北师大版初一(上)数学第4讲:正数与负数
北师大版初一数学上册知识点必备

北师大版初一数学上册知识点必备每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。
下面是小编给大家整理的一些北师大版初一数学上册的知识点,希望对大家有所帮助。
初一年级上册数学知识点总结北师大版第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。
圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。
侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.②、长方体、棱柱的截面与正方体的截面有相似之处.(2)用平面截圆柱体,可能出现以下的几种情况.(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)(4)用平面去截球体,只能出现一种形状的截面——圆.(5)需要记住的要点:几何体截面形状正方体三角形、正方形、长方形、梯形、五边形、六边形圆柱圆、长方形、(正方形)、……圆锥圆、三角形、……球圆7、三视图物体的三视图指主视图、俯视图、左视图。
初中数学知识框架(北师大版)

第六章
反比例函数
反比例函数图像与性质
1、反比例函数的定义
2、反比例函数的图像与对称性
3、反比例函数的性质
4、系数k的几何意义
5、反比例函数图像上点的坐标特征
6、待定系数法求反比例函数解析式
7、反比例函数与一次函数交点问题
反比例函数的应用
反比例函数的应用
从统计图分析数据的几种趋势
3、扇形、条形、折线统计图及其选择
利用频率估计概率
等可能事件的概率
1、概率的意义、公式
2、几何概率
3、列表法与树状图法
八年级上册
第一章
勾股定理
探索勾股定理
勾股定理与证明
勾股定理逆定理
1、勾股定理逆定理
2、勾股数
勾股定理的应用
1、勾股定理的应用
2、平面展开--最短路劲问题
第二章
实数
无理数
无理数
平方根
1、平方根
2、算术平方根
3、非负数的性质
2、代数式
3、列代数式
4、代数式求值
整式
1、单项式与多项式
整式的加减
1、同类项与合并同类项
2、去口号与添括号
3、整式的加减与化简求值
探索与表达规律
数字的变化规律
第四章
基本平面图形
线段、射线、直线
1、线段、射线、直线
2、直线的性质:两点确定一条直线
比较线段的长短
1、线段的性质:两点之间线段最短
2、两点间的距离
2、二次函数的三种形式
二次函数的应用
1、二次函数的实际应用
二次函数与一元二次方程
1、抛物线与x轴的交点
2、图像法求一元二次方程的近似根
【最新整理版】【北师大版】七年级数学上册:2.1 正数与负数

,0
,-101,+ ,10% ,5 ,2009 ,18.
13
整数集合:{ 6,0,-101, 67 ,2009,18 …}
分数集合:{
99.9
,
1 3
,+3
1 4
,1.25
,0.01,
10%
,5 13
…}
正数集合:{
6
,+3
1 4
,0.01,
解:(1)向南走5km记作 -5km. (2)-4 t表示粮库运出粮食4t. 你还能用正数和负数表示生活中其他意义相
反的量吗?
正整数、负整数、零统称为整数. 正分数、负分数统称为分数.
正整数
整数
零 负整数
分数
正分数
负分数
例3 把下列各数填入相应的集合内:
99.9
,6
,
1 3
42
2.填空:
(1)如果买入200 kg大米记为+200 kg,那么卖
出120 kg大米可记作___-__1_20_k_g__;
(2)如果-50元表示支出50元,那么+40元表示
____收__入__4_0_元_;
(3)太平洋最深处的马里亚纳海沟低于海平面
11 034 m,它的海拔高度可表示为__-_1_1_0_3_4_m__.
在小学里,我们学过正数、负数、零. 你知道下面图片中8844.43、-154、-117.3、 -0.102%各数的意义?
像8848.43、100、357、78这样的数叫做正数; 像-154、-38.87、-117.3、-0.102%这样的数叫 做负数.
0既不是正数也不是负数.
“+”读作“正”,如“+ 2 ”读作“正三分
2024年北师大版初一数学上册知识点汇总

