电磁兼容性(EMC)仿真

合集下载

汽车电子产品电磁兼容性分析、仿真及优化设计

汽车电子产品电磁兼容性分析、仿真及优化设计

3、PCB布局技术:根据电磁兼容性要求,合理安排PCB上元器件的位置和连接 方式,以提高电磁干扰的抵抗能力。例如,可以将敏感元器件布置在PCB的低 干扰区域,或者优化线束走线方式以减小电磁辐射。
在关键技术方面,需要以下几个方面:
1、电路设计:合理的电路设计可以有效地减小电磁干扰。例如,选择合适的 元器件和电路拓扑结构,避免高频信号的突变和电流尖峰的产生。
2、搜集相关资料:收集与汽车电子电磁兼容性相关的文献资料,了解已有研 究成果和不足之处。
3、理论分析和仿真模拟:利用电磁场理论、数值仿真软件等技术手段,对汽 车电子设备在不同电磁环境下的性能进行预测和分析。
4、实验设计与实施:根据理论分析和仿真模拟的结果,设计实验并进行实施。 实验过程中需要实验条件、测试方法、数据处理等方面的问题。
展望未来,随着航空技术的不断发展和电子设备的日益复杂化,PCB布局电磁 兼容性设计将成为航空发动机电子控制器设计中越来越重要的研究方向。研究 人员需要进一步深入研究和探索新的设计方法,以提升航空发动机电子控制器 的性能和可靠性。应注重开展跨学科合作,将电磁兼容性设计与航空发动机电 子控制器的其他关键技术相结合,实现全面优化设计。
在电子设备中,PCB布局的电磁兼容性是指PCB在特定环境中对电磁干扰(EMI, Electromagnetic Interference)的抵抗能力和不会产生影响其他电路或系 统的电磁辐射水平。对于航空发动机电子控制器来说,其工作环境中存在大量 的电磁干扰,如雷电、无线电信号、电力线等。因此,PCB布局的电磁兼容性 设计对于保证航空发动机电子控制器的稳定性和可靠性至关重要。
3、加强屏蔽措施:对于关键电路和元器件,可以采用金属外壳或导电材料进 行屏蔽,以减少电磁干扰的影响。

