) + A2*sin(2*pi*f2*t);```上述代码生成了一个采样率为1000Hz的信号,包含10Hz和50Hz两个频率的成分。

接下来,我们可以使用MATLAB的FFT函数对信号进行频谱分析,并将频谱绘制出来。

FFT函数将信号从时域转换到频域,并返回频谱幅度和频率信息。

以下是使用FFT函数对上述生成的信号进行频谱分析的代码:```MATLABN = length(x); % 信号长度X = abs(fft(x))/N; % 计算FFTf=(0:N-1)*(Fs/N);%计算频率坐标plot(f,X)xlabel('频率(Hz)')ylabel('幅度')title('信号频谱')```上述代码中,我们首先计算FFT并将结果除以信号长度,以得到正确的幅度值。

然后,我们计算频率坐标,并将频谱幅度与频率绘制出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用Matlab对含噪声的语音信号进行频谱分析及滤波
一、实验内容
录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。

二、实现步骤
1.语音信号的采集
利用Windows下的录音机,录制一段自己的话音,时间在1 s内。

然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,(可用默认的采样频率或者自己设定采样频率)。

2.语音信号的频谱分析
要求首先画出语音信号的时域波形;然后对语音号进行快速傅里叶变换,得到信号的频谱特性。

在采集得到的语音信号中加入正弦噪声信号,然后对加入噪声信号后的语音号进行快速傅里叶变换,得到信号的频谱特性。

并利用sound试听前后语音信号的不同。

分别设计IIR和FIR滤波器,对加入噪声信号的语音信号进行去噪,画出并分析去噪后的语音信号的频谱,并进行前后试听对比。

3.数字滤波器设计
给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz(可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。

报告内容
一、实验原理
含噪声语音信号通过低通滤波器,高频的噪声信号会被过滤掉,得到清晰的无噪声语音信号。

二、实验内容
录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。

给出数字低通滤波器性能指标:如,通带截止频率fp=10000 Hz,阻带截止频率fs=12000 Hz (可根据自己所加入噪声信号的频率进行阻带截止频率设置),阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB(也可自己设置),采样频率根据自己语音信号采样频率设定。

三、实验程序
1、原始信号采集和分析
clc;clear;close all;
fs=10000; %语音信号采样频率为10000
x1=wavread('C:\Users\acer\Desktop\voice.wav'); %读取语音信号的数据,赋给x1
sound(x1,40000); %播放语音信号
y1=fft(x1,10240); %对信号做1024点FFT变换
f=fs*(0:1999)/1024;
figure(1);
plot(x1) %做原始语音信号的时域图形
title('原始语音信号');
xlabel('time n');
ylabel('fuzhi n');
figure(2);
plot(f,abs(y1(1:2000))); %做原始语音信号的频谱图形
title('原始语音信号频谱')
xlabel('Hz');
ylabel('fuzhi');
2、加入噪声
y=wavread('C:\Users\acer\Desktop\voice.wav');
y=y(:,1); %矩阵维度置换成1 subplot(2,2,1);
plot(y);
title('加噪前的时域曲线');
N=length(y)-1;
n=0:1/fs:N/fs;
x=1.5*sin(40*pi*n); %设置正弦噪声信号
x=x.'; %置换成矩阵
z=y+x; %添加噪声
subplot(2,2,2);
plot(z);
title('加噪后的时域曲线');
sound(z,40000)
3、IIR滤波器设计
clc;clear;close all;
fs=22050;x1=wavread('C:\Users\acer\Desktop\voice.wav');
x1=x1(:,1)
t=0:1/22050:(size(x1)-1)/22050; %设置并添加噪声信号
d=1.5*sin(40*pi*t);
d=d.';
x2=x1+d;
wp=0.25*pi;ws=0.3*pi;Rp=1;Rs=15; %通阻带截止和通阻带衰减Fs=22050;Ts=1/Fs;
wp1=2/Ts*tan(wp/2); %将模拟指标转换成数字指标ws1=2/Ts*tan(ws/2);
[N,Wn]=buttord(wp1,ws1,Rp,Rs,'s'); %选择滤波器的最小阶数
[Z,P,K]=buttap(N); %创建butterworth模拟滤波器[Bap,Aap]=zp2tf(Z,P,K);
[b,a]=lp2lp(Bap,Aap,Wn);
[bz,az]=bilinear(b,a,Fs); %用双线性变换法实现模拟滤波器到数字滤波器的转换[H,W]=freqz(bz,az); %绘制频率响应曲线
figure(1);
plot(W*Fs/(2*pi),abs(H));grid %滤波器
xlabel('频率/Hz');ylabel('频率响应幅度');title('Butterworth')
f1=filter(bz,az,x2);
figure(2);
subplot(2,1,1); plot(t,x2); %画出滤波前的时域图
title('滤波前的时域波形');
subplot(2,1,2);plot(t,f1); %画出滤波后的时域图
title('滤波后的时域波形');
sound(f1,40000); %播放滤波后的信号
F0=fft(f1,10240);f=fs*(0:255)/10240
figure(3)
y2=fft(x2,10240);
subplot(2,1,1);plot(f,abs(y2(1:256))); %画出滤波前的频谱图
title('滤波前的频谱');xlabel('Hz');ylabel('fuzhi');
subplot(2,1,2);F1=plot(f,abs(F0(1:256))); %画出滤波后的频谱图
title('滤波后的频谱');xlabel('Hz');ylabel('fuzhi');
4、FIR滤波器设计
clear all
fs=22050; %设置采样频率
x1=wavread('C:\Users\acer\Desktop\voice.wav');%读取声音
x1=x1(:,1)
f=fs*(0:1023)/1024; %F=([1:N]-1)*Fs/N; %换算成实际的频率值
t=0:1/22050:(length(x1)-1)/22050; %定义噪声信号
d=[1.5*sin(40*pi*t);]';
x2=x1+d; %加噪声
N=30;
b1=fir1(N,0.3,hamming(N+1)); %设计FIR滤波器
M=128;
f0=0:1/M:1-1/M;
h1=freqz(b1,10,M); %滤波器幅频响应
f1=filter(b1,10,x2); %滤波
y0=fft(x2,40000);
y00=fft(f1,40000);
sound(f1,40000); %播放滤波后的声音
figure(1)
plot(f0,abs(h1)); %滤波器幅频响应图title('滤波器幅频响应图')
figure(2);
subplot(2,1,1); plot(t,x2); %画出滤波前的时域图
title('滤波前的时域波形');
subplot(2,1,2);plot(t,f1); %画出滤波后的时域图
title('滤波后的时域波形');
F0=fft(f1,10240);f=fs*(0:255)/10240
figure(3)
subplot(211)
plot(f,abs(y0(1:256)));
title('滤波前频谱')
subplot(212)
plot(f,abs(y00(1:256))); %滤波后频谱
title('滤波后频谱')
C:\Users\apple\Desktop\xinhao\最遥远的距离.wav。

相关文档
最新文档