2024年北师大版初一数学上册知识点汇总2024年北师大版初一数学上册知识点汇总1整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
2024年北师大版初一数学上册知识点汇总2七年级上册数学知识点总结之有理数及其运算板块:1、整数包含正整数和负整数,分数包含正分数和负分数。
正整数和正分数通称为正数,负整数和负分数通称为负数。
2、正整数、0、负整数、正分数、负分数这样的数称为有理数。
3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。
七年级上册数学知识点总结之整式板块:1、单项式:由数与字母的乘积组成的式子叫做单项式。
2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3、整式:单项式与多项式统称整式。
4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。
七年级上册数学知识点总结之一元一次方程。
1、含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。
2、移项:把等式一边的某项变号后移到另一边,叫做移项等。
其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。
大家平时要注意整理与积累。
配合多加练习。
一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。
一个个知识点去通过。
我相信只要做个有心人,就可以在数学考试中取得高分。
2024年北师大版初一数学上册知识点汇总31.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的`运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.2024年北师大版初一数学上册知识点汇总4__内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
北师大版初一数学上册教案

第9页 共20页
觉什么规律? 4,每个数到原点的距离是多少?由此你会发觉了什么规律? (小组探讨,沟通归纳) 归纳出一般结论,教科书第 12 的归纳。这些问题是本节课要
求学会的技能,教学中要以学生探究学习为主来完成,老师可结 合教科书给学生适当指导。
巩固练习 教科书第 12 页练习 小结与作业 课堂小结请学生总结: 1,数轴的三个要素; 2,数轴的作以及数与点的转化方法。 本课作业 1,必做题:教科书第 18 页习题 1.2 第 2 题 2,选做题:老师自行支配 本课教化评注(课堂设计理念,实际教学效果及改进设想) 1,数轴是数形转化、结合的重要媒介,情境设计的原型来源 于生活实际,学生易于体验和接受,让学生通过视察、思索和自 己动手操作、经验和体验数轴的形成过程,加深对数轴概念的理 解,同时培育学生的抽象和概括实力,也体出了从感性相识,到 理性相识,到抽象概括的相识规律。 2,教学过程突出了情竟到抽象到概括的主线,教学方法体了
第5页 共20页
2,教科书第 10 页练习. 此练习中出现了集合的概念,可向学生作如下的说明. 把一些数放在一起,就组成了一个数的集合,简称“数集”, 全部有理数组成的数集叫做有理数集.类似地,全部整数组成的数 集叫做整数集,全部负数组成的数集叫做负数集……; 数集一般用圆圈或大括号表示,因为集合中的数是无限的, 而本题中只填了所给的几个数,所以应当加上省略号. 思索:上面练习中的四个集合合并在一起就是全体有理数的 集合吗? 也可以老师说出一些数,让学生进行推断。 集合的概念不必深化绽开。 创新探究问题 2:有理数可分为正数和负数两大类,对吗?为 什么? 教学时,要让学生总结已经学过的数,激励学生概括,通过 沟通和探讨,老师作适当的指导,逐步得到如下的分类表。 有理数这个分类可视学生的程度确定是否有必要教学。 应使学生了解分类的标准不一样时,分类的结果也是不同的, 所以分类的标准要明确,使分类后每一个参与分类的象属于其中 的某一类而只能属于这一类,教学中老师可举出通俗易懂的例子 作些说明,可以按年龄,也可以按性别、地域来分等 小结与作业
北师大版初一数学上册知识点

北师大版初一数学上册知识点北师大版初一数学上册学问点1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;π不是有理数;(2)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.肯定值:(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;(2)肯定值可表示为:肯定值的问题常常分类商量;(3)a|是重要的非负数,即|a|≥0;留意:|a|?|b|=|a?b|, 5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.北师大版初一数学上册学问点二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要转变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式全部解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但肯定要留意不等式性质3的应用;留意:在数轴上表示不等式的解集时,要留意空圈和实点.北师大版初一数学上册学问点整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
北师大版七年级数学上册《有理数》有理数及其运算PPT课件