电磁兼容性(EMC)仿真

电磁兼容性(EMC)仿真

设计早期对电磁兼容性(EMC)问题的考虑随着产品复杂性和密集度的提高以及设计周期的不断缩短,在设计周期的后期解决电磁兼容性(EMC)问题变得越来越不切合实际。

在较高的频率下,你通常用来计算EMC的经验法则不再适用,而且你还可能容易误用这些经验法则。

结果,70%~90%的新设计都没有通过第一次EMC测试,从而使后期重设计成本很高,如果制造商延误产品发货日期,损失的销售费用就更大。

为了以低得多的成本确定并解决问题,设计师应该考虑在设计过程中及早采用协作式的、基于概念分析的EMC仿真。

较高的时钟速率会加大满足电磁兼容性需求的难度。

在千兆赫兹领域,机壳谐振次数增加会增强电磁辐射,使得孔径和缝隙都成了问题;专用集成电路(ASIC)散热片也会加大电磁辐射。

此外,管理机构正在制定规章来保证越来越高的频率下的顺应性。

再则,当工程师打算把辐射器设计到系统中时,对集成无线功能(如Wi-Fi、蓝牙、WiMax、UWB)这一趋势提出了进一步的挑战。

传统的电磁兼容设计方法正常情况下,电气硬件设计人员和机械设计人员在考虑电磁兼容问题时各自为政,彼此之间根本不沟通或很少沟通。

他们在设计期间经常使用经验法则,希望这些法则足以满足其设计的器件要求。

在设计达到较高频率从而在测试中导致失败时,这些电磁兼容设计规则有不少变得陈旧过时。

在设计阶段之后,设计师制造原型并对其进行电磁兼容性测试。

当设计中考虑电磁兼容性太晚时,这一过程往往会出现种种EMC问题。

对设计进行昂贵的修复通常是唯一可行的选择。

当设计从系统概念设计转入具体设计再到验证阶段时,设计修改常常会增加一个数量级以上。

所以,对设计作出一次修改,在概念设计阶段只耗费100美元,到了测试阶段可能要耗费几十万美元以上,更不用提对面市时间的负面影响了。

电磁兼容仿真的挑战为了在实验室中一次通过电磁兼容性测试并保证在预算内按时交货,把电磁兼容设计作为产品生产周期不可分割的一部分是非常必要的。

电路中的电磁兼容性(EMC)设计与测试

电路中的电磁兼容性(EMC)设计与测试

电路中的电磁兼容性(EMC)设计与测试在现代电子产品的设计与制造过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)是一个至关重要的因素。

EMC设计与测试旨在确保电子设备能够在电磁环境中正常运行并且不会对其他设备和系统造成干扰。

本文将重点介绍电路中的EMC设计与测试的关键要点。

一、什么是电磁兼容性(EMC)设计与测试电磁兼容性(EMC)是指电子设备在实际应用中与周围环境的电磁场相互作用时能够正常工作的能力。

正常工作包括两个方面,一是设备本身不会受到来自外部电磁场的干扰,二是设备自身产生的电磁干扰不会超出规定的范围,不会对其他设备和系统造成干扰。

EMC设计与测试就是为了确保电子设备在现实环境中能够满足上述要求。

EMC设计的关键在于避免或减小电磁干扰的产生,而EMC 测试则是验证设计的有效性和设备的兼容性。

通过EMC设计与测试,可以提高电子设备的性能和可靠性,降低设备故障率和维修成本。

二、EMC设计与测试的关键要点1. 设计阶段的EMC考虑在电子产品的设计阶段,应该考虑EMC设计的要求。

首先,需要了解产品的使用环境和电磁兼容性的相关标准。

其次,要合理规划电路板的布局和内部组件的排列,避免干扰源之间的相互影响。

另外,需要合理选择电磁屏蔽材料和滤波器,减少电磁辐射和敏感元器件的干扰。

2. 线路板布局与屏蔽设计线路板布局是EMC设计中的重要环节。

应该避免长线和大回路的存在,缩短信号线长度,合理规划地线和电源线的走向。

此外,还应注意信号线与电源线的交叉和平行布局,减少互相之间的干扰。

屏蔽设计是减小电磁辐射和电磁感应的重要手段。

通过采用合适的屏蔽材料,如金属壳体或导电涂层,并合理设置接地结构,可以有效地屏蔽和隔离电磁波,减小干扰。

3. 滤波器的选择与应用滤波器在EMC设计中起到了重要的作用。

电子设备通常需要使用电源滤波器和信号滤波器,以减少干扰源对电源和信号线的影响。

电源滤波器主要工作在电源输入端,用于滤除电源线上的高频噪声。

芯片设计中的电磁兼容性分析技术有哪些创新

芯片设计中的电磁兼容性分析技术有哪些创新

芯片设计中的电磁兼容性分析技术有哪些创新在当今科技飞速发展的时代,芯片作为电子设备的核心组件,其性能和可靠性至关重要。

而电磁兼容性(EMC)是确保芯片在复杂电磁环境中正常工作、不干扰其他设备且自身不受干扰的关键因素。

随着芯片集成度的不断提高、工作频率的增加以及应用场景的日益多样化,传统的电磁兼容性分析技术已经难以满足需求,因此一系列创新的技术应运而生。

一、三维全波电磁场仿真技术传统的电磁兼容性分析方法大多基于二维模型或简化的三维模型,这在面对日益复杂的芯片结构时存在较大的局限性。

三维全波电磁场仿真技术的出现是一项重大创新。

它能够精确地模拟芯片内部的电磁场分布,考虑到多层布线、过孔、封装等复杂结构的影响。

通过这种技术,设计人员可以更准确地预测电磁干扰的产生和传播路径,从而优化芯片布局和布线,提高电磁兼容性。

例如,在高速数字芯片设计中,信号的传输速度越来越快,信号完整性问题变得尤为突出。

三维全波电磁场仿真可以帮助分析高速信号在传输线上的反射、串扰等现象,从而合理地设计匹配电阻、端接电容等,减少信号失真和电磁辐射。

二、电磁拓扑分析方法电磁拓扑分析方法是将芯片及其周边环境看作一个由多个电磁单元组成的网络,通过分析这些单元之间的连接关系和电磁耦合特性,来评估整个系统的电磁兼容性。

