1.3.2杨辉三角与二项式定理的性质

合集下载

“杨辉三角”与二项式系数的性质

“杨辉三角”与二项式系数的性质
第 0行 第 1行 第 2行 第 3行 第 4行 1
1
1
1 1 1 4 3
2 3 6
1 1 4 1
探 究 4
第 5行 1 5 10 10 5 1 第 6行 1 6 15 20 15 6 1 第 7行 1 7 21 35 35 21 7 1 第 8行 1 8 28 56 70 56 28 8 1
……
1,1,2,3,5,8,13,21, 34,...此数列{an}满足, a1=1,a2=1,且an=an-1+an-2 (n≥3) 这就是著名的 斐波那契数列.
二、杨辉简介:
杨辉,杭州钱塘人。中国南宋末年数学家,数学 教育家.著作甚多,著有《详解九章算法》十二卷 (1261年)、《日用算法》二卷、《乘除通变本末》三 卷、《田亩比类乘除算法》二卷、《续古摘奇算法》二 卷. 其中后三种合称《杨辉算法》,朝鲜、日
本等国均有译本出版,流传世界。
“杨辉三角”出现在杨辉编著的《详解九章算法》 一书中,此书还说明表内除“一”以外的每一个数都等 于它肩上两个数的和.杨辉指出这个方法出于《释锁》 算书,且我国北宋数学家贾宪(约公元11世纪)已经用 过它,这表明我国发现这个表不晚于11世纪.
二.应用: 1.斐波那契“兔子繁殖问题”
中世纪意大利数学家斐波那契的传世之作《算术之法》中 提出了一个饶有趣味的问题:假定一对刚出生的兔子出生的第 个月长大到第三个月才生下一对小兔子,并且以后每个月都生 一对小兔子.设所生一对兔子均为一雄一雌,且均无死亡.问 一对刚出生的小兔一年内可以繁殖成多少对兔子?
分析:设第 n 行的第 2 个数为 an ,则a2 = 2 ,
an+1 - an =n
n2 n 2 ∴ an = 2 + 2 + 3 +…+ ( n-1)= 2

人教a版数学【选修2-3】1.3.2《“杨辉三角”与二项式系数的性质》课件

人教a版数学【选修2-3】1.3.2《“杨辉三角”与二项式系数的性质》课件

„„
k C n 第 k+1 类:取 n-k 个 1,k 个 x,共_____种取法;
1 2 n 2n (5)C0 n+Cn+Cn+„+Cn=_______ 1 2 2 n n 由(1+x)n=C0 + C x + C x +„+ C n n n nx .令 x=1 得出.
此证法所用赋值法在解决有关组合数性质,二项式展开式 中系数问题中很有用,应重点体会掌握. (1+x)n 展开式的组合数解释为:展开式左边是 n 个(1+x) 的乘积,按照取 x 的个数可以将乘积中的项按 x 的取法分为
k n k-1 n-k+1 Cn · .
k
第一章
1.3
1.3.2
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
所以
k Cn 相对于
n-k+1 k-1 C n 的增减情况由 决定,故当 k
n-k+1 n+1 n-k+1 增大 >1, 即 k< 2 时, 二项式系数__________ . 而当 k k n+1 k 递减 ≤1(即 k≥ 2 )时,Cn 的值转化为__________ .又因为与首末
相等 两端“等距离”的两项的二项式系数__________ ,所以二项式
系数增大到某一项时就逐渐减小,且二项式系数最大的项必在
中间 __________ .
第一章
1.3
1.3.2
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
当 n 是偶数时,n+1 是奇数,展开式共有 n+1 项,所以
成才之路 · 数学
人教A版 · 选修2-3
路漫漫其修远兮 吾将上下而求索
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3

杨辉三角和二项式定理

杨辉三角和二项式定理

杨辉三角和二项式定理杨辉三角和二项式定理是数学中经典的基本概念和定理,被广泛应用于组合数学、数理统计、微积分等领域。

本文将介绍杨辉三角和二项式定理的定义、性质以及应用。

一、杨辉三角杨辉三角是一种数学图形,是由数字排列成三角形的形式,数字排列的规律性很强,主要是由二项式系数的各个项的系数构成的,又称为帕斯卡三角。

杨辉三角的构造方法如下:1.第一行写上数字1;2.从第二行开始,每相邻的两个数字都是上一行数字的相邻两个数字之和;例子:11 11 2 11 3 3 11 4 6 4 1二、二项式定理二项式定理是代数学中的基本定理,它阐述了将一个二项式求幂的基本方法。

二项式定理的全称为“任意实数a和b以及非负整数n,有:(a+b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + … + C(n, n)b^n”其中C(n, k)为组合数,在组合数学中有明确的定义,即从n个不同元素中选取k个元素的不同组合数。

