均值不等式测试题(含详解)

合集下载

均值不等式及其应用详解

均值不等式及其应用详解

解:设DQ长为y(m),则
x 4 xy 200
2
A
M
N
B
故:
200 x y 4x
2
E
F
(2)解: x 0
s 4200x 210 4xy 80 2 y 400000 2 38000 4000 x x2
2
2
400000 S 38000 4000 x x2
分析二、 挖掘隐含条件
∵3x+1-3x=1为定值,且0<x<1 则1-3x>0; 3 1 可用均值不等式法 ∵0<x< ,∴1-3x>0 3 1 1 3 x 1 3 x 1 2 ∴y=x(1-3x)= 3x(1-3x)≤ ( ) 3 12 当且仅当 3x=1-3x 即x=1 时 y
3
2
x 4000 当且仅当 200吨时,每吨的平均成本最低
不等式定理及其重要变形:
(定理) a b 2ab(a, b R)
2 2
ab ab (推论) 2
( a, b R )


ab
ab 2 ( ) 2
1 例1、已知:0<x< ,求函数y=x(1-3x)的最大值 3 分析一、 原函数式可化为:y=-3x2+x, 利用二次函数求某一区间的最值
y 2x 3 x y 3 2 2
当且仅当
y 2 x 即: y 2 x 时取“=”号 x y
即此时
1 y 2x x 而 2 2 2 x y 1 2 y 2 2
ymin 3 2 2
本题小结: 用均值不等式求最值时,要注意检验最值存在的 充要条件,特别地,如果多次运用均值不等式求
最值,则要考虑多次“≥”(或者“≤”)中取

(完整版)均值不等式专题20道-带答案

(完整版)均值不等式专题20道-带答案

(完整版)均值不等式专题20道-带答案均值不等式专题3学校:___________姓名:___________班级:___________考号:___________⼀、填空题1.若则的最⼩值是__________.2.若,且则的最⼤值为______________.3.已知,且,则的最⼩值为______.4.已知正数满⾜,则的最⼩值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最⼩值是______.6.设正实数满⾜,则的最⼩值为________7.已知,且,则的最⼩值是________8.已知正实数x,y满⾜,则的最⼩值是______9.已知,函数的值域为,则的最⼩值为________.10.已知,,且,则的最⼩值为__________.11.若正数x,y满⾜,则的最⼩值是______.12.已知正实数x,y满⾜,则的最⼩值为______.13.若,,,则的最⼩值为______.14.若,则的最⼩值为________.15.已知a,b都是正数,满⾜,则的最⼩值为______.16.已知,且,则的最⼩值为______.17.已知点在圆上运动,则的最⼩值为___________.18.若函数的单调递增区间为,则的最⼩值为____.19.已知正实数,满⾜,则的最⼤值为______.20.已知,,则的最⼩值为____.参考答案1.【解析】【分析】根据对数相等得到,利⽤基本不等式求解的最⼩值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题考查基本不等式求解和的最⼩值问题,关键是能够利⽤对数相等得到的关系,从⽽构造出符合基本不等式的形式. 2.【解析】【分析】先平⽅,再消元,最后利⽤基本不等式求最值.【详解】当时,,,所以最⼤值为1,当时,因为,当且仅当时取等号,所以,即最⼤值为,综上的最⼤值为【点睛】本题考查利⽤基本不等式求最值,考查基本分析求解能⼒,属中档题.3.4.【解析】【分析】直接利⽤代数式的恒等变换和利⽤均值不等式的应⽤求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应⽤,主要考查学⽣的运算能⼒和转化能⼒,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满⾜,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】由题意可得经过圆⼼,可得,再+利⽤基本不等式求得它的最⼩值.【详解】圆,即,表⽰以为圆⼼、半径等于2的圆.再根据弦长为4,可得经过圆⼼,故有,求得,则,当且仅当时,取等号,故则的最⼩值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应⽤,属于基础题.6.8【解析】【分析】根据基本不等式求最⼩值.【详解】令,则当且仅当时取等号.即的最⼩值为8.【点睛】在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.7.【解析】【分析】根据基本不等式求最⼩值.【详解】因为,当且仅当时取等号,所以的最⼩值是【点睛】由已知分离,然后进⾏1的代换后利⽤基本不等式即可求解.【详解】正实数x,y满⾜,则当且仅当且即,时取得最⼩值是故答案为:【点睛】本题主要考查了利⽤基本不等式求解最值,解题的关键是进⾏分离后利⽤1的代换,在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利⽤基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成⽴,所以的最⼩值为,故答案为.【点睛】本题主要考查⼆次函数的图象与性质,以及基本不等式的应⽤,属于中档题. 在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.10.【解析】【分析】因为,所以,=(当且仅当,即,时取等号),所以的最⼩值为,故答案为.【点睛】本题考查基本不等式及利⽤基本不等式求最值,将所求式运⽤“1”的变换,化为积为常数的形式是关键,属于中档题. 11.【解析】【分析】利⽤乘“1”法,借助基本不等式即可求出.【详解】正数x,y满⾜,则,,当且仅当时取等号,故的最⼩值是12,故答案为:12【点睛】本题考查了基本不等式及其应⽤属基础题.12.2【解析】【分析】利⽤“1”的代换,求得最值,再对直接利⽤基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满⾜,,,当且仅当,即,时,取等号,的最⼩值为2.故答案为:2.【点睛】本题考查基本不等式的应⽤,熟记不等式应⽤条件,多次运⽤基本不等式要注意“=”是否同时取到,是中档题【分析】由条件可得,即有,由基本不等式可得所求最⼩值.【详解】若,,,即,则,当且仅当取得最⼩值9,故答案为:9.【点睛】本题考查基本不等式的运⽤,注意运⽤“1”的代换,考查化简运算能⼒,属于基础题.【解析】【分析】由基本不等式,可得到,然后利⽤,可得到最⼩值,要注意等号取得的条件。

均值不等式练习题及答案解析

均值不等式练习题及答案解析

均值不等式练习题及答案解析一.均值不等式1.若a,b?R,则a2?b2?2ab 若a,b?R,则ab2. 若a,b?R*,则a?b2?*?a?b222a?b时取“=”)ab 若a,b?R,则a?b?22aba?b?若a,b?R,则ab??) ?? ?2a?b2注:当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.求最值的条件“一正,二定,三取等”均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域y=3x解:y=3x+11y=x+xx13x =∴值域为[,+∞)2x1x· =2; x1x· =-2x1≥22x1当x>0时,y=x+≥x11当x<0时, y=x+= -≤-2xx∴值域为解题技巧:技巧一:凑项例1:已知x?54,求函数y?4x?2?14x?5的最大值。

1解:因4x?5?0,所以首先要“调整”符号,又?x?54,?5?4x?0,?y?4x?2?14x?5不是常数,所以对4x?2要进行拆、凑项,???2?3?1 ??3?1????5?4x?4x?55?4x?当且仅当5?4x?15?4x,即x?1时,上式等号成立,故当x?1时,ymax?1。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数例1. 当时,求y?x的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2x??8为定值,故只需将y?x凑上一个系数即可。

当,即x=2时取等号当x=2时,y?x的最大值为8。

32评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设0?x?,求函数y?4x的最大值。

322x?3?2x?9解:∵0?x?∴3?2x?0∴y?4x?2?2x?2????222??当且仅当2x?3?2x,即x?3?3???0,?时等号成立。

(压轴题)高中数学必修五第三章《不等式》检测题(包含答案解析)(1)

(压轴题)高中数学必修五第三章《不等式》检测题(包含答案解析)(1)