这种方法的创新之处在于能够将复杂的电磁问题分解为相对简单的子问题,从而降低分析的难度和计算量。

在芯片设计中,电磁拓扑分析可以帮助确定关键的电磁耦合路径,针对性地采取屏蔽、滤波等措施。

比如,对于电源分配网络,通过电磁拓扑分析可以找出容易产生噪声的节点和路径,进而优化电源滤波电容的布局和参数,提高电源的稳定性和抗干扰能力。

三、多物理场协同仿真技术芯片在工作过程中会同时受到电磁场、热场、力场等多种物理场的作用,这些物理场之间相互影响。

多物理场协同仿真技术的创新在于能够同时考虑这些物理场的耦合效应,从而更全面地评估芯片的电磁兼容性。

以芯片的热效应为例,温度的升高会导致材料的电导率发生变化,进而影响电磁性能。

电磁兼容性(EMC)仿真

电磁兼容性(EMC)仿真

设计早期对电磁兼容性(EMC)问题的考虑随着产品复杂性和密集度的提高以及设计周期的不断缩短,在设计周期的后期解决电磁兼容性(EMC)问题变得越来越不切合实际。

在较高的频率下,你通常用来计算EMC的经验法则不再适用,而且你还可能容易误用这些经验法则。

结果,70%~90%的新设计都没有通过第一次EMC测试,从而使后期重设计成本很高,如果制造商延误产品发货日期,损失的销售费用就更大。

为了以低得多的成本确定并解决问题,设计师应该考虑在设计过程中及早采用协作式的、基于概念分析的EMC仿真。

较高的时钟速率会加大满足电磁兼容性需求的难度。

在千兆赫兹领域,机壳谐振次数增加会增强电磁辐射,使得孔径和缝隙都成了问题;专用集成电路(ASIC)散热片也会加大电磁辐射。

此外,管理机构正在制定规章来保证越来越高的频率下的顺应性。

再则,当工程师打算把辐射器设计到系统中时,对集成无线功能(如Wi-Fi、蓝牙、WiMax、UWB)这一趋势提出了进一步的挑战。

传统的电磁兼容设计方法正常情况下,电气硬件设计人员和机械设计人员在考虑电磁兼容问题时各自为政,彼此之间根本不沟通或很少沟通。

他们在设计期间经常使用经验法则,希望这些法则足以满足其设计的器件要求。

在设计达到较高频率从而在测试中导致失败时,这些电磁兼容设计规则有不少变得陈旧过时。

在设计阶段之后,设计师制造原型并对其进行电磁兼容性测试。

当设计中考虑电磁兼容性太晚时,这一过程往往会出现种种EMC问题。

对设计进行昂贵的修复通常是唯一可行的选择。

当设计从系统概念设计转入具体设计再到验证阶段时,设计修改常常会增加一个数量级以上。

所以,对设计作出一次修改,在概念设计阶段只耗费100美元,到了测试阶段可能要耗费几十万美元以上,更不用提对面市时间的负面影响了。

电磁兼容仿真的挑战为了在实验室中一次通过电磁兼容性测试并保证在预算内按时交货,把电磁兼容设计作为产品生产周期不可分割的一部分是非常必要的。

cst仿真emc案例

cst仿真emc案例

cst仿真emc案例
CST仿真软件是一款广泛应用于电磁场仿真领域的工具,它可以用于解决许多不同的电磁兼容性(EMC)问题。

以下是一些CST仿真在EMC案例中的应用:
1. 电磁辐射和敏感性分析,CST可以用来模拟电子设备的电磁辐射特性,以及其他设备对电磁辐射的敏感性。

这对于评估设备的电磁兼容性非常重要,尤其是在电子产品中频繁使用的情况下。