组合数用符号C(n, k)表示,其计算公式为:C(n, k) = n! / [k! (n-k)!]这样,我们就得到了二项式定理的定义。

三、杨辉三角和二项式定理的联系和应用二项式定理中的系数C(n, k)可以在杨辉三角中找到,这也是杨辉三角的一个重要应用。

具体来说,杨辉三角的第n行第k个数就是C(n, k)。

另外,杨辉三角还可以用来计算排列组合中的一些问题。

例如,需要在n个元素中选取m个元素的不同组合数,这就可以通过杨辉三角中的组合数来解决。

杨辉三角和二项式定理还可以应用于微积分中的泰勒公式、数理统计中的二项分布等问题。

在统计学中,二项分布是一个离散的概率分布,用来计算在n个独立的是/非试验中成功k次的概率。

杨辉三角和二项式定理在数学中属于基本概念和基本定理,对于理解和应用数学知识是非常重要的。

通过了解杨辉三角和二项式定理的定义和性质,可以更好地应用它们来解决实际问题。

1.3.2杨辉三角与二项式系数的性质

1.3.2杨辉三角与二项式系数的性质

“杨辉三角与二项式系数的性质”说课一、教材分析:二项式系数性质是《二项式定理》的重要内容之一,教学应通过揭示二项式定理是代数中乘法公式的推广,了解二项式定理的推广过程,理解从特殊到一般的思维方法,培养学生的观察归纳能力、抽象思维能力和逻辑思维能力。

结合二项式定理介绍“杨辉三角”,对学生进行爱国主义教育,激励学生的民族自豪感。

二项式定理是组合知识与多项式知识的结合,教学时应特别注意让学生掌握二项展开式的通项公式。

二项展开式的性质有比较广泛的应用,尤其要注意赋值法在证明组和数等式时的应用。

发现从杨辉三角去探索二项式系数性质有助于学生掌握这部分知识,提高其数学能力。

二项展开式的性质运用涉及项、项数、系数、二项式系数等容易混淆的一些概念,还由于a,b 的变化使得计算比较复杂,教学时要抓住通项公式,并结合具体问题加以分析、比较,避免产生误解。

二、教学过程: 复习回顾:[引入]计算(a+b)n 展开式的二项式系数并填入下表:师:通过计算填表,你发现了什么?大家思考一下如何迅速准确地写出二项式系数?生:写出二项展开式的系数运用计算器,或者组和数公式。

每一行的系数具有对称性。

师:除此以外还有什么规律呢?上表写成如下形式:能借助上面的表示形式发现一些新的规律吗? [稍让学生思考]师:(首先从横向观察,启发学生发现规律1,纠正表达错误) 规律1:首末两项系数为1,与首末两项等距离的系数相等。

(再从上、下两行系数观察,画出斜线寻找规律2)规律2:除首末两项系数外,每一个数都等于它肩上两个数和。

师:再提问()7b a +=7652433425677213535217b ab b a b a b a b a b a a +++++++[由此类比、归纳提问学生,并一同写出()7a b +二项式系数(1,7,21,35,35,21,7,1)] 师:[归纳小结]启用观察、类比、归纳的方法我们得到二项式系数的两个规律,可见应用观察、分析、类比、归纳的方法是我们获得新知识的重要途径。

“杨辉三角”与二项式系数的性质

“杨辉三角”与二项式系数的性质
0 8
C C C C C C C C C
0 8 4 8 2 8 3 6 4 8 2 4 6 8 1 2
8 8
=1107
240 例7. ( x 3x 2) 的展开式中 x 的系数是 ___________
2 5
解:原式化为[(x2 2) 3x]5
其通项公式为 Tr 1 C ( x 2) (3x)
3(r 1) 2(20 r ) 2(21 r ) 3r
37 42 r 5 5
r 8
所以当 r 8时,系数绝对值最大的项为
T9 C 3 2 x y
8 20 12 8 12
8
例题点评
解决系数最大问题,通常设第 r 1项是系数最 大的项,则有
Tr 1 Tr Tr 1 Tr 2
1.3.2 “杨辉三角”与 二项式系数的性质
新课引入
二项定理: 一般地,对于n N*有
(a b) C a C a
n 0 n n 1 n
n 1
bC a
2 n
n 2
b
2
r n r r Cn a b
n n Cn b
二项展开式中的二项式系数指的是那些?共 有多少个?
计算(a+b)n展开式的二项式系数并填入下表
20 ( 3 x 2 y ) 例 5 在 的展开式中,系数绝对值最大的项
解:设系数绝对值最大的项是第r+1项,则
C 3 2 C 3 2 r 20r r r 1 21 r r 1 C 20 3 2 C 20 3 2
r 20 20 r r r 1 20 19 r r 1
2 6 析: Cn Cn n 2 6 8

