ansys应用-流固耦合

合集下载

ANSYS Workbench轴流叶轮机械流固耦合分析实例

ANSYS Workbench轴流叶轮机械流固耦合分析实例

ANSYS 14.0中Workbench提供了进行流固耦合(FSI)分析的模块,可以十分方便的对轴流叶轮机械进行气动载荷分析,包括最大变形量和等效应力分布。

1.进入ANSYS14.0 Workbench界面。

2.在左下角中的custom system模块中选择第一个流固耦合模块FSI:Fluid Flow(CFX)-staticstructural,双击。

3.屏幕中出现了FSI模块。

4.右击A5(solution)选择import solution,导入已经计算完毕的CFX结果.res文件。

5.导入结果后的界面如下图所示。

CFX部分已经完成了计算,所以不需要额外的设置。

6.双击B3(Geometry)进入结构分析的几何单元,初始单位选择meter。

7.导入一个叶片的几何实体,可以选择的几何文件类型很多,x_t、iges等等都可以。

在CFX中,我们通常计算的都是多个转子,多个叶片,但是在分析流固耦合时,只需导入自己关心的那个叶片就可以了。

8.然后点击Generate,就可以看到生成的叶片实体了。

8.关闭Geometry窗口回到Workbench截面,可以看到此时B3(Geometry)后已经变成了绿色的√,说明生成正确。

9.双击B4(model)进入。

可以看到Geometry、coordinate system、connections等项目前面已经是绿色的对号,不需要再进行设置。

10.单击mesh,在左下角的Details of mesh,如图进行设置。

10.右击mesh,选择generate mesh生成网格。

11.生成的叶片网格如图所示。

12.点击static structural ,选择工具栏中的support 下的fixed support,为叶片根部添加约束。

13.选中叶根面,点击左下角中的Apply,完成约束添加。

14.点击上工具栏中units,选择转速单位为RPM.15.如图所示添加转速16.按自己的算例输入转速。

ANSYS流固耦合

ANSYS流固耦合
ANSYS流固耦合分析示例 流固耦合分析示例
教程大纲
在这个教程中您将学到:
– – – – 移动网格 流体-固体相互作用模拟 运用ANSYS-MultiField模拟 同时处理两个结果文件
问题概述
在这个教程中,运用一个简单的摆动板例题来解释 怎样建立以及模拟流体-结构相互作用的问题。其 中流体模拟在ANSYS CFX求解器中运行,而用 ANSYS软件包中的FEA来模拟固体问题。模拟流固 相互作用的整个过程中需要两个求解器的耦合运 行,ANSYS-MultiField求解器提供了耦合求解的平 台。
4. 点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
创建域:为了使ANSYS Solver能够把网格变形信息传递给 CFX Solver,在CFX中必须激活网格移动。 1. 重命名Default Domain为OscillatingPlate,并打开进行编 辑 2. 应用以下设置
8.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
输出求解器文件(.def) 1. 点击Write Solver File 2. 如果 Physics Validation Summary 对话框出现,点击 Yes 以继续 3. 应用以下设置
3.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
创建边界条件 • 流体外部边界
1. 2. 创建一个新边界条件,命名为Interface. 应用以下设置
3.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置

ANSYS Workbench LS-DYNA流固耦合方法应用

ANSYS Workbench LS-DYNA流固耦合方法应用

ANSYS Workbench LS-DYNA流固耦合方法应用贮液容器(含塑料瓶)广泛应用于化工、食品包装、储运等领域。

由于容器(含塑料瓶)在运输和使用过程中常常会因为跌落或碰撞冲击导致破损而造成损失和污染,因此,研究贮液容器(含塑料瓶)在跌落碰撞过程中的力学行为,对认识容器(含塑料瓶)跌落碰撞损伤机理,优化容器(含塑料瓶)结构,提高其安全性和使用价值意义重大。

.贮液容器的跌落是一个典型的流固耦合问题,可采用LS-DYNA的ALE算法(任意拉格朗日欧拉算法)进行模拟。

下面以一个封闭的装水水箱为例,介绍ANSYS Workbench LS-DYNA分析此类型跌落问题的方法和步骤:1.建立几何模型调用ANSYS Workbench中的LS-DYNA模块,如图1所示。

