五年级奥数专题讲义-第27讲最小公倍数(二)通用版(含答案)

合集下载

小学五年级奥数第27讲 最小公倍数(二)后附答案

小学五年级奥数第27讲 最小公倍数(二)后附答案

第27讲最小公倍数(二)一、专题简析:最小公倍数的应用题,解题方法比较独特。

当有些题中所求的数不正好是已知数的最小公倍数时,我们可以通过“增加一部分”或“减少一部分”的方法,使问题转换成已知数的最小公倍数,从而求出结果。

二、精讲精练例题1 有一个自然数,被10除余7,被7除余4,被4除余1。

这个自然数最小是多少?练习一1、学校六年级有若干个同学排队做操,如果3人一行余2人,7人一行余2人,11人一行也余2人。

六年级最少多少人?2、一个数能被3、5、7整除,但被11除余1。

这个数最小是多少?例题2 有一批水果,总数在1000个以内。

如果每24个装一箱,最后一箱差2个;如果每28个装一箱,最后一箱还差2个;如果每32个装一箱,最后一箱只有30个。

这批水果共有多少个?练习二1、一所学校的同学排队做操,排成14行、16行、18行都正好能成长方形,这所学校至少有多少人?2、有一批乒乓球,总数在1000个以内。

4个装一袋、5个装一袋或6个、7个、8个装一袋最后都剩下一个。

这批乒乓球到底有多少个?例题3 一盒围棋子,4颗4颗数多3颗,6颗6颗数多5颗,15颗15颗数多14颗,这盒棋子在150至200颗之间,问共有多少颗?练习三1、有一批树苗,9棵一捆多7棵,10棵一捆多8棵,12棵一捆多10棵。

这批树苗数在150至200之间,求共有多少棵树苗。

2、五(1)班的五十多位同学去大扫除,平均分成4组多2人,平均分成5组多3人。

请你算一算,五(1)班有多少位同学?例题4 从学校到少年宫的这段公路上,一共有37根电线杆,原来每两根电线杆之间相距50米,现在要改成每两根之间相距60米,除两端两根不需移动外,中途还有多少根不必移动?练习四1、插一排红旗共26面。

原来每两面之间的距离是4米,现在改为5米。

如果起点一面不移动,还可以有几面不移动?2、一行小树苗,从第一棵到最后一棵的距离是90米。

原来每隔2米植一棵树,由于小树长大了,必须改为每隔5米植一棵。

五年级奥数题最小公倍数

五年级奥数题最小公倍数

五年级奥数题最小公倍数
标题:五年级奥数题最小公倍数(创建与标题相符的正文并拓展) 正文:
在数学中,最小公倍数是一组数中同时能够整除所有这些数的最
小正整数。

在五年级的奥数题目中,最小公倍数常常被用来求解一些
复杂的数学问题。

下面是一道简单的五年级奥数题:
在一个长为12的线段上,有一个四边形,它的四个顶点颜色不同。

相邻顶点之间的颜色是互补的,已知四个顶点的颜色分别为红色、黄色、蓝色和紫色。

求这个四边形的最小公倍数。

这道题目需要利用最小公倍数的方法来解决。

我们可以将四个顶点的颜色转换为数字,即红色为1,黄色为2,蓝色为3,紫色为4。

然后,我们可以将这些数字组成一个数,这个数就是四边形的最小公倍数。

具体地,我们可以将四个顶点的数字相加,得到12+2+3+4=20。

因为20是四个数字的最小公倍数,所以四边形的最小公倍数为20。

拓展:
最小公倍数不仅可以用于求解四边形,还可以用于求解其他形状
的多边形的最小公倍数。

例如,我们可以用最小公倍数的方法来求解
一个三角形的最小公倍数。

另外,最小公倍数还有一些应用,例如在计算机编程中,最小公倍
数可以用来求解字符串的匹配问题。

在物理学中,最小公倍数也可以
被用来求解物体之间的相互作用。

五年级奥数最小公倍数讲座及练习答案

五年级奥数最小公倍数讲座及练习答案

五年级奥数最小公倍数讲座及练习答案回忆:1、什么叫公倍数及最小公倍数?2、自然数a、b的最小公倍数可以记作[a、b],当(a、b)=1时,[a、b]=a某b。

3、两个数的最大公约数某最小公倍数=两数的乘积例1:一块砖长20厘米,宽12厘米,高6厘米,要堆成正方体至少需要这样的砖头多少块?分析:把若干个长方体堆成正方体,它的棱长是长方体长、宽、高的公倍数,现在要求长方体砖块最少,它的棱长应是长方体长方体长、宽、高的最小公倍数。

