材料力学 第十章 压杆稳定问题
材料力学10压杆稳定_1欧拉公式

◆ 本例中,三杆截面面积基本相等,但由于其形状不同, Imin 不
同,致使临界力相差很大。最合理的截面形状为圆环形。
14
[例3] 图示各杆均为圆形截面细长压杆。已知各杆的材料及直径相 等。问哪个杆先失稳? 解:由于各杆的材料及 截面均相同,故只需比
1.3 a F F F
较其相当长度 l 即可
a
杆A: 2 l 2a
F
F
2 1
0.7
压杆两端固定可轴向移动:
0.5
6
上述弹性压杆临界力的计算公式称为欧拉公式
Fc r
π 2 EI
l
2
说明: 1)欧拉公式的适用范围:线弹性( ≤ p)
2)在压杆沿各个方向约束性质相同的情况下(即各个方向上 的 相等),I 应取最小值 3) l 称为压杆的相当长度
2
2000年10月25日上午10 时,南 京电视台演播中心由于脚手架 失稳使屋顶模板倒塌,导致死 6 人,伤 34 人。
3
2010年1月3日,通往昆明新机场的一座在建桥梁施工时因 支撑结构中的压杆失稳而坍塌,共导致 40 余人死伤。
4
二、压杆的临界力 使压杆由稳定向失稳转化的轴向压力的界限值称为压杆的临界力, 记作 Fcr 。即当 F < Fcr : 压杆稳定 F ≥ Fcr : 压杆失稳 亦可将压杆的临界力 Fcr 理解为使压杆失稳的最小轴向压力
hb3 1 Iy 90 403 48 108 m 4 12 12
根据欧拉公式,此压杆的临界力
Fcr
π 2 EI y l
2
23.8 kN
11
[例2] 一端固定,一端自由的中心细长压杆。已知杆长 l = 1m , 材 料的弹性模量 E = 200 GPa。当分别采用图示三种截面时,试计算 其临界力。
材料力学10压杆稳定_2经验公式

这类杆称为中长杆(或中柔度杆),亦即直线公式适用于中长杆 (或中柔度杆)
说明: 当 ≤ s,称为粗短杆,则应按强度问题处理。
三、临界应力总图
压杆的临界应力 cr 可视作压杆柔度 的分段函数,即
π2E 2
cr
查表得 a = 461 MPa、b = 2.567 MPa
临界应力 临界力
cr a b 461 2.567 64.7 294.9 MPa Fcr cr A 162.7 kN
3)由于连杆在 x-y、x-z 两个平面内的柔度 z = 64.7、y = 57.4 比
π 2 EI min
0.7l 2
870 kN
2)两端固定但可沿轴向相对移动
长度因数 = 0.5, 立柱柔度
3600
zz
s
l
imin
0.5 3600 24
75 p
此时,立柱为中柔度杆,应用直线公式计算其临界力
由表 10-2 查得 a = 304 MPa,b = 1.12 MPa
临界应力 临界力
cr a b 304 1.12 75 220 MPa Fcr cr A 220 48.541 1068 kN
[例2] 图示连杆,已知材料为优质碳钢,弹性模量 E = 210×109 GPa, 屈服极限 s = 306 MPa。试确定该连杆的临界力Fcr ,并说明横截面的 设计是否合理。
解: 由于连杆在两 个方向上的约束情 况不同,故应分别 计算连杆在两个纵 向对称平面内的柔 度,柔度大的那个 平面即为失稳平面
1)计算柔度 在 x-y 平面(弯曲中性轴为 z 轴): 两端铰支
范钦珊版材料力学习题全解 第10章 压杆的稳定问题

= π3 Ed 4 32l 2
4、第四种方式
屈曲形式如解图 d 所示,两杆作为整体绕 z 轴屈曲
µ=2
结构的临界载荷
x FP
x FP
y
O
y
O
习题 10—9 解图 d
7
5、第五种方式
FPcr
= π2 EI z ( µl ) 2
= π2 E ⋅ 2 ⋅ (πd 4
4l 2
64
+ πd 2 4
⋅ ( a )2 2
10-5 正三角形截面压杆,其两端为球铰链约束,加载方 向通过压杆轴线。当载荷超过临界值,压杆发生屈曲时,横截 面将绕哪一根轴转动?现有四种答案,请判断哪一种是正确 的。
(A) 绕 y 轴; (B) 绕通过形心 C 的任意轴; (C) 绕 z 轴; (D) 绕 y 轴或 z 轴。 解:因为过正多边形截面形心的任意轴均为形心主轴,且 惯性矩相等。所以,正确答案是 B。