然后使用ANSYS的CAD工具DesignModeler建立几何模型,如图2所示。

图1 调用Workbench LS-DYNA 图2 DesignModeler中建立几何模型2.生成K文件双击进入“Model”后,对模型进行网格划分、边界条件设置、速度设置和分析设置,如图3所示。

设置完成后点击“solve”求解,生成K文件,如图4所示。

图3 调用Workbench LS-DYNA 图4 DesignModeler中建立几何模型3.编辑K文件通过Workbench LS-DYNA生成的K文件中关键字是不够完善的,并不能直接递交LS-DYNA求解器进行求解。

K文件中所欠缺的一些关键字,在流固耦合分析中是必不可少的,如空材料的定义、跟随坐标系的定义、空白域的定义以及状态方程的定义等。

3.1 重要关键字释义(1)LS-DYNA程序提供了运动的多物质ALE网格,可以方便地为多物质ALE算法定义跟随坐标系*ALE_REFERENCE_SYSTEM_NODE*ALE_REFERENCE_SYSTEM_GROUP(2)定义空材料和状态方程的关键字*MAT_NULL *EOS(3)初始化空白域的关键字*INITIAL_VOID_PART(4)结构和流体之间耦合的关键字*CONSTRAINED_LAGRANGE_IN_SOLID(5)单元算法定义(单点积分的单物质加空白材料)的关键字*SECTION_SOLID_ALE ELF0RM=12(6)在重力作用下产生下落的关键字*LOAD_BODY……3.2关键字编辑方法关键字的编辑或修改一般有两种方法,一种是直接在ls-prepost中对关键字进行编辑设置,如图5所示;另一种是在文本编辑器UltraEdit中对关键字进行编辑或修改,如图6所示。

ANSYSCFX11.0双向流固耦合实现步骤(原创)

ANSYSCFX11.0双向流固耦合实现步骤(原创)

流固耦合方法要实现流固耦合首先要确定固体模型和流体模型。

本设计的流体和固体模型都是在ANSYS Workbench中建立的(也可以用其他的三维建模工具)。

建模后将流体模型输出为IGES格式,然后导入到ICEM中化分网格备用。

固体模型则直接在Workbench中的Simulation中定义固支面和流固耦合面等,并划分网格。

最后输出inp文件。

最后利用CFX进行双向流固耦合计算。

具体步骤在下面分别叙述。

流体部分1.流体模型的建立启动ANSYS Workbench,点击New geometry开启DesignModeler。

在这里可以采用多种建模方法,我用的是直接在Create下拉菜单中选择最底部的Primitives 中的bend选项,直接建立一系列的扇形环柱体。

即可组成流体域的模型,在这里不再赘述。

2.流体网格的划分建模后将流体模型输出为IGES格式,然后导入到ICEM中。

在ICEM中通过点和线处理工具删掉一些多于的线并补上必要的点(分块的时候用来固定节点)。

然后创建体,在创建的提示栏中选择所有的面。

注意体形成后要多还几个角度观察,以确定solid点在整个模型的内部。

接下来就要分块,点击blocking按钮,选择整个实体为对象创建块。

之后将块沿边界切割成若干子块,删掉不需要的子块。

然后把快上的节点固定在相应的实体的点上,把块的边界线固定在相应的实体线上。

然后在块的特征边上设定节点数,化分网格。

3.网格输出网格划分完之后,需要将网格从ICEM CFD导出到计算软件ANSYS CFX中做计算,其具体的操作步骤如下:(1)选择File > Mesh > Load from Blocking;(2)选择File > Blocking > Save Multiblock Mesh,在出来的对话框上选择V olume。

(3)选择Output > Select solver,在出来的对话框上选择计算所用的软件ANSYS CFX,点击Okay。

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例1. Ansys流固耦合案例:热沉设计热沉是一种用于散热的设备,通常用于电子设备中,以降低温度并保护设备不受过热损坏。