1.3.2杨辉三角与二项式系数的性质

1.3.2杨辉三角与二项式系数的性质

1.3.2 “杨辉三角”与二项式系数的性质
【学习目标】
1.结合“杨辉三角”体会二项式系数的性质. 2.会求二项展开式中二项式系数最大的项. 3. 会对n
b a )(+中的b a ,赋值解决和的问题.
【复习】
1. 二项式定理:
2. 二项展开式的通项: 公式中的r n
C 叫做 【探究活动与知识点梳理】
(三)、二项式系数的性质:
①性质1: ,即
直线 将函数r n
C r f =)( ,},,2,1,0{n r ∈的图象分成对称的两部分,它是图象的对称轴. ②性质2:
当 时,二项式系数是逐渐增大的;
当 时,二项式系数是逐渐减小的;
当n 是偶数时,第 项的二项式系数最大;
当n 是奇数时,第 项的二项式系数最大.
③性质3: , 即
④ ,

【例题及练习】
例1. 画出函数r
C r f 6)(= ,}6,543,2,1,0{,,r ∈的图象.
例2. 试证明:在n
b a )(+的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.
练习:
1. 当n 为偶数时,n
b a )(+的二项式系数的最大值是
当n 为奇数时,n
b a )(+的二项式系数的最大值是
2. =+++1111311111C C C
3. =+++++++++++++1
1
221101210n n n n n n
n
n n n C C C C C C C C
4. =++++n n n n n C C C C 420。

杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式

精心整理杨辉三角的规律以及定理二项式定理与杨辉三角1与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。

2的展开式来探讨。

杨辉三角我们首先从一个二次多项式(a+b)222此代数式的系数为:121由上式得出:(a+b)+2ab+b=由此可发现,此代数式的系+3+b+3ab(a+b 的展开式是什么呢?答案为(a+b的展开式。

为133但似乎没有什么规律,所以让我们再来看b2+4a展开式为由此又可发现,代数式的系数为+4+b+6464似乎发现了一些规律,就可以发现以下呈三角形的数列:1)1(1)11(112) 121(113) 1331(114) 14641(115) 15101051(116) 1615201561(11)1,4,6,4,1,(,1,2,1)(1,3,3,1)1,杨辉三角形的系数分别为:(1,1),(:所以(),1,7,21,35,35,21,7,1)(1,5,10,10,5,1),(1,6,15,20,15,6,17642547765233(a+b)=ab+7ab+21a+bb+35a+7abb+35a。

b+21a n的次数依次上b-n,n-n 等于a的次数依次下降、n-1、2...n由上式可以看出,(a+b) (2)方。

系数是杨辉三角里的系数。

、、升,01 杨辉三角的幂的关系2 精心整理.精心整理首先我们把杨辉三角的每一行分别相加,如下:1(1)11(1+1=2)121(1+2+1=4)1331(1+3+3+1=8)14641(1+4+6+4+1=16)15101051(1+5+10+10+5+1=32)1615201561(1+6+15+20+15+6+1=64)…相加得到的数136…刚好,6,…次幂,即杨辉三角行个数之和等n-次杨辉三角中斜行和水平行之间的关(1)1(2)n=111(3)n=2121(4)n=31331(5)n=414641(6)n=515101051n=61615201561把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20精心整理.精心整理把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

“杨辉三角”与二项式系数的性质(一)

“杨辉三角”与二项式系数的性质(一)
7 2 7
变式: 设1 - 2 x a0 a1 x 1 a2 x 1 a7 x 1 ,
求a1 a3 a5 a7的值.
肥东锦弘中学高中部公开课教学设计
1 37 2
No.16/18
课时小结
“杨辉三角”与二项式系数的性 质
一般地,(a+b)n展开式的二项式系数有 如下性质:
0 1 2 3 4 5 n n [问题拓展] 你能求cn cn cn cn cn cn ........ (1) cn 吗 ?
1 n r n r r n n 由 (a b)n Cn0 a n Cn a b Cn a b Cn b (n N )
n k 1 k
肥东锦弘中学高中部公开课教学设计
No.8/18
二项式系数的性质
“杨辉三角”与二项式系数的性 质
(2)增减性与最大值
当n为偶数时,中间一项的二项式 系数Cn 取得最大值.
当n为奇数时,中间两项的二项式系数 Cn , Cn 相等, 且同时取得最大值.
n-1 2 n 1 2
n 2
n k 1 k 1 C C 所以 相对于 n 的增减情况由 决定. k
由 n k 1 1 k n 1 k 2 n 1 k 可知,当 时,二项式系数是逐渐 2 增大的,由对称性可知它的后半部分是 逐渐减小的,且中间项取得最大值.
n! (k 1)!(n k 1)!
肥东锦弘中学高中部公开课教学设计
No.6/18
问题探究
“杨辉三角”与二项式系数的性 质
观察:图像增减性与最大值.
n r 2
肥东锦弘中学高中部公开课教学设计
No.7/18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
C
n n
1
1
2020/4/13
8
Cmm
Cm m1
Cm m2
...
Cm n2
Cm n1
C m1 n
0行
1
1行
1C10 C111
2行
1C
0 2
C221
C122
3行
1C
0 3
C331
C332 C313
4行
C140
C4
1 4
C642
C4
3 4
C144
5行
n-1行 n行
… … C150
5C
1 5
1C052
34行行的和为2n。
1
1 +
+ 4
3 +
+ 6
3 +
+ 4
1 +
= 1
23 = 24
5行
1 + 5 + 10 + 10 + 5 +1 = 25
6行
1 6 15 20 15 6 1
7行
1 7 21 …35… 3…5 …21 7 1
n行
2020/4/13
1+
C
n1+C
2 n
+………+…C
nr…+ ………+
1
11
1 21
13 31
14 6 4 1
1 5 10 10 5 1
2020/4/13
1
二项式展开
(a+b)0=1 (a+b)1=1a+b 1 (a+b)2=1a2+2a2b+b2 1 (a+b)3=1a3+3a32b+33ab2+b13 (a+b)4=1a4+4a43b+66a2b2+44ab31+b4 (a+b)5=a15+5a54b+10a3b12+010a52b3+51ab4+b5
n-1行 1
C C 1 n 1
2…
n 1
C C C r 1 r … n2
n1 n1
n 1
1
n行
1
C
1 n
C
2 n
2020/4/13
… ……
C…nr …

