专题5-梅森增益公式
梅森公式-信号流图

例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。
L
a
d eg bcg
c
有两个互不接触回路
L L
b
deg
f
则 1 d eg bcg deg
1. X 1 X 4 , p1 aef , p2 abcf 1 1 d , 2 1
x2
(g)
x2
x3
x5 L5 a23a35a52
a12 a23 a34 a45 (1 a44 )a12 a23 a35 P 1 (a23 a32 a23 a34 a42 a44 a23 a34 a52 a23 a35 a52 ) a23 a32 a44 a23 a35 a52 a44
2 1 a44
x3
a42 a12
a44 a34 x4 a35 a52 a45 x5
(a)
a23 x2 a32 x3
x1
(d)
x2
x3
互不接触
L1 a23a32
L12 a23a32a44 L2 a23a34a42
(e) (f)
x2
x4 x4 x5 L3 a44 互不接触 L22 a23a35a52a44 L4 a23a34a45a52
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
1 - G1H1 + G2H2
+ G1G2H3 -G1H1G2 H2
信号流图
R(s) 1
e
g
a
f
b
信号流图梅森公式

回路传输(增益):回路上各支路传输的乘积称为回路传输或回
路增益。
2/5/2020
5
信号流图的等效变换
串联支路合并:
ab x1 x2 x3
并联支路的合并:
a
x1 b x2
ab
x1
x3
ab
x1
x2
回路的消除:
ab
x1
x2
x c
3
b
a 1 bc
x1 x2 x3
2/5/2020
6
信号流图的等效变换
P
1
n k1
Pkk
1 L a L b L c L d L e L f .(.正. 负号间隔)
式中: La 流图中所有不同回路的回路传输之和;
LbLc 所有互不接触回路中,每次取其中两个回
路传输乘积之和;
LdLeLf 所有互不接触回路中,每次取其中三个
18
梅逊公式||例2-15
例2-15:数数有几个回路和前向通道。
G6
R
G5
1
G2
1
G7
G3
G4
1
G1
1
H2
G8
H1
有四个回路,分别是:
1
C
G 2 H 2 , G 1 G 2 G 3 G 4 H 1 , G 1 G 2 G 7 G 4 H 1 , G 1 G 2 G 8 G 4 H 1
ug ue
u1
u2
ua
G f
[解]:前向通道有一条;ug ,P 1G 1G 2G 3G u
有一个回路; L a G 1 G 2 G 3 G u G f
自动控制原理第二章梅森公式-信号流图课件

ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。
梅森增益公式适用范围.docx

梅森增益公式适用范围标题:梅森增益公式适用范围的阐述引言:梅森增益公式是电子电路设计中常用的一种分析工具,用于计算电路增益和频率响应。
然而,在实际应用中,梅森增益公式的适用范围有一定限制。
本文将就梅森增益公式的适用范围展开阐述,以帮助读者更好地理解和使用这一公式。
一、梅森增益公式简介梅森增益公式是一种基于网络理论的公式,用于计算复杂电路的总增益。
它是由美国电子工程师梅森提出的,一般用于线性、定常、时不变的电路分析。
二、适用范围的限制1. 线性电路要求梅森增益公式适用于线性电路,即电路的元件和信号是线性的。
对于非线性电路,例如包含二极管、晶体管等非线性元件的电路,梅森增益公式就不再适用。
2. 定常电路要求第1页/共6页梅森增益公式适用于定常电路,即电路的参数是固定的,不随时间变化。
对于具有非定常特性的电路,如含有开关、变阻器等可变元件的电路,梅森增益公式无法提供准确的结果。
3. 时不变电路要求梅森增益公式适用于时不变电路,即电路的参数与时间无关。
在实践中,例如考虑温度变化、电源变化等因素会导致电路参数发生改变,因此这些情况下梅森增益公式不能得到准确的结果。
三、梅森增益公式的优势尽管梅森增益公式存在一定的适用范围限制,但它仍然是电子电路设计中常用的工具。
以下是梅森增益公式的一些优势:1. 简单易用相比其他复杂的电路分析方法,梅森增益公式简单易懂,计算过程相对简单直观。
这使得它成为工程师们在电路设计、故障排除等方面的重要工具。
2. 可模块化分析梅森增益公式支持对电路进行模块化分析。
通过将复杂的电路划分为多个子电路,可以使用梅森增益公式计算每个子电路的增益,进而得到整个电路的总增益。
这种分析方法便于对电路进行优化和调试。
第2页/共6页3. 提供定量分析结果梅森增益公式给出的是数值化的增益结果,可以帮助工程师量化地评估和比较不同电路的性能。
这对于电路设计者来说非常重要,可以在设计初期对各个子电路进行评估和优化。
最新梅森公式例子