在设计热沉时,流体流动和热传导是两个重要的物理过程。

Ansys流固耦合可以帮助工程师模拟和优化热沉的设计。

在这个案例中,我们考虑了一个由铝合金制成的热沉。

热沉的底部与电子设备紧密接触,通过流体流动和热传导来吸收和传递热量。

通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 流体流动模拟:我们可以使用Ansys Fluent模块模拟流体在热沉内部的流动情况。

通过设定合适的边界条件和材料属性,我们可以计算出流体的速度场和压力场。

2) 热传导模拟:我们可以使用Ansys Mechanical模块模拟热沉内部的热传导过程。

通过设定热源和材料属性,我们可以计算出热沉内部的温度分布。

3) 流固耦合模拟:在流体流动和热传导模拟的基础上,我们可以使用Ansys的流固耦合模块将二者结合起来。

通过设定合适的耦合条件,我们可以模拟出流体对热沉的冷却效果,并计算出热沉的最终温度分布。

通过这个案例,我们可以优化热沉的设计,以达到更好的散热效果。

我们可以调整热沉的几何形状、材料属性和流体流动条件,以最大程度地提高散热效率,并确保电子设备的正常运行。

2. Ansys流固耦合案例:风力发电机叶片设计风力发电机叶片是将风能转化为机械能的关键部件。

在设计风力发电机叶片时,流体力学和结构力学是两个重要的物理过程。

Ansys 流固耦合可以帮助工程师模拟和优化叶片的设计。

在这个案例中,我们考虑了一个三叶式风力发电机叶片。

叶片由复合材料制成,通过受风力作用,将机械能传递给发电机。

通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 风场模拟:我们可以使用Ansys Fluent模块模拟风力对叶片的作用。

通过设定合适的边界条件和材料属性,我们可以计算出风场的速度场和压力场。

2) 结构分析:我们可以使用Ansys Mechanical模块模拟叶片的结构响应。

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例流固耦合是指流体和固体之间相互作用的一种现象,也是工程实际中经常遇到的一种情况。

在ANSYS软件中,可以通过流固耦合分析来模拟和研究这种相互作用。

下面列举了10个符合要求的ANSYS 流固耦合案例。

1. 水流对桥梁的冲击分析:通过ANSYS流固耦合分析,研究水流对桥梁结构的冲击力和应力分布情况,以评估桥梁的稳定性。

2. 水下管道的流固耦合分析:通过ANSYS软件中的流固耦合模块,模拟水下管道在水流作用下的应力和变形情况,以确定管道的安全性能。

3. 水泵的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟水泵在工作状态下的流体流动和叶轮的应力分布,以优化水泵的设计。

4. 风力发电机叶片的流固耦合分析:通过ANSYS流固耦合分析,研究风力发电机叶片在风力作用下的变形和应力分布情况,以提高叶片的性能和可靠性。

5. 汽车底盘的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟汽车底盘在行驶过程中的气动力和振动响应,以改善车辆的稳定性和乘坐舒适性。

6. 船舶结构的流固耦合分析:通过ANSYS流固耦合分析,研究船舶结构在船体运动和海洋波浪作用下的应力和变形情况,以提高船舶的稳定性和安全性。

7. 石油钻井过程中的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟石油钻井过程中的井筒流体流动和井壁的应力分布,以优化钻井工艺和提高钻井效率。

8. 液压缸的流固耦合分析:通过ANSYS流固耦合分析,研究液压缸在工作过程中的液体流动和缸体的应力分布情况,以提高液压缸的性能和可靠性。

9. 燃烧室的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟燃烧室内燃烧过程中的流体流动和壁面的热应力分布,以改善燃烧室的燃烧效率和寿命。

10. 水轮机的流固耦合分析:通过ANSYS流固耦合分析,研究水轮机叶片在水流作用下的变形和应力分布情况,以提高水轮机的转换效率和可靠性。

以上是符合要求的10个ANSYS流固耦合分析案例,这些案例涵盖了不同领域和不同类型的流固耦合问题,可以帮助工程师和设计师更好地理解和解决实际工程中的流固耦合问题。

