《多边形的内角和》教学设计

合集下载

多边形的内角和教案(优秀范文5篇)[修改版]

多边形的内角和教案(优秀范文5篇)[修改版]

第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

这(n-2)个三角形的内角和正好是这个n边形的内角和。

由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。

例2:如果一个多边形的内角和是2160度,求这个多边形的边数。

五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。

我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。

八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。

教学重、难点:教学重点:1、多边形内角和公式。

2、计算多边形的内角和及依据内角和确定多边形边数。

教学难点:多边形内角和公式的推导。

一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。

(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。

)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。

5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。

(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。

)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。

多边形的内角和教学教案

多边形的内角和教学教案

多边形的内角和教学教案多边形的内角和教案篇一一、教学目标知识与技能目标:能够说出多边形的内角和公式并会运用过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

二、教学重难点教学重点:多边形的内角和公式教学难点:多边形内角和公式三、教学方法讲解法、练习法、分小组讨论法四、教学过程结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、生成新知、深化新知、巩固新知、小结作业。

1. 导入新知首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。

由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。

这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

《多边形的内角和》数学教案

《多边形的内角和》数学教案

《多边形的内角和》数学教案标题:《多边形的内角和》数学教案一、教学目标:1. 知识与技能:让学生理解并掌握多边形的内角和定理,能够熟练地运用公式求解多边形的内角和。

2. 过程与方法:通过探究、观察、归纳等活动,培养学生的分析问题和解决问题的能力,提高他们的逻辑思维能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、敢于质疑的精神。

二、教学重点与难点:1. 重点:理解和掌握多边形的内角和定理,能熟练运用公式进行计算。

2. 难点:引导学生从特殊到一般,通过观察、思考、归纳出多边形的内角和公式。

三、教学过程:(一)导入新课教师出示一组图形(三角形、四边形、五边形等),提问:“这些图形的内角有什么关系?”引发学生思考,并引入本节课的主题——多边形的内角和。

(二)新知讲解1. 引导学生观察三角形的内角和,发现其内角和为180度。

然后引导学生尝试找出四边形、五边形的内角和,从而引出多边形的内角和公式:n边形的内角和=(n-2)*180度。

2. 教师讲解多边形的内角和公式的推导过程,强调这是从特殊到一般的推理过程。

(三)实践应用设计一系列的练习题,让学生运用多边形的内角和公式解决实际问题,巩固所学知识。

(四)课堂小结师生共同回顾本节课的内容,总结多边形的内角和公式及其推导过程,强化学生的记忆。

(五)作业布置布置一些有关多边形的内角和的习题,供学生在课后自我检测和复习。

四、教学反思:在教学过程中,要注重引导学生自主探究,让他们在实践中发现问题、提出问题、解决问题。

同时,也要注意培养学生的逻辑思维能力和创新精神,使他们在学习中体验到成功的喜悦,增强学习数学的信心和兴趣。

《多边形的内角和》优秀教学设计

《多边形的内角和》优秀教学设计

《多边形的内角和》优秀教学设计《多边形的内角和》优秀教学设计作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,借助教学设计可以提高教学效率和教学质量。

我们该怎么去写教学设计呢?以下是店铺整理的《多边形的内角和》优秀教学设计,希望对大家有所帮助。

学情分析:学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。

针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。

教学目标:1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。

2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。

3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。

教学重点:多边形的内角和公式。

教学难点:探索多边形的内角和定理的推导教学过程:一、创设情境,导入新课1、请看:我身后的建筑物是什么?─水立方。

我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)这节课咱们一起来探究《多边形的内角和》。

二、合作交流,探究新知1、多边形的内角和问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。

如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?预设回答:三角形的内角和360°。

四边形的内角和360°知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?预设回答:能,可以引对角线,将多边形分成几个三角形。

《多边形的内角和》教学设计

《多边形的内角和》教学设计

《多边形的内角和》教学设计一、教学目标知识与技能:1、通过实验探究,归纳出多边形内角和公式;2、运用多边形的内角和公式解决简单问题。

过程与方法:1、经历测量、类比、归纳等活动,感受数学思考过程的条理性,发展合情推理能力和语言表达能力;2、通过把多边形转化成三角形,体会转化思想在几何中的应用,同时体会从特殊到一般的认识问题的方法;3、体会几何“实验”与“论证”的两个方面,逐步从实验几何向论证几何过渡。