1
C(s) 1
G8
G7 G9
R(s) G1 G2 G3 G4
G5 G6
1
-H1
-H2
-H3
第一条回路增益 L1= - G4 H1 第二条回路增益 L1= - G6 H2 第三条回路增益 L3= - G2 G3 G4 G5 G6 H3 第四条回路增益 L4= - G2 G3 G4 G9 G6 H3 第五条回路增益 L5= - G7 G4 G5 G6 H3 第六条回路增益 L6= - GG7 G9
R(s) G1 G2 G3 G4
G5 G6
1
-H1
-H2
-H3
第一条回路增益 L1= - G4 H1 第二条回路增益 L1= - G6 H2
第三条回路增益 L3= - G2 G3 G4 G5 G6 H3
1
C(s) 1
G8
G7 G9
R(s) G1 G2 G3 G4
G5 G6
1
-H1
-H2
-H3
第一条回路增益 L1= - G4 H1 第二条回路增益 L1= - G6 H2 第三条回路增益 L3= - G2 G3 G4 G5 G6 H3 第四条回路增益 L4= - G2 G3 G4 G9 G6 H3
1
C(s) 1
G8
G7 G9
R(s) G1 G2 G3 G4
G5 G6
1
R(s) G1 G2 G3 G4 G5
G6
1
-H1
-H2
-H3
第一条前向通路增益 P1=G1 G2 G3 G4 G5 G6
第二条前向通路增益 P2=G1 G2 G8
第三条前向通路增益 P3=G1 G7 G4 G5 G6 第四条前向通路增益 P4=G1 G2 G3 G4 G9 G6
梅森增益公式

具有任意条前向通路及任意个单独回路和不接触回路的复杂信号流图,求取从任意源节点到任意阱节点之间传递函数的梅森增益公式记为
式中
——从源节点到阱节点的传递函数(或总增益);
——从源节点到阱节点的前向通路总数;
——从源节点到阱节点的第
条前向通路总增益;
——流图特征式
式中
——所有单路回路增益之和;
——所有互不接触的单独回路中,每次取其中两个回路的回路增益的乘积之和;
——所有互不接触的单独回路中,每次取其中三个回路的回路增益的乘积之和;
——流图余因子式,它等于流图特征式中除去与第
条前向通路相接触的回路增益项(包括回路增益的乘积项)以后的余项式。
[1]。
梅森公式的理解