一、选择题1.若正数x ,y 满足21y x +=,则2x y +的最小值为( ) A .2 B .4 C .6 D .82.若x ,y 满足约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则6z x y =+的最大值为( )A .30B .14C .25D .363.已知正实数a ,b 满足231a b +=,则12a b +的最小值为( ) A .15 B.8+C .16 D.8+4.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( ) A .2 B .-2 C .1 D .-15.若正实数a ,b 满足lg a +lg b =1,则25a b +的最小值为( ) AB .CD .26.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( ) A .1- B .2 C .3 D .47.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( )A .9B .94C .52D .28.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n +的最小值为( ) A .23 B .43C .2D .4 9.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .510.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( )A.B.C .6 D .811.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .412.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧ B .()()p q ⌝∧⌝ C .()p q ⌝∧ D .()p q ∧⌝二、填空题13.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________. 15.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________. 16.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.17.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______. 18.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.19.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2c cosB =2a +b ,若△ABC 的面积为12c ,则ab 的最小值为_______. 20.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____. 三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠.(1)若不等式()0f x >的解集为(1,3)-,求,a b 的值;(2)若(1)2,0,0f a b =>>,求19a b+的最小值. 22.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米.求:(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?23.(1)已知3x <,求43x x +-的最大值; (2)已知,x y 是正实数,且4x y +=,求13x y+的最小值. (3)若实数,x y 满足2228x y +=,求244y x +-的取值范围.24.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x +5.25.某校食堂需定期购买大米.已知该食堂每天需用大米0.6吨,每吨大米的价格为6000元,大米的保管费用z(单位:元)与购买天数x(单位:天)的关系为()()*z 9x x 1x N =+∈,每次购买大米需支付其他固定费用900元. ()1该食堂多少天购买一次大米,才能使平均每天所支付的总费用最少?()2若提供粮食的公司规定:当一次性购买大米不少于21吨时,其价格可享受8折优惠(即原价的80%),该食堂是否应考虑接受此优惠条件?请说明理由.26.设1x >,且4149(1)x x +--的最小值为m . (1)求m ;(2)若关于x 的不等式20ax ax m -+的解集为R ,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 . 【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min28x y ⎛⎫+= ⎪⎝⎭. 故选:D【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等”(1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域. 2.A解析:A【分析】画出约束条件所表示的平面区域,结合目标函数确定出最优解,代入即可求解.【详解】画出约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩所标示平面区域,把目标函数6z x y =+,化为直线166z y x =-+,当直线166z y x =-+平移到点A 时, 此时直线在y 轴上的截距最大,目标函数取得最大值, 又由32100220x y x y --=⎧⎨-+=⎩,解得()6,4A , 所以目标函数的最大值为666430z x y =+=+⨯=.故选:A.【点睛】根据线性规划求解目标函数的最值问题的常见形式:(1)截距型:形如z ax by =+ .求这类目标函数的最值常将函数z ax by =+ 转化为直线的斜截式:a z y x b b =-+ ,通过求直线的截距z b的最值间接求出z 的最值; (2)距离型:形如()()22z x a y b =-+-,转化为可行域内的点到定点的距离的平方,结合点到直线的距离公式求解;(3)斜率型:形如y b z x a-=-,转化为可行域内点与定点的连线的斜率,结合直线的斜率公式,进行求解. 3.D解析:D【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=, 则()12122388282343412843a b a b a b a b a b a b a b⎛⎫+=++=++≥+⋅=+=+ ⎪⎝⎭仅当34b a b a =,即3133,46a b -==时等号成立,故12a b +的最小值为843+ 故选:D.【点睛】思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立.(1)积定,利用2x y xy +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值; (3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.4.C解析:C【分析】 先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解.【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A , 代入求得101=+=z ,所以x y +的最小值是1,故选:C.【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下:(1)根据题中所给的约束条件画出可行域;(2)根据目标函数的意义找到最优解;(3)解方程组求得最优解的坐标;(4)代入求得最小值,得到结果.5.D解析:D【分析】应用对数运算得到10ab =,由目标式结合基本不等式有25252a b a b+≥⋅. 【详解】∵lg lg 1a b +=,即lg 1ab =,∴10ab =,而0,0a b >>, ∴252522a b a b +≥⋅=当且仅当2,5a b ==时等号成立. ∴25a b+的最小值为2. 故选:D【点睛】易错点睛:利用基本不等式求最值时,须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方6.D解析:D【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论.【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-,由图象可知,当直线2y x z =-经过点A 时,使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A , 所以目标函数的最大值为2324z =⨯-=,故选:D.【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.B解析:B【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值.【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B .【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.8.C解析:C【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值.【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=,∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n m m n=,即1,2m n ==时等号成立. 故选:C .【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.9.B解析:B【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2. z ∴的最小值为13222+=.故选:B .【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题. 10.D解析:D【分析】 运用基本不等式2422422x y xy +≥= 【详解】 因为20,40x y >>,所以242422422228x y x y x y ++≥===,(当且仅当24x y =时取“=”).故答案为D.【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.11.B解析:B【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值.【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =.故选:B.【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题. 12.A解析:A【分析】 由约束条件作出可行域,由y z x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案.【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式y z x =表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.9【分析】首先由已知确定然后利用基本不等式求最小值【详解】因为所以又所以所以当且仅当时等号成立所以的最小值为9故答案为:9【点睛】易错点睛:易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件 解析:9【分析】首先由已知确定1,1a b >>,然后利用基本不等式求最小值.【详解】因为a b x y xy ==,所以1a y x -=,1b x y -=,又1,1x y >>,所以10,10a b ->->, 111(1)(1)()b a b a b x y x x -----===,所以(1)(1)1a b --=,4(1)4(1)52(1)4(1)59a b a b a b +=-+-+≥-⨯-+=,当且仅当14(1)a b -=-时等号成立,所以4a b +的最小值为9.故答案为:9.【点睛】易错点睛:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常 解析:4【分析】先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求.【详解】作出可行域如图所示,11x z y -=+可以看做1PM k ,其中()1,1P -,M 为可行域(阴影区域)内一点,因为()1121PA k --==-,()0.511314PA k ---==-, 所以(]1,2,4PM k ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PM k ∈,所以z 的最大值为4,故答案为:4.结论点睛:常见的非线性目标函数的几何意义:(1)y b z x a -=-:表示点(),x y 与点(),a b 连线的斜率;(2)z =(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),x y 到直线0Ax By C ++=倍. 15.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必 解析:2【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=,则2019x >,2020y >且4042x y +=,∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y x x y⎛⎫=+++⋅ ⎪⎝⎭≥, 当且仅当y x x y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方16.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可. 【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y x x y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤. 故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.17.【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得化简得即可得解【详解】设不等式和不等式的解集分别为和则为方程的两个根为方程的两个根由韦达定理得所以即又所以所以即故答案 解析:56π 【分析】 由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,化简得tan 2θ=即可得解.【详解】设不等式()2220x x θ-+<和不等式()224sin 210x x θ++<的解集分别为(),a b 和11,b a ⎛⎫ ⎪⎝⎭,则a ,b 为方程()2220x x θ-+=的两个根, 1a ,1b为方程()224sin 210x x θ++=的两个根,由韦达定理得2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,所以22sin 22θθ=-即tan 2θ= 又 ,2πθπ⎛⎫∈⎪⎝⎭,所以()2,2θππ∈,所以523πθ=即56πθ=. 故答案为:56π. 【点睛】本题考查了一元二次不等式和一元二次方程之间的关系,考查了对于新概念的理解和三角函数的以值求角,属于中档题.18.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】 首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得; 【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y += 所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题. 19.【解析】分析:由正弦定理将2ccosB =2a +b 转化成由三角形内角和定理将利用两角和的正弦公式展开化简求得的值由余弦定理三角形的面积公式及基本不等式关系求得ab 的最小值详解:2ccosB =2a +b 由 解析:13【解析】分析:由正弦定理将2c cosB =2a +b 转化成2sin cos 2sin sin C B A B =+,由三角形内角和定理,将()sin sin A B C =+,利用两角和的正弦公式展开,化简求得sin C 的值,由余弦定理、三角形的面积公式及基本不等式关系,求得ab 的最小值. 详解:2c cosB =2a +b ,由正弦定理转化成2sin cos 2sin sin C B A B =+∴()2sin cos 2sin sin C B B C B =++化简得:2sin cos sin 0B C B +=, 又0,sin 0B B π<,得1cos 2C =-,0C π<<,得23C π=,则△ABC 的面积为1sin 2S ab C ==,即3c ab =, 由余弦定理得2222cos c a b ab C =+-,化简得22229a b ab a b ++=,222a b ab +≥,当且仅当a b =时取等,∴2229ab ab a b +≤,即13ab ≥, 故ab 的最小值是13. 故答案为13. 点睛:本题考查正余弦定理、三角形内角和定理及基本不等式相结合.20.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键解析:p q【分析】由已知结合作差法进行变形后即可比较大小.【详解】因为0a >,0b >,2b p a a =-与2a qb b=-, 所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q .故答案为:p q .【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16. 【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值.【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-, 1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩. (2)由于()12f =,0a >,0b >,则可知232a b +-+=,得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b a a b=且1a b +=, 即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立, 所以19a b+的最小值为16. 【点睛】 易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.22.(1)()320408029x y x x -=<<+;(2)面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【分析】(1)由已知条件得出4090203200x y xy ++=,即可得出x 与y 的关系式;(2)化简得出()16991782929S x x ⨯⎡⎤=-++⎢⎥+⎣⎦,利用基本不等式可求得S 的最大值,利用等号成立的条件可求得x 的值.【详解】(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40245203200x y xy +⨯+=, 即492320x y xy ++=,解得320429x y x -=+, 由于0x >且0y >,可得080x <<,所以,x 与y 的关系式为()320408029x y x x -=<<+; (2)()33822932043383382229292929x x x S xy x x x x x x x x -+-⎛⎫==⋅=⋅=⋅-=- ⎪++++⎝⎭()()169291699169916992169217829292929x x x x x x x +-⨯⨯⨯=-=--=-+-+++()16991782917810029x x ⨯⎡⎤=-++≤-=⎢⎥+⎣⎦, 当且仅当16992929x x ⨯+=+时,即当15203x y =⎧⎪⎨=⎪⎩时,等号成立, 因此,仓库面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【点睛】本题考查基本不等式的应用,建立函数解析式是解题的关键,考查计算能力,属于中等题. 23.(1)1-;(2)1+;(3)[12,6]-. 【分析】(1)由于()443333x x x x +=+-+--,再根据基本不等式求解即可; (2)根据题意得()114x y +=,再利用基本不等式“1”的用法求解即可; (3)将2282y x =-代入244y x +-,再配方求解即可得答案.【详解】解:(1)因为3x <,所以30x -<,30x ->,所以()443333x x x x ⎡⎤+=-+-+⎢⎥--⎣⎦31≤-=-, 当且仅当4323x x =-=-,即1x =时等号成立, 所以43x x +-的最大值为1-. (2)由于,x y 是正实数,且4x y +=, 所以()1311313444y x x y x y x y x y ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭14142⎛≥+=+ ⎝当且仅当3y x x y =,即(23y ==时等号成立.故13x y +的最小值为12+. (3)由于实数,x y 满足2228x y +=, 故22820,22y x x =-≥∴-≤≤所以22448244y x x x +-=-+- ()222442166x x x =-++=--+≤,当2x =-时,244y x +-取得最小值为12-故244y x +-的取值范围为[12,6]-.【点睛】本题考查利用基本不等式求最值,注意自变量的取值范围,考查化归转化思想,运算能力,是中档题.24.(1)2()1f x x x =-+;(2)()(),14,-∞-+∞【分析】(1) 设二次函数f (x )=ax 2+bx+c ,利用待定系数法即可求出f (x );(2) 利用一元二次不等式的解法即可得出.【详解】(1).设二次函数f (x )=ax 2+bx+c ,∵函数f (x )满足f (x+1)﹣f (x )=2x , ∴ f(x +1)-f(x)=()()211a x b x c ++++-()2ax bx c ++=2ax+a+b=2x ∴ 220a a b =⎧⎨+=⎩ ,解得11a b =⎧⎨=-⎩.且f (0)=1.∴ c=1 ∴f (x )=x 2﹣x+1.(2) 不等式f (x )>2x+5,即x 2﹣x+1>2x+5,化为x 2﹣3x ﹣4>0.化为(x ﹣4)(x+1)>0,解得x >4或x <﹣1.∴原不等式的解集为()(),14,-∞-⋃+∞【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.25.(1)10天购买一次大米;(2)见解析.【分析】()1根据条件建立函数关系,结合基本不等式的应用求最值即可;()2求出优惠之后的函数表达式,结合函数的单调性求出函数的最值进行判断即可.【详解】解:()1设每天所支付的总费用为1y 元, 则()11900y 9x x 19000.660009x 3609360936091803789x x ⎡⎤=+++⨯=++≥++=⎣⎦, 当且仅当9009x x=,即x 10=时取等号, 则该食堂10天购买一次大米,才能使平均每天所支付的总费用最少.()2若该食堂接受此优惠条件,则至少每35天购买一次大米,设该食堂接受此优惠条件后,每x ,()x 35≥天购买一次大米,平均每天支付的总费用为2y , 则()21900y 9x x 19000.660000.89x 2889x x⎡⎤=+++⨯⨯=++⎣⎦, 设()900100f x 9x 9x x x ⎛⎫=+=+ ⎪⎝⎭,x 35≥, 则()f x 在x 35≥时,为增函数,则当x 35=时,2y 有最小值,约为3229.7,此时3229.73789<,则食堂应考虑接受此优惠条件.【点睛】本题主要考查函数的应用问题,基本不等式的性质以及函数的单调性,属于中档题. 26.(1)47=m ;(2)160,7⎡⎤⎢⎥⎣⎦; 【分析】(1)直接利用基本不等式即可求得4149(1)x x +--的最小值; (2)不等式20ax ax m -+的解集为R ,分0a =与0a ≠进行分类讨论,再结合二次函数的图象与性质列不等式求解即可.【详解】解:(1)因为1x >,所以10x ->, 所以444411249(1)49(1)497x x x x +-=-+=--, 当且仅当4149(1)x x -=-,即217x -=,也即97x =时等号成立, 故47=m . (2)由(1)知4,7m =, 若不等式2407ax ax -+ 的解集为R ,则 当0a = 时,407恒成立,满足题意; 当0a ≠时,201607a a a >⎧⎪⎨∆=-⎪⎩, 解得1607a<, 综上,1607a , 所以a 的取值范围为160,7⎡⎤⎢⎥⎣⎦. 【点睛】 本题考查基本不等式的应用,二次函数的图象及其性质,主要考查学生逻辑推理能力和计算能力,属于中档题.。