2. 电磁干扰分析,CST可以帮助工程师模拟和分析电磁干扰源对周围设备的影响。

这种分析可以帮助设计人员识别和解决潜在的电磁干扰问题,确保设备在实际使用中不会相互干扰。

3. 电磁场辐射和传输特性分析,CST可以用来模拟天线、微波器件和其他电磁场辐射设备的性能。

这对于设计和优化无线通信系统、雷达系统和其他电磁传输设备非常有帮助。

4. 电磁防护设计,CST可以帮助工程师模拟和分析电磁防护结构的性能,以确保设备在电磁环境中能够正常运行并且不受外部电磁干扰的影响。

总之,CST仿真软件在EMC案例中的应用非常广泛,可以帮助工程师解决各种与电磁兼容性相关的问题,从而确保设备在现实环境中的可靠性和稳定性。

hyperlynx仿真流程

hyperlynx仿真流程

hyperlynx仿真流程Hyperlynx是一款专业的电磁兼容性(EMC)和信号完整性(SI)仿真工具,可用于分析和优化高速PCB设计中的信号传导和电磁干扰问题。

下面是Hyperlynx仿真流程的详细描述。

1. 建立工程文件:首先,需要在Hyperlynx中创建一个新的工程文件。

选择合适的文件名和保存路径,并确保新建的工程文件与待仿真的PCB设计文件关联。

2. 导入PCB设计:将待仿真的PCB设计文件导入到Hyperlynx中。

根据实际情况选择导入PCB文件的格式,比如OBD++、IPC-2581或者Gerber文件等。

确保导入后的PCB布局与原始设计文件一致。

3. 设置仿真参数:在Hyperlynx中,需要根据仿真需求设置合适的信号完整性和电磁兼容性仿真参数。

这些参数包括传输线特性阻抗、时钟频率、板层堆叠、信号源和终端模型等。

4. 创建信号网络:利用Hyperlynx中的布线工具创建信号网络,包括引脚、信号源、信号终端和传输线等。

确保网络连接正确无误。

5. 添加探针:在关键节点上添加探针,以便监测和分析信号传输过程中的电压波形、电流、噪声等参数。

6. 运行仿真:设置好仿真参数后,可以开始运行仿真。

可以选择不同的分析类型,如时域仿真、频域仿真、串扰仿真等。

根据仿真结果,可以评估信号完整性和电磁兼容性的性能指标。

7. 优化设计:根据仿真结果,可以对PCB设计进行优化。

例如,调整布线、改进接地方案、减小信号回返路径等,以提高信号完整性和电磁兼容性。

8. 重新仿真:经过设计优化后,需要重新进行仿真,以评估优化效果。

反复进行仿真和优化,直到满足设计要求。

9. 结果分析和报告:根据仿真结果,可以进行结果分析和报告撰写。

可以生成波形图、频谱图、时钟抖动分析图等,以直观地展示仿真结果。

撰写详尽的报告,提供给设计团队和相关利益相关者。

总结:Hyperlynx作为一款专业的仿真工具,可以帮助工程师进行高速PCB设计中的信号完整性和电磁兼容性分析。

基于CST软件的PCB板电磁兼容仿真技术研究

基于CST软件的PCB板电磁兼容仿真技术研究

基于CST软件的PCB板电磁兼容仿真技术研究一、本文概述随着电子技术的飞速发展,电子设备在日常生活中的应用越来越广泛,从家用电器到通信设备,再到航空航天设备,电子设备无处不在。