(3)-0.03克表示乒乓球的质量低于标
准质量0.03克.
(4)如果向东运动4m记作+4m,那么向西运动7m应
记作什么?若在原地不动又记作什么?
第十六页,共三十一页。
做一做
随堂练习
1、填空题
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
2、小学里学过的数除0外都是正数;正数前面添上 “-”号的数是负数;0既不是正数,也不是负数,它
表示正、负数的界限。
3、有理数的分类方法不是唯一的,可以按整数和分数 分成两大类,也可以按正有理数、零、负有理数分成三 大类。
4、我学得怎样?
第二十八页,共三十一页。
作业:
1、下列各数中,哪些是正整数?哪些是负整数?哪些是 正分数?哪些是负分数?哪些是正数?哪些是负数?
用正数和负数可以表示具有相反意义的量
第十五页,共三十一页。
例1
知 (1)在知识竞赛中,如果+10分表示加10分,那么 扣 识 20分怎样表示? 运 (2)某人转动转盘,如果用+5表示沿逆时针方向转 了 用 5圈,那么沿顺时针方向转了12圈怎样表示?
(3)在某次乒乓球质量检测中,一只乒乓球超出标
准质量0.02克记作+0.02,那么-0.03克表示什么?
沈阳 小雨 19 7 天津 小雨 12 8 西宁 小雪 5 -4 银川 小雪 0 -3 兰州 小雪 3 -3 西安 小雨 16 7
第十二页,共三十一页。
财富全球500强中的主要零售企业
排名 2 46 66
111 120 153 184
公司 沃尔玛 麦德龙 家乐福 特斯科 洋华堂
北师大版初一(上)数学重点知识点汇总