全国各地初中(九年级)数学竞赛《不等式》真题大全 (附答案)

全国各地初中(九年级)数学竞赛《不等式》真题大全 (附答案)

全国初中(九年级))数学竞赛专题大全竞赛专题5 不等式一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100B .112C .120D .1502.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 394041 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个B .64个C .72个D .81个5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1B .2C .3D .47.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能.A .1B .2C .3D .48.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004B .2005C .2006D .20079.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >> C .c a b >> D .c b a >>二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______.14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________.17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房?21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.23.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明;2ay bz cx k ++<. 26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗?28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高?29.(2021·全国·九年级竞赛)1132x x -+ 30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环)37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克?38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++.41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?竞赛专题5 不等式答案解析 (竞赛真题强化训练)一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100 B .112C .120D .150【答案】B 【解析】 【分析】 【详解】 由已知不等式得13156767,,787878n k k n nk n n +<<<<<<.因由已知条件,67n 与78n 之间只有 唯一一个整数k ,所以76287n n-≤解得112n ≤.当112n =时,9698k ≤≤,存在唯一97k =,所以n 的 最大值为112.故应选B .2.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<【答案】C 【解析】 【分析】 【详解】依题意得27077321544x x x x x x x x ⎧⎧-≥≤≥⎪⎪-≠⇒≠≠⎨⎨⎪⎪>>⎩⎩或且,4x ⇒>且5x ≠.故选C .3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 39 40 41 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对 【答案】C 【解析】 【分析】 【详解】设穿39码和40码的学生分别有x 人和y 人,则()2052310x y +=-++=.(1)若y x ≥,即穿40码的人数最多时,中位数和众数都等于40,故选A 错;(2)若5x y ==,则中位数1(3940)39.52=+=,众数为39和40,中位数不等于众数,故选B 错;(3)平均数[]13853940(10)41342239.75220xp x x =⨯++⨯-+⨯+⨯=-,且010x ≤≤,于是39.2539.75p <≤,满足3940p ≤≤,故选C 正确.所以应选C .4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个 B .64个 C .72个 D .81个【答案】C 【解析】 【分析】 【详解】 解 因98ax b x ⎧≥⎪⎪⎨⎪<⎪⎩中x 的整数值仅为1,2,3,所以01,34,98a b <≤<≤即9a <≤, 2432b <≤,故a 可取1,2,…,9这9个值,b 可取25,26,….32这8个值,所以有序对(),a b 有8972⨯=个.故选C .5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -【答案】C 【解析】 【分析】 【详解】解 由054ax ≤+≤得51ax -≤≤-,且已知0x >,所以0a <,15ax a ≤-≤-. 又不等式054ax ≤+≤的整数解是1,2,3,4,所以101a <-≤,且545a≤-<解得 1a ≤-且5114a -<-≤,故514a -≤<-,所以选C .6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】 【详解】选C .理由:由20094941=⨯,得200941= 又0x y <<2009200941641241541341441===20094114761641025369656===因此,满足条件的整数对(,)x y 为(41,1476),(164,1025),(369,656).共有3对.7.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能. A .1 B .2C .3D .4【答案】C 【解析】 【分析】 【详解】理由:设较大的四位数为x ,较小的四位数为y ,则534x y -=, ① 且22x y -能被10000整除.而22()()x y x y x y -=+-2672()x y =⨯+,则x y +能被5000整除.令()5000x y k k ++=∈N . ②由式①②解得2500267,2500267.x k y k =+⎧⎨=-⎩ 考虑到x ,y 均为四位数,于是,100025002679999,100025002679999,k k ≤+≤⎧⎨≤-≤⎩解得126755832500625k ≤≤. k 可取1,2或3.从而,x 可取的值有3个:2767,5267,7767.8.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004 B .2005C .2006D .2007【答案】B 【解析】 【分析】 【详解】解 (算两次方法)依题意,用剪刀沿不过顶点的直线剪成两部分时,所得各张多边形(包括三角形)的纸片的内角和增加了2180360⨯︒=︒,剪过k 刀后,可得(1)+k 个多边形,这些多边形的内角总和为360360(1)360k k ︒+⨯︒=+⨯︒.另一方面,因为这1k +个多边形中有34个为六十二边形,它们的内角总和为34(622)1802040180⨯-⨯=⨯︒︒,余下的多边形(包括三角形)有13433k k +-=-个,其内角总和至少为(33)180k -⨯︒,于是(1)3602040180(33)180k k +⨯︒≥⨯︒+-⨯︒,解得2005k ≥.其次,我们按如下方式剪2005刀时,可得到符合条件的结论.先从正方形剪下1个三角形和1个五边形,再将五边形剪成1个三角形和1个六边形,…,如此下去,剪了58刀后,得到1个六十二边形和58个三角形,取出其中33个三角形,每个各剪一刀,又可得到33个四边形和33个三角形,对这33个四边形,按上述方法各剪58刀,便得到33个六十二边形和3358⨯个三角形,于是共剪了583333582005++⨯=(刀),故选B .9.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定【答案】B 【解析】 【分析】 【详解】解 由已知条件及加法的单调性得1126352251124c c a b c c c a a a b c a a b b a b c b b ⎧+<++<+⎪⎪⎪+<++<+⎨⎪⎪+<++<+⎪⎩,即1736582371524c a b c c a a b c a b a b c b ⎧<++<⎪⎪⎪<++<⎨⎪⎪<++<⎪⎩①②③由①,②得17816176366c a b c a a a <++<=< (传递性),所以a c >. 由①,③得7673222b a bc c c c <++<=< (传递性),所以b c <.可见,a ,b ,c 的大小关系是a c b >>,故选B . 10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >>C .c a b >>D .c b a >>【答案】D 【解析】 【分析】 【详解】 解:因111221r r r ≥<+=+,故 ()(111a b r r r r r r =+<=+++, 1111r r r r c b r r r x +-+->=+⋅+.所以c b a >>. 故选:D . 二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 【答案】17 【解析】 【分析】 【详解】由已知条件得32,57a b b a >>.令32,57A a b B b a =-=-,则A ,B 均为正整数,解出52,737310a A B b A B =+=+≥+=.当1,1A B ==时等号成立,故b 的最小值为10,这时527a =+=,17a b +=.故应填17.12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______. 【答案】 4352【解析】 【分析】 【详解】 434370222y x ++≤=≤=. 又243x y -=所以24433x x x y x -+-=-=.故当0x =时,x y -取最小值43;当72x =时,x y -取最大值175(4)322+=所以应填45,32.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______. 【答案】6 【解析】 【分析】 【详解】 因122902303030a a a <+<+<<+<,所以1229,,,303030a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦每一个等于0或1.由题设知其中恰有18个等于1, 所以12111213290,1303030303030a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=+==+=+=+==+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦于是111201,123030a a <+<≤+<,解得1183019,61063a a ≤<≤<所以[]106a =.故应填6. 14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________. 【答案】23x ≤≤ 【解析】 【分析】 【详解】由()2226923232(3)25x x x x x x x x x x --+=--=---=---=-,得2030x x -≥⎧⎨-≤⎩即23x ≤≤.故填23x ≤≤.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 【答案】334 【解析】 【分析】 【详解】解 设[]6n m =则(01)6na a m =≤+<从而66n m a =+.当102a ≤<时, 22(021)3n m a a =+≤<,故23n m ⎡⎤=⎢⎥⎣⎦.于是由362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得662332m a m m m a ++==+,从而0a =.此时(6204)06133n m m =<≤≤. 当112a ≤<,223n m a =+由212222m m a m +≤+<+得213n m ⎡⎤=+⎢⎥⎣⎦代入 362n n n ⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得2133m m m a ++=+,得13a =,与112a ≤<矛盾,舍去. 故所有的n 共有334个.16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________. 【答案】67a a x -<<(当0a >时);76a ax <<-(当0a <时);无解(当0a =时).【解析】 【分析】 【详解】解 原不等式化为()()670x a x a +-<,方程()()670x a x a +-=的两根为6a -和7a.若0a >,则67a a -<不等式的解为67a ax -<<; 若0a <,则76a a <-不等式的解为76a a x <<-; 若0a =,则67a a-=,不等式无解. 故应填:67a a x -<< (当0a >时); 76a ax <<-(当0a <时);无解(当0a =时). 17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________. 【答案】196 【解析】 【分析】 【详解】理由:设k 是m ,n 的最大公约数,则m 和n 可以表示为,m ka n kb ==(1k >,a ,b 均为正整数).于是,()3323()371753m n ka kb k k a b +=+=+==⨯.因为1k >且7与53都是质数,23232k a b k a k k +>≥>, 所以7k =且2353k a b +=,即34953a b ⨯+=.由a ,b 是正整数,得1,4a b ==. 所以7,28m n ==.故728196mn =⨯=.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本. 【答案】109 【解析】 【分析】 【详解】设100名学生捐书数分别是12100,,,a a a ,不妨设其中100a 为最大,于是100101000a +=()129100a a a a +++++()101118100a a a a ++++()192027100a a a a +++++(91a +++)9299100a a a +++190190190≤+++111902090=⨯=,所以100109a ≤.另一方面,当12999a a a ====,100109a =时,满足题目要求,故捐书最多的人最多能捐书109本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 【答案】 329 335或334 【解析】 【分析】 【详解】要使10a 最大,必须1a ,2a ,3a ,4a 及6a ,7a ,8a ,9a ,10a 尽量小.又因为1210a a a <<<,且1a ,2a ,3a ,4a 的最小可能值依次为1,2,3,4,于是有2000123≥+++56104a a a ++++,即56101990a a a +++≤.又651a a ≥+,752a a ≥+,853a a ≥+,954a a ≥+,1055a a ≥+,故51990615a ≥+,51975132966a ≤=.又5a 为正整数,所以5329a ≤,于是6710a a a +++=199********-=.又761a a ≥+,862a a ≥+,963a a ≥+,1064a a ≥+,故65101661a +≤,616515a ≤=13305,且6a 为正整数,所以6330a ≤,而651330a a ≥+=,所以6330a =,要7a ,8a ,9a 最小得7331a =,8332a =,9333a =,这时101661a =-()6789335a a a a +++=.但如果取1a ,2a ,3a ,4a 依次为1,2,3,5,那么同样可得569,,,a a a 取上述值,这时10334a =.故应填5a 的最大值是329,这时10a 的值应是335或334. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房? 【答案】宾馆的底楼有客房10间 【解析】 【分析】 【详解】设底楼有x 间客房,则2楼有()5+x 间客房. 简4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩依题意可得不等式组解不等式组得9.611x <<.又x 为正整数,所以10x =. 