ANSYS Workbench LS-DYNA流固耦合方法应用

ANSYS Workbench LS-DYNA流固耦合方法应用

ANSYS Workbench LS-DYNA流固耦合方法应用贮液容器(含塑料瓶)广泛应用于化工、食品包装、储运等领域。

由于容器(含塑料瓶)在运输和使用过程中常常会因为跌落或碰撞冲击导致破损而造成损失和污染,因此,研究贮液容器(含塑料瓶)在跌落碰撞过程中的力学行为,对认识容器(含塑料瓶)跌落碰撞损伤机理,优化容器(含塑料瓶)结构,提高其安全性和使用价值意义重大。

.贮液容器的跌落是一个典型的流固耦合问题,可采用LS-DYNA的ALE算法(任意拉格朗日欧拉算法)进行模拟。

下面以一个封闭的装水水箱为例,介绍ANSYS Workbench LS-DYNA 分析此类型跌落问题的方法和步骤:1.建立几何模型调用ANSYS Workbench中的LS-DYNA模块,如图1所示。

然后使用ANSYS的CAD工具DesignModeler建立几何模型,如图2所示。

图1 调用Workbench LS-DYNA图2 DesignModeler中建立几何模型2.生成K文件双击进入“Model”后,对模型进行网格划分、边界条件设置、速度设置和分析设置,如图3所示。

设置完成后点击“solve”求解,生成K文件,如图4所示。

图3调用Workbench LS-DYNA图4DesignModeler中建立几何模型3.编辑K文件通过Workbench LS-DYNA生成的K文件中关键字是不够完善的,并不能直接递交LS-DYNA求解器进行求解。

K文件中所欠缺的一些关键字,在流固耦合分析中是必不可少的,如空材料的定义、跟随坐标系的定义、空白域的定义以及状态方程的定义等。

3.1重要关键字释义(1)LS-DYNA程序提供了运动的多物质ALE网格,可以方便地为多物质ALE算法定义跟随坐标系*ALE_REFERENCE_SYSTEM_NODE*ALE_REFERENCE_SYSTEM_GROUP(2)定义空材料和状态方程的关键字*MAT_NULL*EOS(3)初始化空白域的关键字*INITIAL_VOID_PART(4)结构和流体之间耦合的关键字*CONSTRAINED_LAGRANGE_IN_SOLID(5)单元算法定义(单点积分的单物质加空白材料)的关键字*SECTION_SOLID_ALE ELF0RM=12(6)在重力作用下产生下落的关键字*LOAD_BODY……3.2关键字编辑方法关键字的编辑或修改一般有两种方法,一种是直接在ls-prepost中对关键字进行编辑设置,如图5所示;另一种是在文本编辑器UltraEdit中对关键字进行编辑或修改,如图6所示。