然而,随着电子设备数量的增加,电磁兼容性问题也日益凸显。

电磁兼容性(EMC)是指设备或系统在共同的电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

在电子设备的设计和制造过程中,电磁兼容性的分析和优化至关重要。

本文主要研究基于CST软件的PCB板电磁兼容仿真技术。

CST是一款强大的电磁仿真软件,广泛应用于电磁场分析、电磁兼容性分析、天线设计等领域。

本文首先介绍了电磁兼容性的基本概念和重要性,然后详细阐述了CST软件的基本原理和功能特点,接着重点探讨了使用CST软件进行PCB板电磁兼容仿真的方法和流程,包括模型建立、仿真设置、结果分析等步骤。

本文旨在通过深入研究基于CST软件的PCB板电磁兼容仿真技术,为电子设备的设计和制造提供一种有效的电磁兼容性分析和优化方法。

本文也期望通过分享实际案例和经验,为同行提供参考和借鉴,共同推动电磁兼容仿真技术的发展。

二、CST软件介绍CST(Computer Simulation Technology)是一款广泛应用的电磁场仿真软件,被工程师和研究人员用于模拟和分析各种电磁兼容性问题。

CST软件具有高度的集成性和灵活性,可以精确地模拟从低频到高频,从直流到微波的电磁现象。

该软件提供了丰富的工具和算法,可以模拟复杂的电磁环境和设备,预测和优化产品的电磁兼容性。

CST软件的主要特点包括其强大的求解器,支持多种电磁场求解方法,如时域有限差分法(FDTD)、频域有限积分法(FIT)等。

这些求解器可以适应不同的仿真需求,从简单的电路分析到复杂的三维电磁场模拟。

CST软件还具有强大的后处理功能,可以将仿真结果以直观的方式呈现出来,帮助用户更好地理解和分析电磁兼容性问题。

在PCB板电磁兼容仿真方面,CST软件提供了专业的PCB板模块,可以模拟和分析PCB板上的电磁场分布、信号传输和干扰等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计早期对电磁兼容性(EMC)问题的考虑
随着产品复杂性和密集度的提高以及设计周期的不断缩短,在设计周期的后期解决电磁兼容性(EMC)问题变得越来越不切合实际。