答:宾馆的底楼有客房10间.21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层? 【答案】这座大楼最多有5层【解析】 【分析】 【详解】设大楼有n 层,则楼层对的个数为(1)2n n -每架电梯停3层,有3232⨯=个楼层对, 所以(1)43,(1)242n n n n -⨯≥-≤,且n 为正整数,所以5n ≤.设置4部电梯使它们停靠的楼层分别为 ()()()()1,4,5,2,4,5,3,4,5,1,2,3满足题目要求,故这座大楼最多有5层.22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.【答案】4x =-或45【解析】 【分析】 【详解】原方程中显然0x ≠,故原方程可化为2241()2x x ⎡⎤+-=⎢⎥⎣⎦.又2222221()21()2()1x x x ⎡⎤⎡⎤⎡⎤+-=+-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,故原方程可化为224[()]1x x=+,所以4x 为整数,设4n x =(n 为整数),原方程又化为2[]14n n =+.于是2124n n n +≤<+,即222(12)2(12)440,2(13)2(12)4802(13)2(13)n n n n n n n n ⎧≤≥+⎧--≥⎪⇒≤≤⎨⎨--<<<⎩⎪⎩或 或.2(12)2(13n <<).又n 为整数,所以1n =-或5n =,故4x =-或4523.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.【答案】见解析 【解析】 【分析】 【详解】设[]x x α=-,则01a ≤≤,于是存在小于n 的正整数r ,使1r rn nα-≤<故[][]1r rx x x n n-+<<+, 故当0k n r ≤≤-时,[][][][]11r k r n rx x x x x n n n n--≤+≤+<++=-, 故[](0)k x x k n r n ⎡⎤+=≤≤-⎢⎥⎣⎦当11n r k n -+≤≤-时,[][][][][]1111111r n r k r n r x x x x x x n n n n n n--+--+=++≤+<++=++<+, 故[]1(11)k x x n r k n n ⎡⎤+=+-+≤≤-⎢⎥⎣⎦,于是[]1111[]()(n n r n r x x x x x x x n n n n n ---+⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=++++++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦[][]21)(1)(1)(1)[]1n r n x x n r x r x n x r n n -+-⎡⎤⎡⎤++++=-++-+=+-⎢⎥⎢⎥⎣⎦⎣⎦①. 又因为[][]1n x r nx n x r +-≤≤+,所以[][]1nx n x r =+-②. 由①及②便知要证等式成立.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 【答案】见解析 【解析】 【分析】 【详解】 (1)1(1)22a a a a +--≤=11(1)(1)22b bc c --≤三式平方后相乘得 31(1)(1)(1)()4a b b c c a -⋅-⋅-≤故()()()1,1,1a b b c c a ---中至少有一个不大于14.25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明; 2ay bz cx k ++<. 【答案】见解析 【解析】 【分析】 【详解】因3()()()()()()k a x b y c z abc xyz ay c z bz a x cx b y =+++=+++++++()()abc xyz k ay bz cx k ay bx cx =++++>++.又0k >,所以2ay bz cx k ++<.26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.【答案】见解析 【解析】 【分析】 【详解】因10abc =,故a ,b ,c 都不为零.又2222()2()0a b c a b c ab bc ca ++=+++++=且2220a b c ++>,所以0ab bc ca ++<,于是1110bc ca ab a b c abc++++=<. 27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗? 【答案】(1)50;(2)60%;(3)15人;(4)正确 【解析】 【分析】 【详解】(1)职工人数47911106350=++++++=;(2)年龄不小于38但小于44岁职工人数占职工总数的百分比为91110100%60%50++⨯=; (3)年龄在42岁以上职工人数()1063415=++-=(人); (4)设该厂职工的年龄平均值为n ,则11(34436738940114210446463)199239.84395050n ≥⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=>且11(36438740942114410466483)209241.84425050n <⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=<,故所作的估计是正确的.28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高? 【答案】2支玫瑰的价格高于3支百合的价格. 【解析】 【分析】 【详解】解 设玫瑰每支x 元,百合每支y 元,依题意得632445242x y x y +>⎧⎨+=-⎩①② 32⨯-⨯②①得918y <,故2y <. 53⨯-⨯①②得1854x >,故3x >.答:2支玫瑰的价格高于3支百合的价格.29.(2021·全国·九年级竞赛)1132x x -+ 【答案】8313x ---≤≤【解析】 【分析】 【详解】解 首先,由1030x x -≥⎧⎨+≥⎩得31x -≤≤.1132x x -≥+① 数上式两边均非负(当31x -≤≤时),两边平方后,整理得 9843x x --≥+②于是980x --≥,即98x ≤-结合31x -≤≤得938x -≤≤-.并且②式两边平方,得2(98)16(3)x x ≥--+,整理得264128330x x ++≥.③因方程264128330x x ++=的两根为1,2831x -±= 所以③的解为831x --≤或831x -+≥结合938x -≤≤-得原不等式的解为8313x ---≤≤30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 【答案】1144x -<<或364x -<<634x <【解析】 【分析】 【详解】解 不等式两边乘以4,化简为5115(1)(1)(1)(1)43414143x x x x +-->+--++-- 移项、整理得22151169161x x ->--,移项、通分得2224(646)0(169)(161)x x x -<--, 可化为222(646)(169)(161)0x x x ---<,即222139()()()0163216x x x ---<. 如右图得2116x <或2393216x <<,解得1144x -<<或364x -<<634x <<31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 【答案】15 【解析】 【分析】 【详解】因n ,k 为正整数,所以0,0n n k >+>. 由题中不等式得151387n k n +>>,即1513187k n >+>所以7687k n >>,故76,87k n k n ><. 令760,780A k n B n k =-≥=-≥,可解出87,76n A B k A B =+=+. 又因为A ,B 均为正整数,1,1A B ≥≥,所以8715n ≥+=.当且仅当1,1A B ==时n 取最小值15,这时k 有唯一值716113⨯+⨯=. 故所求n 的最小值为15.32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.【答案】41x -≤<-或4x <-或15x ≥.【解析】 【分析】 【详解】解 移项,通分整理得1020(1)(4)x x x -+≤++故得(Ⅰ) 1020(1)(4)0x x x -+≥⎧⎨++<⎩,或(Ⅱ)1020(1)(4)0x x x -+≤⎧⎨++>⎩.解(I ) 1541x x ⎧≤⎪⎨⎪-<<-⎩,∴41x -≤<-. 解(Ⅰ)1541x x x ⎧≥⎪⎨⎪--⎩或∴4x <-或15x ≥. 综上所述得,原不等式的解为41x -≤<-或4x <-或15x ≥.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 【答案】1x <-或1x > 【解析】 【分析】 【详解】解 移项通分得(21)(1)(3)(1)0(1)(1)x x x x x x -+-+->-+,即220(1)(1)x x x x -+>-+. 因22172()024xx x,故上述不等式化为()()110,1x x x -+>∴<-或1x >. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 【答案】3a =【解析】 【分析】 【详解】解 依题意,1,7--是方程28210ax ax ++=的两个根,且0a >,由韦达定理得 2(1)(7)a-⨯-=,所以3a =. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数. 【答案】18或20. 【解析】 【分析】 【详解】(1)当16x ≤时,平均数为564x x +=,中位数为2016182+=.由56184x+=,解得16x =,满足16x ≤;(2)当1620x ≤≤时,平均数564x x +=,中位数为202x +.由562042x x++=,解得16x =,不符合1620x <<;当20x ≥时,平均数为564x x +=,中位数为2020202+=.由56204x+=,解得24x =,符合20x ≥.因此,所求中位数为18或20.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环) 【答案】第10次至少要射9.9环 【解析】 【分析】 【详解】设前9次射击共得x 环,依题意得1(9.08.48.19.3)95x x -+++>,解得78.3x <,故78.30.178.2x ≤-=.依题目要求,第10次射击至少要达到的环数为()8.8100.178.29.9⨯+-=(环). 答:第10次至少要射9.9环37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克? 【答案】甲种盐水最多可用49g ,最少可用35g 【解析】【分析】【详解】设3种盐水应分别取,,xg yg zg ,1005%8%9%1007%060060047x y z x y z x y z ++=⎧⎪++=⨯⎪⎪≤≤⎨⎪≤≤⎪≤≤⎪⎩,解得20043100y x z x =-⎧⎨=-⎩所以02004600310047x x ≤-≤⎧⎨≤-≤⎩, 解得3549x ≤≤.答:甲种盐水最多可用40g ,最少可用35g .38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.【答案】见解析.【解析】【分析】【详解】设[],[]x x y y n αββ=+=+=+,其中0,1αβ≤<,m ,n 为整数.(1)若110,022αβ≤<≤<,则021,021,01αβαβ≤<≤<≤+<.这时有 [2][2][22][22]22x y m m m n αβ+=+++=+,[][][]x x y y +++[][()()][]m a m n n αββ=+++++++()22m m n n m n =+++=+,所以[2][2][][][]x y x x y y +=+++.(2)若111,122αβ≤<≤<,则122,122,12αβαβ≤<≤<≤+<.这时有 [2][2][22][22]2121x y m n m n αβ+=+++=+++222m n =++,[][][][][()()][]x x y y m m n n ααββ+++=+++++++()1221m m n n m n =++++=++.所以[2][2][][][]x y x x y y +>+++.(3)若110,122αβ≤<≤<(111,022αβ≤<≤<的情况类似),这时有021α≤<,13122,22βαβ≤<≤+<,这时有[2][2][22][22]221x y m a n m n β+=+++=++,[][][][()()]221x x y y m m n a n m n β+++=+++++++.综上所述,不论何种情况,都有[2][2][][][]x y x x y y +≤+++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)【答案】第10次最少要得9.9环.【解析】【分析】【详解】9.设前5次射击所得平均环数为a ,第10次击中x 环,依题意59.08.48.19.39a a ++++<, ① 59.08.48.19.38.810a x +++++<. ② 由①得8.7a <,从而558.70.143.4a ≤⨯-=.由②得8834.8553.243.49.8x a >--≥-=,所以9.9x ≥,即第10次最少要得9.9环.40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++. 【答案】见解析【解析】【分析】【详解】 (0,0)2a b ab a b +≥≥得 []()()()()11()2()()2()()x x y x z x x y x z x x x y x z x y x z x y x z +++++=⋅=+++++++①. 1()2()()y y y x y zy x y z ≤+++++②. 1()2()()z z z x z yz x z y ≤+++++③由①+②+③即得要证不等式. 41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?【答案】(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.【解析】【分析】【详解】解 (1)设该厂每天生产A 种矿泉水x 吨,则该厂每天生产B 种矿泉水10x +吨,依题意得()200100102000x x -+=,解得30,1040x x =+=.(2)设该厂每天生产A 吨矿泉水y 吨,依题意得该厂每天共生产30401080++=吨矿泉水且()10000200100808000y y ≥+-≥,其中100002003010040=⨯+⨯为该厂原来每天获得的利润,解上述不等式得020y ≤≤.答:(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.【答案】0m ≥【解析】【分析】【详解】解 ①化为()()120x x --<,故①的解为12x <<.②化为()()1210m x x ⎡⎤⎣⎦-+-<.③(1)当1m =,③为()210x -<,即1x <,符合题意.(2)当10m ->,即1m 时,③的解为211x m -<<-符合题意. (3)当10m -<,即1m <时,又分两种情形讨论: 若211m <-,即1m <-时,③的解为21x m <-或1x >,不符合题意; 若211m >-,即1m >-时,③的解为1x <或21x m>-. 要使①与②无公共解,必须221m ≥-即0m ≥,结合1m <得01m ≤<. 综上所述,得到要使①与②无公共解,m 的取值范围是0m ≥.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.【答案】m 的最大值为111-;m 的最小值为57- 【解析】【分析】【详解】 解 由325,231a b c a b c ++=+-=可解出73,711a c b c =-=-,于是()()37373711732m a b c c c c c =+-=-+--=-.由0,0,0a b c ≥≥≥得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩解得37711c ≤≤. 所以m 的最大值为71321111m =⨯-=-,m 的最小值为353277m =⨯-=-. 44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?【答案】这个班的学生人数可能是42,43,44,45,46,47,48.【解析】【分析】【详解】解 设3项活动都参加了的学生有n 人,于是由容斥原理I 知至少参加了一项活动人数为222019(968)38n n ++-+++=+.所以,这个班的学生人数为38442n n ++=+.另一方面参加了两项活动的学生人数分别是9,6,8,所以06n ≤≤,故424248n ≤+≤.综上所述,这个班的学生人数可能是42,43,44,45,46,47,48.。