ANSYS流固耦合分析实例

ANSYS流固耦合分析实例
(Time) 4. 在整个视窗的右底边Tabular Data面板,在表中相对应于时间
为0 [s]设置压力为100 [pa] 5. 表中需要继续输入两排参数,100 [pa]对应于0.499 [s], 0 [pa]
对应于0.5 [s]
模拟中固体问题的描述—记录ANSYS输入文件
现在,模拟设置已经完成。在Simulation中ANSYS MultiField 并不运行,因此用求解器按钮并不能得到结果 1. 然 而 , 在 目 录 树 中 的 高 亮 Solution 中 , 选 择 Tools > Write ANSYS Input File,把结果写进文件OscillatingPlate.inp 2. 网格是自动生成的,如果想检查,可以在目录树中选择Mesh 3. 保存Simulation数据,返回Oscillating Plate [Project]面板, 存储Project
固定支撑:为确保薄板的底部固定于平板,需要设置固定支撑 条件。
1. 右击目录树中Transient Stress,在快捷菜单中选择Insert > Fixed Support
2. 用旋转键 旋转几何模型,以便可以看见模型底面(low-y), 然后选择 并点击底面(low-y)
3. 在Details窗口,选择Geometry,然后点击No Selection使Apply 按钮出现(如果需要)。点击Apply以设置固支。
设置仿真类型: 1. 选择 Insert > Simulation Type. 2. 应用以下设置: 3. 点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
建立流体物质 1. 选择 Insert > Material. 2. 把新物质名定义为 Fluid. 3. 应用以下设置
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图4 3. 由于计算在 CFX 中迚行,因此可以右击 solution,然后选择 delete,将固
体部分的计算去除,如图 5:
图5 4. 本 例 中 使 用的 材 料 刚度 相 对 较 小, 因 此 需要 定 义 一 个新 的 材 料, 双 击
engineering data,在里面定义一个新材料 plate,具体参数如图 6 所示。
这里因为使用外部网格,可使用 fluent 的网格文件,也可以 由 ICEM CFD 直接生成 CFX 的网格文件,没有影响。*.msh 中包 吨流体网格和 named section。(named section 用于按命名区域 制定丌同类型的边界,必要步骤) 以上 2 种文件是耦合使用的原始 文件,可由丌同的软件戒者手工生成,丌影响使用。比如,*.inp 可 以由 ANSYS APDL、ANSYS WORKBENCH 戒者 Hypermesh 生 成;*.msh 可以由 ANSYS WORKBENCH、ICEM CFD、Gambit 等 生成。本例中,2 者都用 ansys workbench 生成。 (3)、MFX 使用的文件:*.def
MFX 在使用中是从 CFX-solver 中启动的,*.def 实际是 CFX-pre 交给 CFX-solver 使用的文件。 (4)、其他格式:
其他格式的文件是各软件自己的工程文件类型,丌参不耦合计 算,只是作为工程文件保存。
这样的做法,感觉有个好处:因为通过 Transient Structural 导出*.inp 结构文件,然后再导入 CFX 中进行分析,这样对于直接运 用 AWB help 中的方法而言,处理同样大小的模型所需要的内存较 小,容易在普通微机上计算,丌会出现如下的错误:
4、设置好 CFX 流体分析的边界条件并将流固耦合的边界面的 Mesh Motion 设 置为 ANSYS MultiField。CFX 中有默认的不 ANSYS FSI 传递的数据。其他的 边界条件见 CFX 流体分析的要求来设置。 5、通过 CFX 下的 Solver/Solver Units 设置单位,以保证 ANSYS 不 CFX 中的 单位一致。 6、在 CFX 的 Solver/Solver control 下的 Basic Settings 中设置 CFX 求解的收 敛条件,并在 External Coupling 下设置不 ANSYS 的求解先后顺序及 MFX 的 一系列高级设置。 7、设置完毕后在 CFX 的 FILE 菜单下 write Solver file,生成*.def 文件。 8、迚入 CFX-Solver 下设置好 CFX 求解文件和从 Design Simulation 中写出的 ANSYS 文件,直接求解 RUN 即可。
如果运用 ANSYS help 中的方法计算流固耦合出现这种错误时,
说明计算你模型所需要的内存已经超出了你计算机自带的内存了,所
以你需要在性能更好的计算机上运行你的程序或者把你的模型改小。
丌过,使用 ANSYS help 中的流程来计算,个人感觉整个思路相
对比较清楚,而且在后处理中很容易同时看到结构和流体的动态变化。
个人体会
由于单向流固耦合以前做过,所以最近主要研究了双向的流固耦 合 的 一 些 基 本 操 作 。 在 实 现 双 向 流 固 耦 合 的 方 法 中 , CFX+Design Simulation(AWB)方法相对较为简单,实现的效果也可以接受,因此 先对这种方法做一些总结。
CFX+Design Simulation(AWB)方法的基本思路可以概括为如下 内容:形成两套网格和边界,其中包吨了特殊定义的耦合边界和状态、 参数,耦合软件将通过定义的耦合边界来传递耦合参数,并指挥流体、 固体求解器计算,依次实现双向耦合分析。因为耦合参数是通过插值 传递的,所以耦合边界上丌要求网格的连续性。
基本方法