C n1 n
1
6
性质探究1: 各行数字和有何特点?
0行
1
1行 杨辉三角的各1 行+ 数1 字= 的21和等于与
2行之对应的(a+b)n的1 +展2开+式1 的= 各22个系数
2行个数字之和,
3行
即1Cnr
2Cnr111
Cr n1
13 3 1
4行(2)对称性:Cnr1 C4nnr 6 4 1
5行(3)最值:当1n是5偶数10时,中1间0 的一5 项1取最大 6行值;当n是1奇数6 时1,中5 间的20两项1相5 等,6且同1时取
7行最大值1. 7 21 …35… 3…5 …21 7 1
C
n n
1
+
1 =2n
7
性质探究2:
与左斜边平行的直线所经过的数字之和?
0行
1 +
1行
1 +1
2行
121
+
3行
13 3 1
4行
1 4+ 6 4 1
5行
n-1行 n行
1 5 10 10 5 1
……
… … 1 C C1 2 n1 n1
… … 1
C
1 n
C
2 n
Cr n 1
C
r n
C r 1 n
C n2 n 1
赋值法
小结:
1. 杨辉三角与二项式系数 2.杨辉三角的主要性质
2020/4/13
11
杨辉三角与二项式系数
Cn0
+
Байду номын сангаас
C
1 n
+C
2 n
+
…+
C
r n
+

+
C
n n
1+
Cnn
=2n
2020/4/13
12
(a b)n Cn0an Cn1an1b Cnranrbr Cnnbn
在二项式定理中,令 a 1, b 1 ,则:
11 n Cn0 Cn1 Cn2 Cn3 (1)nCnn
0 (Cn0 Cn2 ) (Cn1 Cn3 )
Cn0 Cn2 Cn4 Cn1 Cn3 Cn5
C1053 C554 C155
… … 1 C C1
2
n1 n1
… … 1
C
1 n
C
2 n
Cr n 1
C
r n
C r 1 n
C n2 n 1
1
C n1 n
1
2020/4/13
9
题型一 奇数项与偶数项的二项式系数的关系
例1 证明在(a+b)n展开式中,奇数项的二项式 系数的和等于偶数项的二项式系数的和。
2020/4/13
2
杨辉三角
《 详 解 九 章 算 法杨 》辉 中 记 载 的 表
2020/4/13
3
杨辉,南宋杭州钱塘人,中国著名的 数学家.著作甚多,共有5部21卷,著名 的有《详解九章算法》、《日用算法》、 《乘除变通本末》等。在朝鲜、日本等国 均有译本出版,流传世界。
“杨辉三角”出现在《详解九章算法》 一书中,杨辉三角的发现要比欧洲早500多 年,我国古代数学的成就是非常值得自豪 的。
2020/4/13
4
1.杨辉三角与二项式系数
0行 杨辉三角的第n1行中的数对应于 二12行行项式(a+b)n展开1 1式2的1系1数
3行
13 3 1
4行
14 6 4 1
5行
1 5 10 10 5 1
…………
n行
Cn0
C
1 n

C
r n
C …
C n1 n
n n
2020/4/13
5
0行(12)基杨本辉性三质角:的杨主辉要三性角质1形的两条斜边上的 1行数字都是1,而其余各1数都1等于它肩上的两
相关文档
最新文档