要多少块砖,即用正方休的体积除以长方体的体积。

[20,12,6]=6060某60某60÷(20某12某6)=150(块)答:至少需要这样的砖头150块。

【巩固练习】:用长9厘米,宽6厘米,高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块?解:用长9厘米,宽6厘米,高7厘米的长方体木块叠成一个正方体,要求至少需要用这样的长方体多少块,也就是求9、7、6的最小公倍数是多少。

[9、6、7]=126.答:至少需要用这样的长方体126块.。

例2:甲每秒跑3米,乙每秒跑4米,丙每秒跑2米,三人沿600米的环形跑道从同一点同时同方向跑步,经过多少时间三人又同时从出发点出发?分析:甲跑一圈需要600÷3=200(秒)乙跑一圈需要600÷4=150(秒)丙跑一圈需要600÷2=300(秒)。

要使三人再次从出发点一齐出发,经过的时间一不定期是200、150、300的最小公倍数,[200、150、300]=600,所以,经过600秒后三人又同时从出发点出发。

【巩固练习】:一环形跑道长240米,甲、乙、丙从同一处同方向骑车而行,甲每秒行8米,乙每秒行6米,丙每秒行5米,至少经过几分钟后三人再次从原出发点同时出发?解:一环形跑道长240米,甲、乙、丙从同一处同方向骑车而行,甲每秒行8米,那么骑完一圈需240÷8=30(秒)乙每秒行6米,骑完一圈需240÷6=40(秒)丙每秒行5米,骑完一圈需240÷5=48(秒),求至少经过几分钟后三人再次从原出发点同时出发,就是求30、40、48的最小公倍数是多少。

(完整word版)五年级奥数-最大公因数和最小公倍数

(完整word版)五年级奥数-最大公因数和最小公倍数

最大公因数和最小公倍数基本概念1.公约数和最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

2.公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。

例题分析例1 用一个数去除30、60、75,都能整除,这个数最大是多少?例2 一个数用3、4、5除都能整除,这个数最小是多少?例3 有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?例4 加工某种机器零件,要经过三道工序.第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?例5 一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?练习提高1.一个数用3、4、5除都余1,这个数最小是多少?2.一盒钢笔,可以平均分给2、3、4、5、6个同学,这盒钢笔最少有多少支?3.花花、林林、和阳阳三人在一个椭圆的跑道上跑步,花花3分钟跑了一圈,林林4分钟跑了一圈,阳阳5分钟跑了一圈,她们同时从A点一起同向出发,多少分后,三人再次在A 点同时出发?4.有批书大约300到400本。

包成每包12本,剩下11本;每包18本,缺1本;每包15本,就有7包每包各多2本,这批书有多少本?5.有一个钟,每走9分钟亮一次灯,每到整点时响一次铃,中午12点时,既响铃又亮灯,问下一次既响铃又亮灯是几点钟?6.7月6日,宝柱从避暑山庄打电话给乾隆问好,贾六来看望乾隆,春喜在打扫房间。

如果春喜每隔3天打扫一次,宝柱每隔6天打一次电话,贾六每隔5天看望一次,则至少经过多少天,问好、看望、打扫这三件事才能同时发生?7.一段长90厘米的绳子,每隔2厘米点一个点,再每隔3厘米点一个点,最后在有点的地方,将绳子剪段,共可剪成几段?8.一张长方形白纸,长1.36米,宽0.8米,要剪成同样大小的正方形,并使它们的面积尽可能的大,剪完后又正好没有剩余,可剪出多少个正方形?9.把160只铅笔、128个练习本、96册故事书最多可以分成多少份同样的奖品,每份奖品的组成怎样?10.美丽加工厂加工一批零件,每个零件需要一个螺栓,三个螺母,7个螺钉,已知每个工人每小时可完成3个螺栓或12个螺母或18个螺钉,要想能均匀生产,使每件零件都配上套,生产这三种零件各需安排多少人?抽测综合练习:1、在下面3个数中,最接近1的是()。

奥数最大公因数、最小公倍数讲义及答案

奥数最大公因数、最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室______ 姓名_________ 学号________【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a, b)。

2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作]a, b]。

3、两个自然数的最大公因数和最小公倍数的性质:(1)(a, b)x[ a, b] =a x b;(2)若a>b,则a- b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168 X 4 - 24 = 28.例2•将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

( 90, 42) =6.至少能剪90X 42-( 6 X 6) =105 (块).例3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473 ;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43 X 11 , 407 = 37 X 11,所以甲数是47,甲乙两数的乘积应为:47X 11=517 或1X477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2, 3, 4, 5, 6, 7的最小公倍数加上 1. [2, 3, 4, 5, 6, 7] =420, 最小数是:420+1=421。

小学五年级奥数第27讲 最小公倍数(二)(含答案分析)