情感目标:通过猜想、推理、交流等活动,体验数学充满着探索和创造,体验猜想得到证实的成就感。

学情分析学生在学习本节课之前,已经掌握了三角形的有关边、角的结论,特别是关于内角和的定理,可以说已经为学习本节课打下了坚实的理论基础,而且从学习的方法来讲,学生在前面的学习过程中也采取了自主探究的学习方法,不过本节课的探究思路是将多边形与已有的三角形知识有机的联系到一起,这点学生不容易想到,因此,教师要对对角线的作用加以说明,便于学生利用对角线将多边形进行分割,进而想到用其他方法分割多边形。

二、教学重点:探索多边形内角和公式。

三、教学难点:探索多边形内角和时,如何把多边形转化为三角形。

教学过程出示ppt,从三角形,正方形说起。

1、探索多边形的定义及其在生活中的应用。

我们已经学过三角形的定义,那么我们可不可以用定义三角形的方法来定义多边形呢?(学生此时会尝试用三角形的定义方式来定义多边形,但学生叙述定义时会出现这样那样的问题,比如忽略“在平面内”、“封闭的”这个前提,教师可以让学生们讨论,找出其他同学说得不严密的地方,互相补足,也可以直接针对学生出现的问题进行解释。

)类似地,在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

多边形按组成它的线段的条数分成三角形、四边形、五边形……三角形是最简单的多边形,如果一个多边形由n条线段组成,那么这个多边形就叫做n边形。

老师在黑板上画出任意四边形,引导学生认识边、内角、定点。

《多边形的内角和》教案

《多边形的内角和》教案

《多边形的内角和》教案一、教学目标:1. 让学生理解多边形的内角和的概念。

2. 引导学生通过观察、思考、探究,发现多边形内角和的计算规律。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容:1. 多边形的内角和的概念。

2. 多边形内角和的计算规律。

三、教学重点与难点:重点:多边形的内角和的概念,多边形内角和的计算规律。

难点:发现并证明多边形内角和的计算规律。

四、教学方法:1. 采用问题驱动的教学方法,引导学生观察、思考、探究。

2. 利用几何画板软件,直观展示多边形的内角和。

3. 分组讨论,合作学习,培养学生的团队协作能力。

五、教学过程:1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角和。

2. 新课导入:介绍多边形的内角和的概念,让学生理解多边形内角和的意义。

3. 探究活动:引导学生观察、思考多边形内角和的计算规律。

4. 小组讨论:分组讨论,让学生合作探究多边形内角和的计算规律。

5. 成果展示:各小组代表展示探究成果,总结多边形内角和的计算规律。

6. 讲解与示范:讲解多边形内角和的计算方法,并利用几何画板软件进行示范。

7. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题。

8. 总结与反思:对本节课的内容进行总结,引导学生反思学习过程。

9. 课后作业:布置一些课后作业,巩固所学知识。

10. 教学反思:对课堂教学进行总结,反思教学过程中的优点与不足,为下一步教学做好准备。

六、教学评价:1. 评价学生对多边形内角和概念的理解程度。

2. 评价学生是否能运用多边形内角和计算规律解决实际问题。

3. 评价学生在小组讨论中的参与程度及团队协作能力。

七、教学反馈:1. 课后收集学生练习作业,分析学生掌握情况。

2. 课堂观察学生参与度,了解学生对教学内容的兴趣。

3. 听取学生对教学过程的建议和意见,以便改进教学方法。

八、教学拓展:1. 引导学生进一步研究多边形的其他性质,如外角和、对角线等。

多边形的内角和教学教案【优秀4篇】

多边形的内角和教学教案【优秀4篇】

多边形的内角和教学教案【优秀4篇】多边形的内角和教案篇一[教学目标]知识与技能:1.会用多边形公式进行计算。

2.理解多边形外角和公式。

过程与方法:经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。

情感态度与价值观:让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

[教学重点、难点与关键]教学重点:多边形的内角和。

的应用。

教学难点:探索多边形的内角和与外角和公式过程。

教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。

[教学方法]本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

[教学过程:](一)探索多边形的内角和活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?多边形边数分成三角形的个数图形内角和计算规律三角形31180°(3-2)·180°四边形4五边形5六边形6七边形7。

n边形n活动3:把一个五边形分成几个三角形,还有其他的分法吗?总结多边形的内角和公式一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