(完整版)均值不等式专题20道-带答案

(完整版)均值不等式专题20道-带答案

均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________.15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______.20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.2.【解析】【分析】先平方,再消元,最后利用基本不等式求最值.【详解】当时,,,所以最大值为1,当时,因为,当且仅当时取等号,所以,即最大值为,综上的最大值为【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.3.4.【解析】【分析】直接利用代数式的恒等变换和利用均值不等式的应用求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满足,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】本题考查了条件等式下利用基本不等式求最值,考查了变形的能力,考查了计算能力,属于中档题.5.4【解析】【分析】由题意可得经过圆心,可得,再+利用基本不等式求得它的最小值.【详解】圆,即,表示以为圆心、半径等于2的圆.再根据弦长为4,可得经过圆心,故有,求得,则,当且仅当时,取等号,故则的最小值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.6.8【解析】【分析】根据基本不等式求最小值.【详解】令,则当且仅当时取等号.即的最小值为8.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.【解析】【分析】由已知分离,然后进行1的代换后利用基本不等式即可求解.【详解】正实数x,y满足,则当且仅当且即,时取得最小值是故答案为:【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利用基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成立,所以的最小值为,故答案为.【点睛】本题主要考查二次函数的图象与性质,以及基本不等式的应用,属于中档题. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.【解析】【分析】由已知将化为一次式,运用“1”的变换,再利用基本不等式可得.【详解】因为,所以,=(当且仅当,即,时取等号),所以的最小值为,故答案为.【点睛】本题考查基本不等式及利用基本不等式求最值,将所求式运用“1”的变换,化为积为常数的形式是关键,属于中档题.11.【解析】【分析】利用乘“1”法,借助基本不等式即可求出.【详解】正数x,y满足,则,,当且仅当时取等号,故的最小值是12,故答案为:12【点睛】本题考查了基本不等式及其应用属基础题.12.2【解析】【分析】利用“1”的代换,求得最值,再对直接利用基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满足,,,当且仅当,即,时,取等号,的最小值为2.故答案为:2.【点睛】本题考查基本不等式的应用,熟记不等式应用条件,多次运用基本不等式要注意“=”是否同时取到,是中档题13.9【解析】【分析】由条件可得,即有,由基本不等式可得所求最小值.【详解】若,,,即,则,当且仅当取得最小值9,故答案为:9.【点睛】本题考查基本不等式的运用,注意运用“1”的代换,考查化简运算能力,属于基础题.14.【解析】【分析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。