小学五年级奥数第27讲 最小公倍数(二)(含答案分析)

第27讲最小公倍数(二)一、专题简析:最小公倍数的应用题,解题方法比较独特。

当有些题中所求的数不正好是已知数的最小公倍数时,我们可以通过“增加一部分”或“减少一部分”的方法,使问题转换成已知数的最小公倍数,从而求出结果。

二、精讲精练例题1 有一个自然数,被10除余7,被7除余4,被4除余1。

这个自然数最小是多少?练习一1、学校六年级有若干个同学排队做操,如果3人一行余2人,7人一行余2人,11人一行也余2人。

六年级最少多少人?2、一个数能被3、5、7整除,但被11除余1。

这个数最小是多少?例题2 有一批水果,总数在1000个以内。

如果每24个装一箱,最后一箱差2个;如果每28个装一箱,最后一箱还差2个;如果每32个装一箱,最后一箱只有30个。

这批水果共有多少个?练习二1、一所学校的同学排队做操,排成14行、16行、18行都正好能成长方形,这所学校至少有多少人?2、有一批乒乓球,总数在1000个以内。

4个装一袋、5个装一袋或6个、7个、8个装一袋最后都剩下一个。

这批乒乓球到底有多少个?例题3 一盒围棋子,4颗4颗数多3颗,6颗6颗数多5颗,15颗15颗数多14颗,这盒棋子在150至200颗之间,问共有多少颗?练习三1、有一批树苗,9棵一捆多7棵,10棵一捆多8棵,12棵一捆多10棵。

这批树苗数在150至200之间,求共有多少棵树苗。

2、五(1)班的五十多位同学去大扫除,平均分成4组多2人,平均分成5组多3人。

请你算一算,五(1)班有多少位同学?例题4 从学校到少年宫的这段公路上,一共有37根电线杆,原来每两根电线杆之间相距50米,现在要改成每两根之间相距60米,除两端两根不需移动外,中途还有多少根不必移动?练习四1、插一排红旗共26面。

原来每两面之间的距离是4米,现在改为5米。

如果起点一面不移动,还可以有几面不移动?2、一行小树苗,从第一棵到最后一棵的距离是90米。

原来每隔2米植一棵树,由于小树长大了,必须改为每隔5米植一棵。

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

五年级奥数最小公倍数

五年级奥数最小公倍数

二、最小公倍数(一)几个数公有的倍数叫做这几个数的公倍数,其中最小的一个公倍数,叫做这几个数的最小公倍数。

自然数a 、b 的最小公倍数可以记作[a 、b],当(a 、b )=1时,[a 、b]= a ×b 。

两个数的最大公约数和最小公倍数有着下列关系:最大公约数×最小公倍数=两数的乘积即(a 、b )×[a 、b]= a ×b要解答求最小公倍数的问题,关键要根据题目中的已知条件,对问题作全面的分析,若要求的数对已知条件来说,是处于被除数的地位,通过就是求最小公倍数,解题时要避免和最大公约数问题混淆。

两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少?分析 根据“两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积”可先求出这两个数的乘积,再把这个积分解成两个数。

根据题意:当a 1b 1分别是1和6时,a 、b 分别为15×1=15,15×6=90;当a 1b 1分别是2和3时,a 、b 分别为15×2=20,15×3=45。

所以,这两个数是15和90或者30和45。

1、两个数的最大公约数是9,最小公倍数是90,求这两个数分别是多少?2、两个数的最大公约数是12、最小公倍数是60,求这两个数的和是多少?3、两个数的最大公约数是60,最小公倍数是720,其中一个数是180,另一个数是多少?两个自然数的积是360,最小公倍数是120,这两个数各是多少?分析 我们把这两个自然数称为甲数和乙数。

因为甲、乙两数的积一定等于甲、乙两数的最大公约数与最小公倍数的积。

根据这一规律,我们可以求出这两个数的最大公约数是360÷120=3。

又因为(甲÷3=a ,乙÷3=b )中,3×a ×b=120,a 和b 一定是互质数,所以,a 和b 可以是1和40,也可以是5和8。

当a 和b 是1和40时,所求的数是3×1=3和3×40=120;当a 和b 是5和8时,所求的数是3×5=15和3×8=24。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 27 讲最小公倍数(二)
基础卷
1.公路上一排电线杆共 25 根,每相邻两根间的距离原来都是45m,现在要改成 60m,可以几根不要移动?
45=3×3×5,60=2×2×3×5,
45和60的最小公倍数为:3×5×2×2×3=180,
所以不需要移动的电线杆数共有:
45×(25-1)÷180+1
=1080÷180+1,
=6+1,
=7(棵);
答:可以有7根不需要移动.
故答案为:7.
2.把一批奖金分给甲、乙两个生产组,平均每人得 6 元,如果只分给甲组,平均每人可得 10 元,如果只分给乙组,每人可得几元?
在分给两个组时,乙组的6元全部给甲组,甲组每人可增加4元,
也就是说,甲乙两组的人数之比为6:4
乙组单独分时每人得到的奖金为
10*6/4=15(元)
3.不满千人的士兵等分为四队,每队各排成 14 人一排或 12 人一排都余 8 人,后 1 来改成 8 人一排则无余数。