巩固练习:看谁求得又快又准!(抢答)例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?(点评:四边形的一组对角互补,另一组对角也互补。

)(二)探索多边形的外角和活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的'和叫做五边形的外角和。

五边形的外角和等于多少?分析:(1)任何一个外角同于他相邻的内角有什系?(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?(3)上述总和与五边形的内角和、外角和有什么关系?解:五边形的外角和=______________-五边形的内角和活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《多边形的内角和》教学设计
课题:多边形的内角和 授课人: 课型:新授课
教材分析
学生分析
设计理念
本节是三角形有关知识拓展,学习时应注意与三角形有关知识的类比。
因为有三角形的有关知识作基础,所以学生通过自己的努力可以探究出多边形的内角和,鼓励学生思考,并采用多种方法求得答案,提高学生发散思维的能力。
着力于学生能力的提高,不同的人在数学上得到不同的发展,培养学生积极思考探究的精神。
2.唤醒学生已有知识,将有助于后续问题的解决。
自主学习
合作探究
1、因为三角形的内角和已经知道是多少了,所以我们接着探究另外的一个多边形—四边形的内角和。你知道长方形、正方形的内角和是多少吗?
猜想:“任意四边形的内角和是多少”?
2、你是怎样得到的?你能找出几种方法?可直接引导学生用辅助线的方法把四边形转化为三角形。学生画图想办法求出四边形的内角和。自己思考并说明理由。
1、为顺利完成下一个问题指明方向。
2、用四边形的得出方法,试计算五边形、六边形…n边形的内角和
3、照顾学生的个体差异。并学生比较。
得出结论
1、用这些方法我们可以求出五边形的内角和是540°、六边形的内角和是720°。以此类推,我们能求得更多边形的内角和吗?那么n边形的内角和如何表示呢?大家探究一下。
课后反思
通过这节课的学习,你都学到了哪些知识?你有哪些收获?师小结
归纳、总结。口头表达能力。
教学反思:
整合拓展
1、这几种方法有什么共同点?(利用辅助线将四边形分割成三角形)为什么要分割成三角形呢?(因为我们知道三角形的内角和是180°)
2、下面同学们从刚才的方法中选择最简单的方法,也将一些多边形分割成若干个三角形,然后来探索五边形、六边形的内角和分别是多少度?
3、生独立思考,师深入指导。集中展示探究结果
3、教师适时鼓励(后师用幻灯片演示学生想出的各种方法,体会到四边形分三角形可从顶点处取点引线,可以从边上取点,可以从内部取点,…并比较哪种方法简单)
1.能借助辅助线找到不同的分割方法,把四边形分割成几个三角形。为后续问题的解决做好铺垫。
2. 学生合作探究,加强合作能力。另外四边形的内角和得出方法多样,提高学生的发散思维。
2、学生讨论,师巡视指导:多边形内角和与边数的关系
1、能用“探究”的不同多边形有条理地发现和概括出多边形的边数与内角和之间的关系
2、归纳、总结
当堂训练
利用这个公式,我们就可以很快地求出任意多边形的内角和,大家看(幻灯片出示练习题,生解答、师巡视指导,根据其回答情况适时肯定表扬)。
运用所学知识解决问题。
教学目标:
1.探索、归纳多边形内角和公式,并运用于解决计算问题。
2.转化及类比思想的体会,发散思维的培养。
重点
探索多边形内角和公式
难点
探索多边形内角和时,如何把多边形转化成三角形
教学过程:
环节设计
教学流程
设计目的
创设问题情境
1、以实际问题引出探究课题
2、你还记得三角形的内角和是多少吗?
1.引出探究课题。
相关文档
最新文档