FAB
cosθ
=
3 cotθ 2
⋅ FP
,
FQ = FP
σ max
=
MB W
+
FNx A
≤ [σ ] ,
0.3FP 185 ×10−8
+
3 2
cot θ
⋅
FP
30.6 ×10−4
≤ 160 ×106 ,
FP ≤ 73.5kN<FPcr = 118kN
所以,托架所能承受的最大载荷为 73.5kN。
10-11 长 l=50 mm,直径 d=
习题 10-2 图
解:各杆内力如解图所示,由各受杆内力情况可知,正确答案是 A。
10-3 图中四杆均为圆截面直杆,杆长相同,且均为轴向加载,关于四者临界载荷的大 小,有四种解答,试判断哪一种是正确的(其中弹簧的刚度较大)。
压杆·稳定性

sin kl = 0
即
kl = nπ n = 0,1, 2,
(d)
解得 k = nπ ,又 k 2 = P ,于是得
l
ቤተ መጻሕፍቲ ባይዱ
EI
P
=
n2π2 EI l2
(10.1)
因为 n 是正整数,故式(10.1)表明使杆件保持为曲线平衡的压力,理论上是多值的。
其中使压杆保持微小弯曲的最小压力,才是临界压力 Pcr 。因此,只有取 n=1,才得到压力 的最小值。于是临界压力为
x = 0 和 x = l 时, y = 0
由此求得
B = 0 , Asin kl = 0
上式表明,A 或 sin kl 等于零。但因 B 已经等于零,如 A 再等于零,则式(c)变为 y ≡ 0 。这
表示杆件轴线上任意点的挠度皆为零,它仍为直线的情况。这就与假设杆件处于微弯平衡的
前提相矛盾。因此必须是
第 10 章 压杆·稳定性
当轴向压力 P 较小(P<Pcr)时,当横向干扰力消失后,其横向弯曲变形也随之消失, 直杆将恢复到图 10.1(a)所示的原直线平衡位置。此时原直线平衡位置平衡状态属于稳定平 衡状态,如图 10.1(c)。
当轴向压力 P 适中(P =Pcr)时,干扰力消失后,将保持微弯平衡状态,而不能恢复到 图 10.1(a)所示的原直线平衡位置。此时原直线平衡位置平衡状态属于临界平衡状态(或随 遇平衡状态),如图 10.1(d)。
如图 10.1(a)所示一下端固定,上端自由的理想细长直杆,受一轴向压力 P 作用。此 时,该压杆如果受到一个很小的横向干扰力,杆将产生弯曲变形,如图 10.1(b)。显然,该 压杆在原初始直线位置是能够平衡的,但平衡状态会随轴向压力 P 的大小而变化。
材料力学-10-压杆的稳定问题

0 A+1 B 0 sinkl A coskl B 0
根据线性代数知识,上述方程中,常数A、B不全为零 的条件是他们的系数行列式等于零:
0
1
sinkl coskl
0
sinkl 0
第10章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI
第10章 压杆的稳定问题
临界应力与临界应力总图 长细比是综合反映压杆长度、约束条件、截面尺寸和截面 形状对压杆分叉载荷影响的量,用表示,由下式确定:
=
l
i
I A
其中,I为压杆横截面的惯性半径,由下式确定:
i
从上述二式可以看出,长细比反映了压杆长度、支承条件以 及压杆横截面几何尺寸对压杆承载能力的综合影响。
不同刚性支承条件下的压杆,由静力学平衡方法得到的平衡 微分方程和边界条件都可能各不相同,确定临界载荷的表达式亦 因此而异,但基本分析方法和分析过程却是相同的。对于细长杆, 这些公式可以写成通用形式:
FPcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上正弦 半波的长度,称为有效长度(effective length); 为反映不同支承 影响的系数,称为长度系数(coefficient of 1ength),可由屈曲后 的正弦半波长度与两端铰支压杆初始屈曲时的正弦半波长度的比 值确定。
第10章 压杆的稳定问题
临界应力与临界应力总图
临界应力与长细比的概念
前面已经提到欧拉公式只有在弹性范围内才是适用的。这 就要求在分叉载荷即临界载荷作用下,压杆在直线平衡构形时, 其横截面上的正应力小于或等于材料的比例极限,即
材料力学10压杆的稳定性问题

F
不稳定平衡