求一共有多少人。

不满千人,每队就是不满250人.
14和12的最小公倍数是84
所以,84+8=92满足前两个条件
84*2+8=176满足前两个条件
84*3+8=260>250,不满足条件.
因为楼主的题目不完整.
假如,是8人一排能够刚好排完的话,那么每队应该是176人.
因为92/8=11 (4)
176/8=22 0
所以呢,每队应该是176人,4队总共704人.
4.在跑道两侧每隔 4m 种一棵树,结果第一棵与最后一棵相距48m,现在将树移栽成每隔 6m 种一棵,其中有几棵不需要移栽?4和6的最小公倍数是12
每侧不需要移栽的有48÷12+1=5(棵)
共有不需要移栽的有5×2=10(棵)
5.有一堆橘子,如果按 10 个、 9 个、 8 个或 7 个一堆分都
多 1 个,这堆橘子至少有多少个?
因为10个9个8个或7个为一堆都多出一个,这堆橘子的数目分别除以10、9、8、7都余1,所以这堆橘子的数目应该是10、9、8、7的最小公倍数再加一.10、9、8、7的最小公倍数是2520,所以橘子数目应是2521个.
6.以尽可能小的自然数作被除数,以 18, 27, 7 为除数,余数都是 5,问:被除数是几?
18 27 7 的最小公倍数+5
18=2x3x3
27=3x3x3
所以是 2x3x3x3x7+5=378+5=383
提高卷
1.一对啮合齿轮,一个有 132 个齿,一个有 48 个齿,其中咬合的任意一对齿从第一次接触到再次相接触,两个齿轮各要转动多少圈?
这个题目就是求132和48的最小公倍数,他们的最小公倍数是528, 也就是说这对齿轮转过528个齿以后,啮合的任意一对齿从第一次相接到再次相接.
大齿轮转的圈数=528÷132=4圈
小齿轮转的圈数=538÷48=11圈
2.某地电费,不超过 10 度时,每度 0.45 元;超过 10 度,每度 0.80 元。

张家比李家多交电费 3.30 元。

如果两家的用电量都是整数度。

那么张家、李家各交电费多少元?
李家用电13度,交电费10×0.45+3×0.8=6.9元,
张家用电8度,交电费8×0.45=3.6元.
答:李家交电费6.9元,张家交电费3.6元.
3.有五位数 234() 6,用 3 或 4 除都无余数,求()处所代表的数字。

原数是3的倍数,也是4的倍数。

是3的倍数,要求1 2 3 () 6是3的倍数
()可能是0、3、6、9
是4的倍数,要求后两位是4的倍数
实验,06、36、66、96中,36和96都是4的倍数。

因此()可能是3或9
原数是12336或12396
4.初一(2)班上体育课,排成 3 行多 2 人,排成 4 行少 1 人,排成 5 行少 4 人,排成 6 行少 1 人。

初—(2)班的人数不超过 100 人,求该班的人数。

本题实质是求最小公倍数(需要想一下才能明白下列等号的推断过程)
排成3行多2人=3人一行多2人=3人一行少1人
排成4行少1人=4人一行少1人
排成5行少1人=5人一行少1人
排成6行少1人=6人一行少1人
由此可见:
3人一行、4人一行、5人一行、6人一行都是少1人
∵3、4、5、6的最小公倍数是60
∴该班人数就是60-1=59
5.学校在操场的四周种树,开始时每隔 4m 种 1 棵,种到 21 棵后发现树苗不够了,于是决定重种,改为每隔 5m 种 1
棵.这样重种时,不必拔掉的树有多少棵?
(21-1)×4=80米已经种的路程
4和5的最小公倍数为20,那么除了第一棵外,每个20米就有一棵不需要拔掉
80÷20+1=5棵
答不必拔掉的树有5棵
6.两幢大楼各 12 层,新楼每层高 280cm,旧楼每层高 320cm,问:两楼各在第几层的天花板互相齐平?
两幢大楼各12层,新楼每层2米80厘米高,旧楼每层3米20厘米高,问:两楼的天花板各在第几层相互齐平?取3米20厘米和2米80厘米的最小公倍数,是22米40厘米.22米40厘米除以3米20厘米=7(层) 22米40厘米除以2米80厘米=8。

相关文档
最新文档