一 、 实 现 单 向 流 固 耦 合 的 方 法 主 要 有 两 种 : Design Simulation(AWB)和 Ansys Classic。 (1)、Design Simulation 方法流程:
Design Simulation 中的 CFX Loads 菜单,其中有 Pressure, temperature & convection.
当固体结构变形比较大,导致流体的边界形貌发生改变后,流体 分布会有明显变化时,单向耦合显然是丌合适的,因此需要考虑固体 变形对流体的影响。两者相互作用,最终达到一个平衡状态(稳态问 题中)。比如大型客机的机翼,上下跳动量可以达到 5 米,以及一切 机翼的气动弹性问题,都是因为两者相互影响产生的。因此在解决这 类问题时,需要迚行流固双向耦合计算。
(2)、பைடு நூலகம்FX+ANSYS Classic 方法流程:
1、ANSYS Classic 中定义好结构分析中的材料、网格、约束及流体边界。 2、设置好 MFX 中的不 CFX 相联的系列条件,如载荷时间步及求解类型和步数 等等。 3、在 MFX 下的利用 write input 写出 ANSYS 的流固耦合文件(dat 格式)。 4、同方式一中的第 3 步,丌同就是将 CFX 中联结的 ANSYS 文件转为第 3 步写 出的 DAT 文件。 5、同方式一中的 4 至 6 步。注意的是 CFX 中的单位要不 ANSYS Classic 默认 的单位保持一致,ANSYS 不 CFX 中默认的耦合条件基本一样,只是在 CFX 中 默认为先求解 CFX,而 ANSYS 中默认为先求解 ANSYS,所以此处要注意保持 一致。
1、Design Simulation 中定义好结构分析中的材料、网格、约束及流体边界。 2、写出 INP 格式的 ANSYS 结构文件。 3、CFX 中在 Simulation Type 中设置好 External Solver Coupling 为 ANSYS MultiField,并将第 2 步中写出的 INP 格式的 ANSYS 结构文件选中设为 ANSYS 文件。
可在对应的 CFX 结果中选择相应的 SURFACE 和时间及 CFX 结果。
(2)、ANSYS Classic 方法流程:
a.ANSYS Classic 中,在 FSI 界面处设置相应的 surface 单元,写出 CDB 文件(CDB 文件是 ansys 的网格文件),插值到 CFX-POST 中去,选择好相应的时间步, EXPORT 相应的结果载荷文件。
+--------------------------------------------------------------------+ | An error has occurred in cfx5solve: | || | Error interpolating results onto the new mesh: | | /usr/ansys_inc/v130/CFX/bin/linux-amd64//solver-pvm.exe exited | | with return code 1. | +--------------------------------------------------------------------+
因此,我个人还是比较喜欢使用 ANSYS help 中的流程。
此外,运用 APDL 语言在 ANSYS CLASSIC 中实现流固耦合的
方法最近么有时间细看,感觉流程差丌多,等有时间看在补上吧。
实例演示
本来想写三个实例的,丌过我好想比较懒,而且过程大同小异,
差别丌是很大,所以就写一个吧,尽量写详细点\(^o^)/~。
+================================================= ===================+ | ****** PROBLEM REPORT ****** | |--------------------------------------------------------------------| | Subsystem: Input | | Subroutine name: ErrAction | | Severity level: Fatal Error | | Error message number: 001100279 |
流固耦合总结
基本概念
流固耦合问题一般分为两类:一类是流‐固单向耦合,一类是流‐ 固双向耦合。
单向耦合应用于流体对固体作用后,固体变形丌大,即流体的边 界形貌改变很小,丌影响流体分布的,可以使用流固单向耦合。先计 算出流畅分布,然后将其中的关键参数作为载荷加载到固体结构上。 典型应用比如小型飞机按刚性体设计的机翼,机翼有明显的应力受载, 但是形变很小,对绕流丌产生影响。
图2
在这种网络上比较流行的 FSI 双向流固耦合方法中,将会产生如 下的文件: (1)、固体文件:*.inp---ansys input file
Inp 文件中包吨了固体网格,边界条件(如 fix 约束,受力 等),定义的耦合边界以及时间步等信息。 (2)、流体文件:*.msh or *.cas---fluent 网格文件/项目文件
|--------------------------------------------------------------------| | Message: | || | Stopped in routine MEMERR | || || || || || +================================================= ===================+
6、设置完毕后在 CFX 的 FILE 菜单下 write Solver file,写出 CFX 的求解文件。 7、同方式一中的第 8 步。
(3)、MFX+ANSYS Classic+CFX 方法流程
相关文档
最新文档