C
C C
闽 南
临界荷载与约束形式、材料性能、杆件几何 及刚度有关。
B 分叉点
稳定平衡
Fcr FC
理
工 稳定性准则
学
最大工作压力 F < 临界荷载 Fcr
院
o
v
Pinned-pinned
材料力学 Mechanics of Materials
第十章 压杆稳定
闽 南 理 工 学 院
材料力学 Mechanics of Materials
L / i 11.732 / 0.01 173.2 p 100
材料力学 Mechanics of Materials
第十章 压杆稳定
压杆的稳定条件
图示支架,材料均为Q235 钢。弹性模量E=200GPa,
许用应力[]=160MPa。
A
C端受垂直载荷F=15kN作
用。已知AC梁是14号工字
闽
钢,其抗弯截面系数Wz= 102cm3, 截 面 积 A=21.5cm2。
南 BD为直径40mm的圆截面杆,
理 p=100,稳定安全系数nst=
材料力学 Mechanics of Materials
第十章 压杆稳定
临界应力
欧拉公式的适用范围
欧拉公式限于材料处于线弹性的情况。所以,欧拉公式也只能在
杆内压应力不超过比例极限p时才适用。于是要求
cr
2E 2
p
闽 南
称为杆的柔度或长细比
l
i
理 工 或者是 学
E
p
p
院
材料力学 Mechanics of Materials
材料力学 Mechanics of Materials
材料力学 第十章 压杆稳定问题

由杆,B处内力偶
MB Fcraq1 , q1
由梁,B处转角
MB Fcr a
q2
MBl 3EI
q1 B
MB MBl Fcra 3EI
3EI Fcr al
q2 C
l
Page21
第十章 压杆稳定问题
作业
10-2b,4,5,8
Page22
第十章 压杆稳定问题
§10-3 两端非铰支细长压杆的临界载荷
稳定平衡
b. F k l
临界(随遇)平衡
c. F k l
不稳定平衡
Fcr kl 临界载荷
F
k l
F 驱动力矩 k l 恢复力矩
Page 5
第十章 压杆稳定问题
(3)受压弹性杆受微干扰
F Fcr 稳定平衡 压杆在微弯位置不能平衡,要恢复直线
F >Fcr 不稳定平衡 压杆微弯位置不能平衡,要继续弯曲,导致失稳
(
w)
令 k2 F
EI
d 2w dx2
k
2w
k
2
l
l
FM w
x
F B
F
B F
Page24
第十章 压杆稳定问题
d 2w dx2
k2w
k 2
F
w
通解:
A
x
B
w Asinkx Bcoskx
l
考虑位移边界条件:
x 0, w 0,
B
x 0, q dw 0
Page31
第十章 压杆稳定问题
二、类比法确定临界载荷
l
材料力学压杆稳定

材料力学压杆稳定材料力学是研究物质内部力的作用和变形规律的一门学科。
在材料力学中,压杆稳定是一个重要的概念,它涉及到杆件在受压作用下的稳定性问题。
本文将围绕材料力学中的压杆稳定问题展开讨论,旨在帮助读者更好地理解和掌握这一概念。
首先,我们需要了解什么是压杆稳定。
在材料力学中,压杆稳定是指杆件在受到压力作用时不会发生失稳现象,保持原有形状和结构的能力。
对于一个长细杆件来说,当受到外部压力作用时,如果其稳定性不足,就会出现侧向挠曲或屈曲等失稳现象,这将导致结构的破坏。
因此,压杆稳定是材料力学中一个至关重要的问题。
接下来,我们将从材料的选择、截面形状和支撑条件等方面来探讨如何提高压杆的稳定性。
首先,材料的选择对于压杆稳定至关重要。
一般来说,高强度、高刚度的材料更有利于提高压杆的稳定性。
此外,材料的表面质量和加工工艺也会对压杆的稳定性产生影响,因此在实际工程中需要对材料的选择和加工过程进行严格控制。
其次,截面形状也是影响压杆稳定性的重要因素。
通常情况下,圆形截面是最有利于抵抗压力的,因为圆形截面能够均匀分布受力,减小局部应力集中的可能性。
相比之下,矩形或其他非圆形截面的压杆在受到压力作用时往往稳定性较差,容易发生失稳现象。
最后,支撑条件也是影响压杆稳定性的关键因素之一。
压杆的支撑条件直接影响其在受力时的变形和稳定性。
合理的支撑设计能够有效地提高压杆的稳定性,减小失稳的可能性。