不等式 测试卷-高一上学期数学北师大版(2019)必修第一册

不等式 测试卷-高一上学期数学北师大版(2019)必修第一册

1.3不等式 测试卷一、单选题1.已知0a >,0b >,设2,m a n b =-=,则( ) A .m n ≥B .m n >C .m n ≤D .m n <2.已知a b c ,,为互不相等的正数,222a c bc +=,则下列说法正确的是( ) A .a c -与a b -同号 B .a c -与a b -异号 C .a c -与b c -异号D .a c -与b c -同号3.若0x >,0y >,31x y +=,则3xyx y+的最大值为( ) A .19B .112C .116D .1204.下列结论正确的是( ) A .a b >时22ac bc >,B .0ab <时,a by b a=+的最大值是2-,C .y =D .a b >时一定有a b >5.若0,0m n >>且2m n +=,则41m n+的最小值等于( ) A .2B .52C .3D .926.下列命题是真命题的是( ) A .若a b > ,则 22ac bc > ; B .若,a b c d >> ,则 ac bd > ; C .若a b > ,则 11a b< ;D .若22ac bc > ,则 a b > .7.已知关于x 的不等式()()()2233100,0a m x b m x a b +--->>>的解集为1(,1)(,)2-∞-+∞,则下列结论错误的是( )A .21a b +=B .ab 的最大值为18C .12a b+的最小值为4D .11a b+的最小值为3+ 8.已知实数a 、b 满足1)28()(a b ++=,有结论:①若0a >,0b >,则ab 有最大值;②若a<0,0b <,则a+b 有最小值;正确的判断是( ) A .①成立,②成立 B .①不成立,②不成立 C .①成立,②不成立 D .①不成立,②成立二、多选题9.若,,a b c ∈R ,且a b >,在下列不等式一定成立的是( )A .a c b c +>+B .22ac bc ≥C .20c a b>+D .()()0a b a b +->10.已知a ,b ,c ,d 均为实数,则下列命题正确的是( ) A .若a b >,c d >则ac bd > B .若a b >,c d >则a d b c ->-C .若0a b <<,0c d >>,则a b d c< D .若0ab <,0bc ad ->,则c d a b> 11.以下说法正确的有( ) A .实数0x y >>是11x y<成立的充要条件 B .不等式22a b ab +⎛⎫≤ ⎪⎝⎭对,R a b ∈恒成立C .命题“0R x ∃∈,20010x x ++≥”的否定是“R x ∀∈,210x x ++<”D .若12x x +=,则11222x x -+=12.下列命题中为真命题的是( ) A .设,0x y >,若111-=y x,则1x y -< B .若>x x y y ,则33x y >C .若正数,x y 满足11+≤x y 且()()329-=x y xy ,则23xy =D .若0x y >>,则41++≥+-x x y x y三、填空题13.已知4255m n m n +-=+,利用等式的性质比较m 与n 的大小关系:m ________n (填“>”“<”或“=”).14.当m >1时,m 3与m 2-m +1的大小关系为________.15.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式(组)将题中的不等关系表示为________.16.若实数a 、b 、c 满足221a b c +=≤,则a b c +-的最大值为__________. 四、解答题17.已知0x >,0y >,24x y +=.(1)求12x y+的最小值并说明取得最小值时x ,y 满足的条件;(2)M ∈R ,234x x M x++≤恒成立,求M 的取值范围.18.(1)若正数x y ,满足26x y xy ++=,求x y +的最小值. (2)已知1x >,求27101x x x ++-的最小值.19.若3x >,求23x y x =-的最小值.20.已知实数0x >,0y >,且222()(R).xy x y a x y a =+++∈ (1)当0a =时,求24x y +的最小值,并指出取最小值时,x y 的值; (2)当12a =时,求x y +的最小值,并指出取最小值时,x y 的值.21.(1)设27a <<,12b <<,求3a b +,2a b -,ab 的范围;(2)已知1a b c ++=,求证:13ab bc ca ++≤.22.为了抗击新冠,某区需要建造隔离房间.如图,每个房间是长方体,且有一面靠墙,底面积为48a 平方米(0)a >,侧面长为x 米,且x 不超过8,房高为4米.房屋正面造价400元/平方米,侧面造价150元/平方米.如果不计房屋背面、屋顶和地面费用,问:当x 为多少时,总价最低.参考答案1.A【分析】利用作差法判断m n -的正负即可得出结果.【详解】由题意可知,))222110m n a b -=--=+≥当且仅当1a b ==时,等号成立; 即m n ≥. 故选:A 2.D【分析】利用基本不等式判断出b a >,由a c ,的大小不确定,判断出A 、B 不正确;分类讨论在c b >和b c >时,都有a c -与b c -同号.即可判断C 、D. 【详解】因为a b c ,,为互不相等的正数,所以222a c ac +>. 因为222a c bc +=,所以22bc ac >,所以b a >.所以0a b -<.因为a c ,的大小不确定,所以a c -的符号不确定.故A 、B 不正确; 若c b >,则c b a >>,所以0a c -<,0b c -<,所以a c -与b c -同号. 若b c >,则22222a c bc c +=>,所以22a c >. 因为a c ,为互不相等的正数,所以a c >. 所以a c -与b c -同号. 综上所述:a c -与b c -同号. 故C 错误,D 正确. 故选:D 3.C【分析】利用基本不等式“1”的妙用求得3x yxy +的最小值,即可得到3xy x y+的最大值. 【详解】因为0x >,0y >,31x y +=,则()33131333101016x y x y x y xy y x y x y x ⎛⎫+=+=++=++≥= ⎪⎝⎭, 当且仅当33x y y x =时,即14x y ==时,等号成立; 所以10316xy x y <≤+,即3xy x y +的最大值为116, 故选:C. 4.B【分析】取0c ,即可判断选项A,由0ab <,可得0ab <,0b a <,将a b y b a=+写为a b y b a ⎡⎤⎛⎫⎛⎫=--+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再用基本不等式,即可判断选项B,计算基本不等式中取等条件是否满足,即可判断选项C,取1a b =-=,即可判断选项D. 【详解】解:由题知对于A: 取0c ,则22ac bc =, 故选项A 错误; 对于B:0ab <,0a b∴<,0ba <,a b a b b a b a ⎡⎤⎛⎫⎛⎫∴+=--+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22a b b a ⎛⎫⎛⎫≤---=- ⎪⎪⎝⎭⎝⎭,当且仅当a bb a-=-,即a b =-时取等号, 故选项B 正确; 对于C: 2233y x x =++22223223x x ≥+⋅+,2233x x +=+即21x =-时成立,显然等式不能成立, 即y 取不到的最小值为2故选项C 错误; 对于D: 取1a b =-=, 则a b >, 但是a b =, 故选项D 错误. 故选:B 5.D【分析】巧用常数的关系即可求解41m n+的最小值.【详解】因为0,0m n >>且2m n +=, 所以()4114114194152222m n m n m n m n n m ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝ 当且仅当4m n n m =,即43m =,23n =时等号成立.故选:D. 6.D【分析】举反例排除A ,B ,C ,利用不等式的基本性质判断D.【详解】对于选项A ,当1,2,0a b c =-=-=时,满足a b >,但22ac bc =,故A 错误; 对于选项B , 当1,2,1,2a b c d =-=-=-=-时,满足,a b c d >>,但ac bd <,故B 错误; 对于选项C , 当1,2a b ==-时,满足a b >,但11a b>,故C 错误; 对于选项D ,因为22ac bc >,所以()2220ac bc a b c -=->,所以20,0a b c ->>,则a b >,故D 正确. 故选:D. 7.C【分析】根据不等式的解集与方程根的关系,结合韦达定理,求得232a m +=,31b m -=-,可判定A 正确;结合基本不等式和“1”的代换,可判断B 正确,C 错误,D 正确. 【详解】由题意,不等式()()223310a m x b m x +--->的解集为(]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭,可得230a m +>,且方程()()223310a m x b m x +---=的两根为1-和12,所以131223111223b m a m a m -⎧-+=⎪⎪+⎨⎪-⨯=-⎪+⎩,所以232a m +=,31b m -=-,所以21a b +=,所以A 正确;因为0a >,0b >,所以21a b +=≥18ab ≤, 当且仅当122a b ==时取等号,所以ab 的最大值为18,所以B 正确;由12124()(2)44448b a a b a b a b a b +=++=++≥++=, 当且仅当4b aa b =时,即122a b ==时取等号,所以12a b+的最小值为8,所以C 错误;由()111122333b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当2b a a b=时,即2b a =时,等号成立, 所以11a b+的最小值为322+D 正确. 故选:C . 8.C【分析】由已知结合基本不等式及其应用条件分别检验①②即可判断. 【详解】解:因为1)28()(a b ++=, 所以(2)6ab a b =-+,①0a >,0b >,222242(2)(22()())44a b a b a b +=+++-≥++=,当且2a b =时取等号,所以64ab -≥,解得2ab ≤,即ab 取到最大值2;①正确; ②a<0,0b <, 当20a +>时,8881232(2)323222a b a a a a a a +=+-=++-≥+⋅=+++, 当且仅当822a a +=+时取等号,此时222a =不符合a<0,不满足题意; 当20a +<时,888123(2)3342222a b a a a a a a ⎡⎤+=+-=++-=--+--≤--⎢⎥+++⎣⎦当且仅当()822a a -+=-+时取等号,此时222a =- 此时取得最大值,没有最小值,②错误. 故选:C .【点睛】方法点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值. 9.AB【分析】根据已知条件,结合不等式的性质,以及特殊值法,即可求解. 【详解】对于A ,∵a b >,c c =,∴a c b c +>+,故A 正确, 对于B ,2c ≥0,a b >,∴22ac bc >,故B 正确,对于C ,令0c ,则20c a b =-,故C 错误, 对于D ,令1a =,1b ,满足a b >,但()()0a b a b +-=,故D 错误.