在较高的频率下,你通常用来计算EMC的经验法则不再适用,而且你还可能容易误用这些经验法则。

结果,70%~90%的新设计都没有通过第一次EMC测试,从而使后期重设计成本很高,如果制造商延误产品发货日期,损失的销售费用就更大。

为了以低得多的成本确定并解决问题,设计师应该考虑在设计过程中及早采用协作式的、基于概念分析的EMC仿真。

较高的时钟速率会加大满足电磁兼容性需求的难度。

在千兆赫兹领域,机壳谐振次数增加会增强电磁辐射,使得孔径和缝隙都成了问题;专用集成电路(ASIC)散热片也会加大电磁辐射。

此外,管理机构正在制定规章来保证越来越高的频率下的顺应性。

再则,当工程师打算把辐射器设计到系统中时,对集成无线功能(如Wi-Fi、蓝牙、WiMax、UWB)这一趋势提出了进一步的挑战。

传统的电磁兼容设计方法
正常情况下,电气硬件设计人员和机械设计人员在考虑电磁兼容问题时各自为政,彼此之间根本不沟通或很少沟通。

他们在设计期间经常使用经验法则,希望这些法则足以满足其设计的器件要求。

在设计达到较高频率从而在测试中导致失败时,这些电磁兼容设计规则有不少变得陈旧过时。

在设计阶段之后,设计师制造原型并对其进行电磁兼容性测试。

当设计中考虑电磁兼容性太晚时,这一过程往往会出现种种EMC问题。

对设计进行昂贵的修复通常是唯一可行的选择。

当设计从系统概念设计转入具体设计再到验证阶段时,设计修改常常会增加一个数量级以上。

所以,对设计作出一次修改,在概念设计阶段只耗费100美元,到了测试阶段可能要耗费几十万美元以上,更不用提对面市时间的负面影响了。

电磁兼容仿真的挑战
为了在实验室中一次通过电磁兼容性测试并保证在预算内按时交货,把电磁兼容设计作为产品生产周期不可分割的一部分是非常必要的。

设计师可借助麦克斯韦(Maxwell)方程的3D解法就能达到这一目的。

麦克斯韦方程是对电磁相互作用的简明数学表达。

但是,电磁兼容仿真是计算电磁学的其它领域中并不常见的难题。

典型的EMC问题与机壳有关,而机壳对EMC影响要比对EMC性能十分重要的插槽、孔和缆线等要大。

精确建模要求模型包含大大小小的细节。

这一要求导致很大的纵横比(最大特征尺寸与最小特征尺寸之比),从而又要求用精细栅格来解析最精细的细节。

压缩模型技术可使您在仿真中包含大大小小的结构,而无需过多的仿真次数。

另一个难题是你必须在一个很宽的频率范围内完成EMC的特性化。

在每一采样频率下计算电磁场所需的时间可能是令人望而却步的。

诸如传输线方法(TLM)等的时域方法可在时域内采用宽带激励来计算电磁场,从而能在一个仿真过程中得出整个频段的数据。

空间被划分为在正交传输线交点处建模的单元。

电压脉冲是在每一单元被发射和散射。

你可以每隔一定的时间,根据传输线上的电压和电流计算出电场和磁场。

EMC仿真可得出精确的结果。

图1对装在一块底板上的三种模块配置(即1块、2块和3块模块)的辐射功率计算值(红色)与辐射功率实测结果(蓝色)进行了比较,(参考文献1)。

辐射功率计算值以1nw 为基准,单位为dB 。

你可以把多个模块配置的谐振峰值位置存在的小差异归因于在测量中难以将多个模块精确对准。

值得注意的是,由于三种配置的输入功率都相同,所以辐射功率的谐振峰值和幅度的差异仅仅是由于系统布局不同引起的。

潜在应用领域
EMC仿真可用于检测元件和子系统,如散热器接地的辐射分布对频率特性影响,也可用于评价接地技术、散热器形状的影响及其它因数。

此外,你还可比较不同通风口尺寸与形状以及金属厚度的屏蔽效果。

在该领域的最新应用中,有一项研究工作是对采用大口径通风口
进行送风并通过放置两块背靠背间隔很小的板来达到屏蔽效果这种方法进行评估。

EMC仿真也适用于系统级电磁兼容设计和优化,以便计算宽带屏蔽效果、宽带电磁辐射、3-D远场辐射图、用来模拟转台式测量情况的柱形近场电磁辐射以及用以实现可视化,有助于确定电磁兼容热点位置的电流和电磁场分布。

典型的系统级EMC应用有:确保最大屏蔽效果的机壳设计,机壳内元件分布位置的EMC 效果评估,系统内外缆线耦合的计算以及缆线辐射效果的检测。

EMC仿真还有助于发现有害电磁波在机壳和子系统中的机理,如空腔谐振,穿过孔、插槽、接缝和其他机座开口处的电磁辐射,通过缆线的传导辐射,与散热器、其他元件的耦合,以及光学元件、显示器、LED和其他安装在机座上的元件固有的寄生波导。

接头类型对EMC的影响
你可以使用简单而快速建立的机壳模型来进行接缝配置方面的设计折衷。

图2对对接接头产生的辐射与重叠机壳接缝产生的辐射作出评估。

通过比较相对的屏蔽水平,工程师就可以根据机壳的EMC预算和实现特定设计配置的成本来做出决定。

仿真过程中增加内部元件仅仅对仿真时间产生很小的影响,所以设计师可以方便地在引起插槽谐振间耦合、谐振腔模式以及与内部结构的交互作用的真实环境下对接缝屏蔽效果进行评估。