综上所述,材料力学中的压杆稳定是一个复杂而重要的问题,需要综合考虑材料的选择、截面形状和支撑条件等因素。
只有在这些方面都做到合理设计和严格控制,才能保证压杆在受力时不会发生失稳现象,从而确保结构的安全可靠。
希望本文能够帮助读者更好地理解和掌握材料力学中压杆稳定的相关知识,为工程实践提供一定的参考价值。
同时,也希望读者能够在实际工程中注重压杆稳定性的设计和控制,确保结构的安全可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d 2w 2 k w0 2 dx
k
2
F EI
Fcr
2 EI
l2
5、 两端非铰支细长压杆的临界载荷——解析法
力学模型· 数学方程· 齐次方程的非零解· 系数行列式为零
Page31
第十章 二、类比法确定临界载荷
l
F F
压杆稳定问题
1. 一端固支一端自由:
观察:受力与变形与两端 铰支压杆左半部分相同
第十章
压杆稳定问题
§10-3
两端非铰支细长压杆的临界载荷
解析法确定临界载荷:铰支-固支压杆 类比法确定临界载荷 相当长度与长度因素
例题
Page23
第十章 一、解析法确定临界载荷 根据微弯临界平衡状态 建立微分方程
压杆稳定问题
1. 固支-自由压杆 F A
l
B F
M ( x ) F ( w )
第十章
压杆稳定问题
第十章
§10-1 §10-2 §10-3 §10-4 §10-5
压杆稳定问题
引言 两端铰支细长压杆的临界载荷 两端非铰支细长压杆的临界载荷 中小柔度杆的临界应力 压杆稳定条件与合理设计
Page 1
第十章
压杆稳定问题
§10-1
引 言
FN A
回顾:拉压杆的强度条件
Page 3
第十章
压杆稳定问题
•刚体与变形体的稳定性
(1)刚性面上,刚性球受微干扰
F
FR
F
FR
W
a. 合力FR指向平衡位置 稳定平衡
W
b. FR为0 临界(随遇)平衡
W
c. FR偏离平衡位置 不稳定平衡
Page 4
第十章 (2)刚杆-弹簧系统受微干扰 刚杆-弹簧系统稳定性演示
压杆稳定问题
F
k
a. F k l
F (k ) EI
2
Page27
第十章 通解: FR w A sin kx B cos kx (l x) 2 EIk 考虑位移边界条件:
压杆稳定问题
F (k ) EI
2
x 0, w 0 x 0, w ' 0 x l, w 0
FR l B 0 2 EIk
cos kl 0
( 2n 1 ) kl ( n 1, 2 2
w
A
)
x
l
F 2 注意到: k EI
2 2 ( 2n 1 ) EI 得: F (2l )2
取n=1, 得固支-自由压杆的临界载荷:
Fcr
2 EI
( 2l ) 2
Page26
第十章
压杆稳定问题
2. 一端固支一端铰支细长压杆的临界载荷 根据微弯临界平衡状态 建立微分方程
Fcr
2 EI
l2
x
l
二、临界载荷的欧拉公式的几点讨论 •两端简支压杆的挠曲轴 w A sin
•压杆在临界状态时的平衡是一种有条件的随遇平衡—— 可有任意的微弯程度, 但轴线形状一定。 •临界载荷(欧拉临界载荷)与截面抗弯刚度成正比, 与杆长的平方成反比。
Page15
第十章
压杆稳定问题
2 EI y ( xz ) Fcr 压杆在x-z平面内, ( l )2 2 EI z ( xy )
a
压杆在x-y平面内,Fcr 其中=0.5 ~1, Iy<Ix
l2
需要判断,杆件总沿临界载荷最小的方向失稳
hb 3 Iy 12 bh3 Iz 12
Page20
第十章 习题10-3:AB刚性杆,BC弹性 梁,弯曲刚度EI,求Fcr 解:考虑梁杆结构的临界平 衡,B为刚性接头,在B处 F
Page30
第十章
压杆稳定问题
上一讲回顾
1.弹性平衡稳定性的概念 受压杆件保持初始直线平衡状态 的能力称为压杆的稳定性;弹性体保持初始平衡状态的能力 称为弹性平衡的稳定性。 2.压杆的临界载荷 使压杆直线形式的平衡由稳定转为不稳 定的轴向压力值。 3、 两端铰支细长压杆稳定微分方程
4、 两端铰支细长压杆的临界载荷
压杆稳定问题 F
A
a
q1 B q2 C
q1 q 2
MB M B Fcr aq1 , q1 Fcr a
由梁,B处转角 由杆,B处内力偶