故选:AB. 10.BC【分析】利用特殊值、不等式的性质、差比较法等知识确定正确答案. 【详解】A 选项,2,1,1,2a b c d ===-=-,,a b c d >>,但ac bd =,所以A 选项错误.B 选项,由于a b >,c d >,所以d c ->-,所以a d b c ->-,所以B 选项正确.C 选项,由于0a b <<,0c d >>,所以,0a b ->->,110d c>>, 所以0,a b a b d c d c-->><,C 选项正确. D 选项,由于0ab <,0bc ad ->,所以0,c d bc ad c da b ab a b--=<<,D 选项错误. 故选: BC 11.BCD【分析】对于A ,举反例排除即可;对于B ,利用作差法与完全平方公式即可判断; 对于C ,根据特称命题否定的方法判断即可; 对于D ,直接解方程得到1x =,代入1122x x -+即可判断. 【详解】对于A ,当11x y<时,可能1,2x y =-=-,不能得到0x y >>,故A 错误; 对于B ,()222220244a b a b a ab b ab -+-+⎛⎫-==≥ ⎪⎝⎭,当且仅当a b =时,等号成立, 所以22a b ab +⎛⎫≤ ⎪⎝⎭对,R a b ∈恒成立,故B 正确;对于C ,特称命题的否定是全称命题,其否定方法为“改量词,否结论”,所以命题“0R x ∃∈,20010x x ++≥”的否定是“R x ∀∈,210x x ++<”,故C 正确;对于D ,因为12x x+=,所以2120x x x ⎧+=⎨≠⎩,则22100x x x ⎧-+=⎨≠⎩,即()2100x x ⎧-=⎪⎨≠⎪⎩,故1x =,所以11112222112x x --+=+=,故D 正确. 故选:BCD. 12.BCD【分析】对于A,取一个反例即可,对于B,分情况讨论,x y 大小即可,对于C,根据等式化简,根据不等式找范围,求值,对于D,将x 写成22x y x y +-+的形式,然后分别用基本不等式,注意取等条件.【详解】解:由题知,对于选项A,当44,5x y ==时,满足111-=y x ,但是1->x y ,所以选项A 错误;对于选项B,当,0x y >时,>x x y y 可化为22x y >,即x y >,所以33x y >成立, 当0,0x y ><时,不等式>x x y y 成立,33x y >也成立, 当0,0x y <>时,不等式>x x y y 不成立,舍, 当0,0x y <<时,不等式>x x y y 可化为22x y ->-, 即22x y <,即x y >,所以33x y >成立,当0x =时,>x x y y 要想成立,0y <,此时33x y >成立, 当0y =时,>x x y y 要想成立,0x >,此时33x y >成立, 综上,33x y >成立,所以选项B 正确; 对于选项C,1123,23,x y xy x y+≤+≤ 2222222()12,122x y x y x y x y xy ∴+≤∴+≤-,()()222333,929x y xy x y xy x y -=+-=∴,22332292122x y x y xy x y xy +=≤-∴+,即2291240x y xy -+≤,即2(32)0xy -≤,此时若想成立,23xy =,故选项C 正确; 对于选项D,414122x y x y x x y x y x y x y+-++=++++-+- 4422222x y x y x y x y +++≥⋅=++当且仅当42x y x y+=+,即2x y +=, 112222x y x y x y x y--+≥⋅=--当且仅当12x y x y-=-,即2x y -=, 413222x y x y x y x y+-∴+++≥+-当且仅当222x y x y ⎧+=⎪⎨-=⎪⎩即322x y ==,故41++≥+-x x y x y选项D 正确, 故选:BCD. 13.>【分析】化简得到503m n -=>,得到答案. 【详解】4255m n m n +-=+,故335m n -=,即503m n -=>,故m n >. 故答案为:>14.m 3>m 2-m +1## m 2-m +1<m 3 【分析】应用作差法求比较大小即可.【详解】∵m 3-(m 2-m +1)=m 3-m 2+m -1=m 2(m -1)+(m -1)=(m -1)(m 2+1),又m >1, ∴(m -1)(m 2+1)>0,即m 3>m 2-m +1. 故答案为:m 3>m 2-m +1.15.()*,,2355yx z x y z N y z ⎧≤≤⎪∈⎨⎪+≥⎩【分析】根据已知条件可得出不等式组.【详解】由题意可得()*,,2355yx z x y z N y z ⎧≤≤⎪∈⎨⎪+≥⎩. 故答案为:()*,,2355yx z x y z N y z ⎧≤≤⎪∈⎨⎪+≥⎩. 16.12##0.5 【分析】利用基本不等式得到a b +≤a b c +-转化为a b c c +-,利用二次函数求出最大值.【详解】因为()()2222222a b a ab b a b +=++≤+,所以a b +a b +≤所以a b c c +-≤.因为221a b c +=≤,所以01c ≤≤,所以01≤≤.因为212a b c c +-≤=-+⎭,=a b c +-取得最大值12.故答案为:12.17.(1)最小值94,当x ,y 满足43x y ==时取得最小值. (2)实数M 的取值范围是{}|7M M ≤.【分析】(1)将12x y +化为()12421x y x y ⎛⎫⨯+ ⎝+⎪⎭,展开后由基本不等式进行求解; (2)将234x x x++化为43x x ++,使用基本不等式求出最小值即可求解 【详解】(1)∵24x y +=, ∴()1211212221444x y x y x y y x x y ⎛⎫⎛⎫+=⨯+=⨯+++ ⎪ ⎪⎝⎝+⎭⎭, ∵0x >,0y >,∴20x y >,20y x>, ∴由基本不等式,有22222244x y x y y x y x+≥⋅, 当且仅当22x y y x =,即43x y ==时,等号成立, ∴()121221914144444x y x y y x ⎛⎫+=⨯+++≥++= ⎪⎝⎭, 即12x y +的最小值为94,当且仅当43x y ==时,取得最小值. (2)由已知, 23443x x x x x++=++, 当0x >时,由基本不等式,有442244x x x x +≥⋅, 当且仅当4x x=,即2x =时等号成立, ∴23443437x x x x x++=++≥+=, 即已知0x >,当且仅当2x =时,234x x x ++取最小值,i 2m n734x x x ⎛⎫= ⎪++⎝⎭, 又∵234x x M x++≤恒成立, ∴min2734M x x x ⎛⎫≤= ⎪⎝⎭++,∴实数M 的取值范围是{}|7M M ≤.18.(1)3 ;(2)9+.【分析】(1)由题得261x y x +=-,又得8(1)31x y x x +=-++-即可解决; (2)令1t x =-,得27101891x x t x t++=++-即可解决. 【详解】由题得,正数x y ,满足26x y xy ++=,因为26x y xy ++=, 所以2601,10x y x x x +⎧=>⎪⇒>-⎨⎪>⎩所以26882(1)333;111x x y x x x x x x ++=+=++=-++≥=--- 当且仅当8(1)1x x -=-,得2(1)8x -=,即1x =+时,等号成立; 所以x y +的最小值为3.(2)因为1x >,所以10x ->,令1t x =-,所以0t >,所以222710(1)7(1)10918189991x x t t t t t x t t t ++++++++===++≥=+-当且仅当t =1x =+所以1x >时,27101x x x ++-的最小值为9+ 19.12【分析】利用换元法将3x -换成(0)t t >(要注意变量的取值),则函数变成96y t t=++,利用均值不等式即可求解.【详解】设3(0)t x t =->,则3x t =+, 所以22(3)963x t y t x t t+===++-612≥=,(当且仅当9t t =时,即3t =,也即6x =时取等号) 所以23x y x =-的最小值为12.20.(1)最小值为322+1222x y ++==(2)最小值为4,此时2x y ==.【分析】(1)变形得到11122x y+=,利用基本不等式“1”的妙用,求出最小值及此时,x y 的值; (2)变形得到()()262xy x y x y =+++,利用()24x y xy +≤得到关于()()()22322x y x y x y ++≤++,求出x y +的最小值及此时,x y 的值. 【详解】(1)0a =时,2xy x y =+,因为0,0x y >>, 所以11122x y+=, 故()22242411232322122x y x y x y x y y x y x y x ⎛⎫+=+=+++≥+⋅+ ⎪⎝⎭+ 当且仅当2x y y x =,即1222x y ++= (2)12a =时,()22122xy x y x y =+++, 变形为()()2242xy x y x y =+++,即()()22622xy xy x y x y =++++,()()262xy x y x y =+++, 其中()2362x y xy +≤, 故()()()22322x y x y x y ++≤++, 因为0,0x y >>,解得:4x y +≥,当且仅当2x y ==时,等号成立,所以x y +的最小值为4,此时2x y ==.21.(1)5313a b <+<,2213a b <-<,17a b<<;(2)证明见解析. 【分析】(1)结合不等式的基本性质即可求解;(2)利用基本不等式的性质可知222a b ab +≥,222b c bc +≥,222a c ac +≥,从而可得222a b c ab bc ac ++≥++,再结合()21a b c ++=即可得证.【详解】(1)27a <<,12b <<,4214a ∴<<,336b <<,21b -<-<-,1112b <<, 5313a b ∴<+<,2213a b <-<,17a b<<. 故5313a b <+<,2213a b <-<,17a b <<. (2)证明:由1a b c ++=,两边平方得2222221a b c ab bc ac +++++=, 根据基本不等式有222a b ab +≥,222b c bc +≥,222a c ac +≥, 当且仅当13a b c ===时等号成立, 将上述3个不等式相加得()2222222a b c ab bc ac ++≥++,即222a b c ab bc ac ++≥++,所以2221222333a b c ab bc ac ab bc ac =+++++≥++, 整理得13ab bc ca ++≤,当且仅当13a b c ===时等号成立.22.当01a <≤时,x =1a >时,8x =时总价最低【分析】根据题意表达出总造价()768001200,08a y x x x =+<≤,再根据基本不等式,结合对勾函数的性质分类讨论分析即可. 【详解】由题意,正面长为48a x 米,故总造价48400421504a y x x =⨯⨯+⨯⨯,即()768001200,08a y x x x=+<≤.由基本不等式有768001200a y x x =+≥768001200a x x =,即x =.故当8,即1a ≤,x =8,即1a >时,由对勾函数的性质可得,8x =时总价最低;综上,当01a <≤时,x =1a >时,8x =时总价最低.。