是包含于,你理解的有点偏差,举个例子如果有三个互不接触的回路,取两个不接触的回路应有三项,取三个互不接触回路就一项。
具体的应该是这样:
梅森公式G(s)=Σ(Ρκ*△κ)╱△G(s)= ——系统总传递函数;n——是前向通道数;Ρκ——第k条前向通路的传递函数,由输入端单向传递至输出端的信号通道称为前向通道;△——流图的特征式△=1-ΣLi+ΣLjLk-ΣLiLjLk+······
L A
bc为每两个不接触回路增益乘积之和
a为所有回路增益之和;L a L b
Li——所有单独回路的增益之和;
LjLk——所有互不接触的单独回路中,取其中两个不接触的回路增益乘积之和;LiLjLk——所有互不接触的单独回路中,取三个互不接触回路增益之和;
△κ——第k条前向通路特征式的余因子,即对于流图的特征式△,将与第k 条前向通路相接触的回路
增益代以零值,余下的即为△κ。
对于复杂的结构,理论上有很多项,但实际上△就取到前两三项。
梅森增益公式_自动控制原理_[共2页]
![梅森增益公式_自动控制原理_[共2页]](https://img.taocdn.com/s3/m/552c18cbfad6195f302ba6b7.png)
第2章 控制系统的数学模型31㊀2 4 1 信号流图信号流图是由节点和支路组成的一种信号传递网络图,可以由微分方程组绘制,也可以由结构图转化而来.如图236所示为简单的结构图与信号流图之间的转换,变换中,将结 图236 结构图与信号流图之间的转换构图中的输入量㊁输出量变为节点,以小圆圈表示;连接两个节点的定向线段,称为支路;将结构图中的方框去掉,传递函数标在支路的旁边表示支路增益;支路增益表示结构图中两个变量的因果关系,因此支路相当于乘法器,即有C =G R .由此可见结构图转换为信号流图的规则:将系统的输入量㊁输出量以及中间变量转化为节点;引出点转化为节点;综合点后的变量转化为节点.方框去掉,将方框的输入量和输出量连起来形成支路.方框中的传递函数标在支路旁边,即为支路增益. 图237 信号流图在信号流图中,常使用以下名词术语.(1)源节点(或输入节点)只有输出支路的节点称为源节点,如图237中的R (s )和N (s ).它一般表示系统的输入量.(2)阱节点(或输出节点)只有输入支路的节点称为阱节点,如图237中的C (s ).它一般表示系统的输出量.(3)混合节点㊀既有输入支路又有输出支路的节点称为混合节点,如图237中的X 1㊁X 2㊁X 3.它一般表示系统的中间变量.(4)前向通道信号从源节点到阱节点传递时,每一个节点只通过一次的通道,称为前向通道.前向通道上各支路增益之乘积,称为前向通道总增益,一般用p k 表示.在图237中,对于源节点R (s )和阱节点C (s ),有一条前向通道,是R (s )ңX 1ңX 2ңX 3ңC (s ),其前向通路总增益为P R =a b c ;对于源节点N (s )和阱节点C (s ),是N (s )ңX 2ңX 3ңC (s ),其前向通路总增益为P N =f c .(5)单回路如果回路的起点和终点在同一节点,而且信号通过每一个节点不多于一次的闭合通路称为单独回路,简称回路.如果从一个节点开始,只经过一个支路又回到该节点的,称为自回路.回路中所有支路增益之乘积叫回路增益,用L a 表示.在图237中共有两个回路,L 1=b e ,L 2=d .(6)不接触回路如果一信号流图有多个回路,而回路之间没有公共节点,这种回路叫不接触回路.在信号流图中可以有两个或两个以上不接触回路.在图237中,有一对不接触回路,L 1L 2=b e d .2 4 2 梅森增益公式在系统的信号流图上,可以用梅森公式直接求出系统的传递函数,由于信号流图和结构图存在着相应的关系,因此梅森公式同样也适用于结构图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑵ 扰动作用下的闭环传递函数
应用叠加原理,令R(s)=0,可直
接由梅森公式求得扰动作用N(s)到 输出量C(N ( s) N ( s) 1 G1 ( s)G2 ( s) H ( s)
同样,可求得系统在扰动作用下的输出C(s)为
G2 ( s) C ( s) N ( s) N ( s) N ( s) 1 G1 ( s)G2 ( s) H ( s)
自动控制原理
(Principles of Automatic Control)
第5讲
1.梅森(Mason)增益公式
直接求取从源节点到阱节点的传递函数。
1 P pk k k 1
n
例 试用梅森公式求下图系统的传递函数C(s)/R(s) .
前向通路有一条(即n=1): p1=G1G2G3G4 . 回路有三个:L1 G2G3H2 , L2 G3G4 H3 , L3 G1G2G3G4 H1 . 没有不接触回路,且前向通路与所有回路都接触,故 1 1 .
(3) 闭环系统的误差传递函数
闭环系统在输入信号或扰动作用时,以误差信号E(s) 作为输出量时的传递函数称为误差传递函数。它们可由梅 森增益公式求得
第二章控制系统数学模型小结
1. 数学模型是描述系统元、部件及系统动态特性的数学表达式,是对 系统进行分析研究的主要依据。
2. 根据实际系统用解析法建立数学模型,一般必须首先分析系统各元、 部件的工作原理,然后利用基本定律,并舍去次要因素及进行适当的线性 化处理,最后获得既简单又能反映元、部件及系统动态本质的时域数学模 型—微分方程。
C ( s) 1 G1G2G3G4 p11 R( s ) 1 G2G3H 2 G3G4 H 3 G1G2G3G4 H1
例 试用梅森公式求信号流图的传递函数C(s)/R(s) .
1
解: 单独回路有四个即
L
a
G1 G2 G3 G1G2
两个互不接触的回路有四组,即 LbLc G1G2 G1G3 G2G3G1G2G3 三个互不接触的回路有一组,即
1 n P pk k k 1
2.闭环系统的传递函数
反馈控制系统的典型结构图和信号流图
图中: R(s)-----输入信号; N(s)------扰动信号; C(s)------输出信号.
⑴ 输入信号下的闭环传递函数
应用叠加原理,令N(s)=0,可 直接求得输入信号R(s)到输出信 号C(s)之间的传递函数为
显然当输入信号R(s)和扰动作用N(s)同时作用时,系统输出C(s)为
C ( s ) ( s ) R( s )
N
( s) N ( s)
1 G1 ( s)G2 ( s) R( s) G2 ( s) N ( s) 1 G1 ( s)G2 ( s ) H ( s )
3. 传递函数是一种复数域数学模型,结构图是传递函数的图形表示 法,它直观形象地表示出系统中信号的传递变换特征,这将有助于对系 统进行分析研究。同时,根据结构图,应用等效变换法则或者梅森增益 公式可以迅速求得系统的各种传递函数。
作业 P80 2-12(b),2-15(b)
因此,系统的传递函数为
p2 G2G3K , 2 1 G1 ; p4 G1G2G3K , 4 1 .
p3 G1G3K , 3 1 G2 ;
C ( s ) p11 p2 2 p3 3 p4 4 R( s ) G2G3 K (1 G1 ) G1G3 K (1 G2 ) 1 G1 G2 G3 2G1G2 G1G3 G2G3 2G1G2G3
L L L
d e
f
G1G2G3
1
则信号流图特征式为
1 La Lb Lc Ld Le L f 1 G1 G2 G3 2G1G2 G1G3 G2G3 2G1G2G3
前向通路共有四条,其增益及余因式分别为
p1 G1G2G3K , 1 1 ;
C ( s) G1 ( s)G2 ( s) ( s) R( s) 1 G1 ( s)G2 ( s) H ( s)
由 ( s)可进一步求得输入信号作用下系统的输出量C(s)为
G1 ( s)G2 ( s) C ( s ) ( s ) R( s ) R( s ) 1 G1 ( s)G2 ( s) H ( s)