MBl q2 3 EI
l
MB MBl Fcr a 3 EI
3 EI Fcr al
Page21
第十章
压杆稳定问题
作业
10-2b,4,5,8
Page22
FR
F x
FR Ak 0 2 EIk
l
A sin kl B cos kl 0
Page28
第十章
FR l B 0 2 EIk
压杆稳定问题
FR Ak 0 2 EIk
A sin kl B cos kl 0
F R
•存在非零解的条件:
0 k sin kl 1 0 cos kl l EIk 2 1 0 2 EIk 0
l
F FR F
M ( x ) Fw FR (l x )
d 2w M ( x ) 2 dx EI
FR d 2w F w (l x ) 2 dx EI EI
x
M ( x)
FR
FR
F
w
lx
F
通解: FR w A sin kx B cos kx (l x) 2 EIk
压杆稳定问题
Fcr
l 4 l 2 l 4
Fcr
2 EI
( l / 2) 2
Fcr
l 2
Fcr
Page34
第十章 三、欧拉公式的统一表达式: 2 EI Fcr 1 2
l 2 EI Fcr (2l )2
压杆稳定问题
2
2
Fcr
2 EI
l / 2
1 2
Fcr
第十章 三、大挠度理论与实际压杆 •精确压杆稳定微分方程
(求解大挠度问题)
压杆稳定问题
F
Fcr
A
C
B
D
1 M ( x) (x ) EI M x w ( x ) 32 2 EI 1 [ w ( x )]
大挠度理论 小挠度理论 实验结果
O
wmax
பைடு நூலகம்
•理想压杆小挠度理论与大 挠度理论及实验结果比较
•存在非零解的条件:
sin kl 0
Page13
第十章
压杆稳定问题
•临界载荷欧拉公式
F
F
sin kl 0
kl n
n2 2 EI F l2
n k l
( n 1, 2 )
F 2 k , 注意到: EI
设: n=1
Fcr
2 EI
l2
Page14
第十章
压杆稳定问题
考虑位移边界条件:
A
x
l
x 0, w 0,
dw x 0, q 0 dx
B
Ak 0 或
A0
x l, w
A sin kl B cos kl
•存在非零解的条件:
cos kl 0
Page25
第十章 •存在非零解的条件:
压杆稳定问题 F B
问题的提出:强度条件是否适用于下列拉压杆?
F F F F
短粗杆
F F F F
细长杆
Page 2
第十章 工程实例:石桥、钢桥与稳定问题
压杆稳定问题
左图:隋朝建成 的赵州桥
右图: Tacoma 海峡大 桥1940年破坏
Euler(1707-1783)首先从理论上研究了压杆稳定问题(Euler理论)
2 EI
(0.7l )
2
0.7
2 EI 欧拉公式可以写成统一形式: Fcr ( l )2
l ——相当长度:相当的两端铰支压杆的长度 ——长度因数:支持方式对临界载荷的影响
Page35
第十章 例: 试用类比法求临界载荷
压杆稳定问题
n2 2 EI •高阶解的意义: F l2
F
( n 1, 2 )
2 x 当n=2时,得到: w A sin l
F (中间支撑不受力)
• 欧拉公式的适用范围:
Q 理想均质材料,细长杆 Q 线弹性 Q 小挠度(小变形) Q 压力沿杆件轴线
F
F
d 2w M ( x) dx 2 EI
Page16
F
l
l
类比:一端固支一端自由长l的压杆的临界载荷等于 长2l的对应铰支压杆的临界载荷。 2 EI 2 EI 与解析法结果相同 Fcr 2 (2l ) 4l 2
Page32
第十章 2. 一端固支、一端铰支 •变形曲线观察:与B端相 距约0.7l处有一拐点C A
拐点
压杆稳定问题
l
B
Fcr
F
F k2 EI
压杆稳定问题
d 2w •恢复内力矩 M ( x ) EI dx 2
F
d 2w F w 2 dx EI
•通解:
d 2w 2 k w0 2 dx
w A sin kx B cos kx
x 0, w 0 x l, w 0
B0
•位移边界条件:
A sin kl 0
a
z
hb 3 Iy 压杆在x-z平面内失稳 12 2 EI 2 EI y Fcr when h b 2 2 l l