高考数学压轴专题新备战高考《不等式》经典测试题含解析

高考数学压轴专题新备战高考《不等式》经典测试题含解析

【高中数学】《不等式》考试知识点一、选择题1.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.2.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y=-+的最大值为n,则2nxx⎛-⎪⎝⎭的展开式中2x项的系数为( )A.60 B.80 C.90 D.120【答案】B【解析】【分析】画出可行域和目标函数,根据平移得到5n=,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,32z x y=-+,即322zy x=+,故z表示直线与y截距的2倍,根据图像知:当1,1x y=-=时,32z x y=-+的最大值为5,故5n=.52xx⎛-⎪⎝⎭展开式的通项为:()()35552155221rrr rr r rrT C x C xx---+⎛=⋅-=⋅⋅-⋅⎪⎝⎭,取2r=得到2x项的系数为:()225252180C-⋅⋅-=.故选:B.【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力. 3.关于x的不等式0ax b->的解集是(1,)+∞,则关于x的不等式()(3)0ax b x+->的解集是()A.(,1)(3,)-∞-+∞U B.(1,3)-C .(1,3)D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.4.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5 BCD【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.5.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=,所以()2tan tan2tan2tan11tan tan13tan3tantanαββαβαββββ--===+++,又因为β为锐角,所以tan0β>,根据基本不等式213tantanββ≤=+当且仅当tanβ=时等号成立,因为,22ππαβ⎛⎫-∈-⎪⎝⎭,且函数tany x=在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则αβ-的最大值为6π.故选:B.【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.6.已知变量,x y满足240240x yx yx+-≥⎧⎪+-≤⎨⎪≥⎩,则24x y--的最小值为()A.5B.8C.15D.163【答案】D【解析】【分析】24x y--=表示点(,)x y到直线240x y--=的距离,作出可行域,数形结合即可得到答案.【详解】因为24x y--=,所以24x y--可看作为可行域内的动点到直线240x y--=点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+, 所以24x y --的最小值为1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.7.若,,则( )A .B .C .D .【答案】C【解析】 【分析】 【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C . 【考点】指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.8.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4 C .6 D .7 【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值. 【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径, 设AB x =,AC y =,AD z =,球半径为R , 因为三棱锥外接球的表面积为8π, 则284R π=π, 解得2R =,所以体对角线为2,所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y zS x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4, 故选:B. 【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.9.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .42B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.10.已知实数x ,y 满足20x y >>,且11122x y x y+=-+,则x y +的最小值为( ).A .335+ B 423+ C 243+ D 343+ 【答案】B 【解析】 【分析】令22x y m x y n-=⎧⎨+=⎩,用,m n 表示出x y +,根据题意知111m n +=,利用1的代换后根据基本不等式即可得x y +的最小值.【详解】20,20,20x y x y x y >>∴->+>Q ,令22x y m x y n -=⎧⎨+=⎩,解得2525m n x n my +⎧=⎪⎪⎨-⎪=⎪⎩,则0,0m n >>,111m n +=,223111555m n n m n m x y m n +-+⎛⎫⎛⎫∴+=+⨯=⨯+ ⎪⎪⎝⎭⎝⎭13113(455n m m n ⎛⎫=⨯+++≥⨯+ ⎪⎝⎭=当且仅当3n mm n=,即m =,即22)x y x y -=+即x y ==. 故选:B . 【点睛】本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.11.已知,a b 都是正实数,则222a ba b a b+++的最大值是( )A .2B .3-C .1D .43【答案】A 【解析】 【分析】设2,2m a b n a b =+=+,将222a b a b a b+++,转化为2222233a b n ma b a b m n +=--++,利用基本不等式求解. 【详解】设2,2m a b n a b =+=+, 所以22,33m n n ma b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n mm n=时取等号.所以222a b a b a b +++的最大值是23-. 故选:A 【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.12.已知实数,x y满足线性约束条件120xx yx y≥⎧⎪+≥⎨⎪-+≥⎩,则1yx+的取值范围为()A.(-2,-1]B.(-1,4]C.[-2,4) D.[0,4]【答案】B【解析】【分析】作出可行域,1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,(1,3)A,3(1)410QAk--==-,过Q与直线0x y+=平行的直线斜率为-1,∴14PQk-<≤.故选:B.【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1yx+表示动点(,)P x y与定点(0,1)Q-连线斜率,由直线与可行域的关系可得结论.13.已知函数()2222,2{log,2x x xf xx x-+≤=>,若0Rx∃∈,使得()254f x m m≤-成立,则实数m的取值范围为()A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.14.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.15.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( ) A.3BC.3D.【答案】A 【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求. 【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---,∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B -++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan B B +≥=,当且仅当tan B =时取等号,∴min111tan tan tan 3A B C ⎛⎫++=⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.16.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.17.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A .169πB .89π C .1627πD .827π 【答案】A 【解析】 【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-,∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r rV r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立.∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.18.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据平移得到答案. 【详解】如图所示,画出可行域和目标函数,2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3. 故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.19.设x ∈R ,则“|1|1x -<”是“220x x --<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.20.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均值不等式测试题
一、选择题
1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( )
A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( )
A .x 2+1≥x
B .1
12+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( )
A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值22
4.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.
210 5.设a>0,b>0,则以下不等式中不恒成立的是( )
A.(a+b )(b
a 11+)≥4 B.a 3+
b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥-
6.下列结论正确的是( )
A .当x>0且x ≠1时,lgx+
x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x +x 1 ≥2 D .当0<x ≤2时,x -x
1无最大值 7.若a 、b 、c>0且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( )
A .13-
B .13+
C .223+
D .223-
二.填空题:
8.设x>0,则函数y=2-x
4-x 的最大值为 ;此时x 的值是 。

9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。

10.函数y=1
42-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=2
42
+x x (x ≠0)的最大值是 ;此时的x 值为 _______________.
三.解答题:
12.函数y=log a (x+3)-1(a>0,a ≠1)的图象恒过定点A ,若点A 在直线mx+ny+1=0
上,其中mn>0,求n m 11+的最小值为。

13.某公司一年购某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 为多少吨?
14.已知x,y ∈(-3,3)且xy =-1,求s=
22121233y
x -+-的最小值。

参考答案
选择题:
1.D 解析:只需比较a 2+b 2与a +b 。

由于a 、b ∈(0,1),∴a 2<a,b 2<b ∴a 2+b 2<a +b ;
2.B
3.B 解析:y x 82+=2333222222y x y x y x +=≥+=22 4。

A 解法一:设x=sin α,y=cos α,m=3sin β,n=3cos β,其中α,β∈∈(0°,180°)其他略。

解法二、m 2+n 2=322)3()3(
n m +⇔=1∴2=x 2+y 2+22)3()3(n m + ≥)(32ny mx +∴mx+ny ≤3。

5.B 解析:
A 、C 由均值不等式易知成立;D 中,若a<b ,结论显然,若a ≥b 则b a b a -≥-0)(2222≤-=-≥+-≥-⇔a b b ab b b ab a b a 这显然也成立。

取a=0.1,b=0.01,可验证
B 不成立。

6.B 解析:
A 中lgx 不一定为正;C 中等号不成立;D 中函数为增函数,闭区间上有最值。

故选
B 。

7.D
解析:(2a+b+c)2=4a 2+(b 2+c 2)+4ab+4ac+2bc ≥4a 2+2bc+4ab+4ac+2bc
=4(a 2+bc+ac+ab)=4[a(a+b+c)+bc]=4(324-)=4(13-)2当且仅当b=c 时等号成立。

∴最小值为223-。

二.填空题:
8.-2,2
9.2,2
10 。

解析:y=142-+-x x x =14-+x x =11
4)1(+-+-x x ≥5,当且仅当x=3时等号成立。

11。

解析:f(x)=242
+x x =422212122=≤+x
x ,此时x =42。

三.解答题:
12.解析:∵y=log a x 恒过定点(1,0),∴y=log a (x+3)-1恒过定点(-2,-1),
∴-2m-n+1=0,即2m +n =1,∴n m 11+=(n m 11+)(2m +n )=2+2+n
m m n 4+≥8,∴最小值为8。

13.解析:设一年的总运费与总存储费用之和为y ,则x x x x y 41600244400⨯≥+⨯==160,当且仅当x=20时等号成立。

最小值为160。

14.解析:s=
22121233y x -+-≥)912)3(36222y x --=12)312(37122y x +-≥125
12362371=-。

评注:两次等号成立的条件都一样。

相关文档
最新文档