插槽泄漏的设计规则不适用于以上几个因素,会导致成本高昂的过设计和欠设计。

EMC仿真的典型应用是评估通风板的屏蔽效果。

现在虽然有防止EMC泄漏的通风板设计规则,但EMC仿真能精确地预测比较特殊的结构,如具有大洞的背靠背通孔板、波导阵列等,并兼顾温度和成本约束条件。

图3示出了具有圆孔或方孔的不同厚度通风板的屏蔽效果的计算结果。

该图展示了这些通风板厚度(左)和孔形状(右)的屏蔽效果。

散热器辐射的评估
图4所示的EMC 仿真应用可确定一个散热器的电磁辐射。

在这一简单模型中,一个就在该散热器下面的宽带信号源激励散热器,显示
了散热器与其所连接的IC之间的电磁耦合作用。

该图示出了三种配置的辐射功率谱。

很明显,辐射电平与几何形状和频率有关。

虽然较小的散热器接地可降低频段低频部分的辐射,但会使频段中频部分的辐射增大。

解决电缆耦合问题
图5示出了用EMC仿真用来测定系统级电缆耦合的情况。

EMC 仿真工具的几何结构由一个19英寸机架内的三个网络集线器组成。

一条四线带状电缆将上下两个集线器中的印制电路板与中间集线器连接起来。

中心集线器含有该模型中的唯一EMC信号源。

EMC仿真工具计算出由中间集线器耦合到上部集线器印制电路板连接线的电流大小。

耦合电流在600MHz和800 MHz两个频率点显示出两个强谐振。

解决这类问题的一种常用方法是在受到影响的电缆上增强滤波功能,然后再借助仿真测定此影响。

下边的曲线表明,增加一个低通滤波器可减小谐振频率上耦合电流的幅度,但却不能将其消除。

这是一种“应急的”方法,因为它没有从根本上解决问题。

EMC仿真可使电缆耦合应用的内在物理过程一目了然,找到问题的根源。

在600MHz测定中央集线器内部的电场分布,便可确定电场热点,再由电场热点确定在电缆附近产生高电场的空腔谐振。

用一块金属隔板把集成器隔离起来,就可有效抑制空腔谐振模式并消除耦合(图6)。

您可用EMC仿真来确定和解决因温升而修改设计所引起的问题。

建立在企业存储系统的控制器节点(基本上是奔腾双处理器计算机)模型上的这一技术就是一个例子。

在将这一设计制作成硬件之后,就用一些热管代替原来标准的奔腾芯片散热器,这些热管的占用面积与散热器相同,但高度高一些,所用散热片是水平的,而不是垂直的。

一个宽带仿真工具可计算出系统的电磁辐射(图7)。

在这一实例中,工程师之所以对由系统中一个120MHz振荡信号引起的辐射进行隔离感兴趣,乃是因为测量结果表明存在一个问题。

因此,在计算宽带响应之后,工程师在后处理中使用间接激励来提取对所需源信号的响应,从而产生图中的离散谐波。

这一辐射在120MHz振荡频率的主谐波频率上增加约40dB。

很显然,这样一种不会产生有害的热设计修改却会对系统EMC顺应性产生如此大而吓人的影响。

发现问题根源后,您就可以探索经济实惠的解决方案。

在本例中,将导热管顶部与机壳盖之间连接一根地线消除容性耦合路径,就是一种低成本的极好方法。

具体的做法是,将一小块涂有导电胶的防电磁干扰垫片贴于热管顶部散热片上,这样与机壳顶盖接触就会挤压垫片,形成一根接地线。

图8示出了电磁辐射图,其中包括热管接地后的结
果。

这种方法使得辐射与原来的情况实际上相同,从而在对辐射不产生负面影响的情况下改善了热性能。

在设计过程中尽早采用EMC仿真,可在制造原型前研究和预测关键的EMC现象,从而在满足EMC要求和提高屏蔽效果两方面优化电子产品设计。

与先制造原型,再从EMC角度优化产品的做法相比,现代仿真工具可使设计师评估更多的设计,达到前所未有的水平。

此外,值得注意的是,你不可以孤立地进行EMC 设计,因为由于EMC原因而进行设计修改常常会影响其他设计问题,如热管理。

因此,有意义的是,EMC 仿真工具可使设计师综合考虑EMC 和其他重要设计约束条件,以使系统总成本和系统性能最佳。

相关文档
最新文档