初一(上)重点知识点汇总第1课几何图形(1)1.几何图形几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形.2.立体图形立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形.3.平面图形平面图形:一个图形的各部分都在同一个平面内,如:线段、角、三角形、正方形、圆等.常见的平面图形有:三角形、长方形、正方形、梯形、圆,了解它们的共性是在同一平面内.4.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图5.展开图折叠成几何体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.6.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.第2课几何图形(2)1.点、线、面、体(1)体与体相交成面,面与面相交成线,线与线相交成点.(2)从运动的观点来看点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.(3)从几何的观点来看___是组成图形的基本元素,________都是点的集合.(4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体.(5)面有平面和曲面之分,如长方体由6个平面组成,球由一个曲面组成.2.几何体的表面积(1)几何体的表面积=______ +______(上、下底的面积和)(2)常见的几种几何体的表面积的计算公式①圆柱体表面积:2πR2+2πRh (R为圆柱体上下底圆半径,h为圆柱体高)②圆锥体表面积:πr2+nπ(h2+r2)360(r为圆锥体低圆半径,h为其高,n为圆锥侧面展开图中扇形的圆心角)③长方体表面积:2(ab+ah+bh)(a为长方体的长,b为长方体的宽,h为长方体的高)④正方体表面积:6a2 (a为正方体棱长)3.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为_______问题解决.4.展开图折叠成几何体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.5.截一个几何体(1)截面:用一个平面去截一个几何体,截出的面叫做截面.(2)截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.6.圆柱的计算(1)圆柱的母线(高)等于展开后所得矩形的___,圆柱的底面周长等于矩形的___.(2)圆柱的侧面积=底面圆的____×高(3)圆柱的表面积=上下底面面积+侧面积(4)圆柱的体积=底面积×高.参考答案:1.(3)点线面体2.(1)侧面积底面积3.(3)平面图形6.(1)宽长;(2)周长第3课投影与视图1.平行投影(1)物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.一般地,用光线照射物体,在某个平面(底面,墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.(2)平行投影:由______光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.(3)平行投影中物体与投影面平行时的投影是全等的.(4)判断投影是平行投影的方法是看光线是否是平行的.如果光线是平行的,所得到的投影就是平行投影.(5)正投影:在平行投影中,投影线______于投影面产生的投影叫做正投影.2.中心投影(1)中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.(2)中心投影的光线是从______出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.(3)判断投影是中心投影的方法是看光线是否相交于一点,如果光线是相交于一点,那么所得到的投影就是中心投影.3.视点、视角和盲区(1)把观察者所处的位置定为一点,叫视点.(2)人眼到视平面的距离视固定的(视距),视平面左右两个边缘到人眼的连线得到的角度就是视角.(3)盲区:视线到达不了的区域为盲区.4.简单几何体的三视图(1)主视图:从物体的前面向后面投射所得的视图---能反映物体的______形状.俯视图:从物体的上面向下面投射所得的视图---能反映物体的______形状.左视图:从物体的左面向右面投射所得的视图---能反映物体的______形状.(2)常见的几何体的三视图:圆柱的三视图:5.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.6.由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.7.作图-三视图(1)画立体图形的三视图要循序渐进,不妨从熟悉的图形出发,对于一般的立体图要通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.(4)具体画法及步骤:①确定主视图位置,画出主视图;②在主视图的正下方画出俯视图,注意与主视图“长对正”;③在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.参考答案:1.(2)平行;(5)垂直2.(2)一点4.(1)前面上面左面第4课正数与负数1.正数与负数定义(1)定义:_______的数叫做正数,在正数前加上____________的数叫做负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正数与负数______________________________________________________________________________________________________________________________________________________________1、体会引入负数的必要性,理解正数负数的概念并熟练掌握;2、掌握正负数表示具有相反意义的量,并灵活应用;3、学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义.在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
1.正数与负数定义(1)定义:_______的数叫做正数,在正数前加上____________的数叫做负数。
(2)含义:①_______就是我们小学学习的大于0的数。
②每一个正数前加上一个_______就得到对应的一个负数,所以有多少正数就对应多少个_______。
(3)二级结论:①数由___与___两部分构成;②___包括正数、零和负数三类。
(4)理解要点:①____一般是小学所学过0以外的数前面加“+”号,也可以不加“+”号;②____一般是小学所学过0以外的数前面加“-”,“-”号不能省略;③___含有“+”“-”号不是判断一个数是不是正数、负数的唯一标准,它必须具备以下两个要素:小学学过的除0以外的所有数;含“+”“-”号(无“+”“-”号视同为含“+”号)。
2.“0”的认识(1)0既不是正数,也不是负数。
(2)0是正数与负数的____。
(易错提示:0除了表示“一个也没有”外,还表示特定的意义。
0是最小的自然数)3.用正数和负数表示相反意义的量(1)生活中到处都存在________的两个量;(2)相反意义的量中,我们把其中一个意义的量规定为正,那么另一个量就是负。
(3)理解要点:①相反意义的量是指意义相反的两个量,相反意义的量是____出现的;②判断相反意义的量的标准是:一、两个同类量,二、意义相反。
1. 正负数之间区分【例1】在下列数中,正数有__个,负数有__个。
7,32, -6, 0, 3.1415, -215, -0.62, -11. 练1. 在下列数中,负分数有 个;非负整数有 个。
7, 32, -6, 0, 3.1415, -215, -0.62, -11. 练2. 以下数6,2008,212,0,-3,+1,41中,正整数和负分数共有( )A. 3个B. 4个C. 5个D. 6个练3. 若字母a 表示任意一个数,则—a 表示的数是( )A. 正数B. 负数C. 0D. 以上情况都有可能 2.表示相反意义的量【例2】如果温度上升3oC 记作+3oC ,那么下降5oC 记作______________________。
练4. 李华把向北移动记作“+”,向南移动记作“—”,下列说法正确的是( ) A. —5米表示向北移动了5米 B. +5米表示向南移动了5米C. 向北移动—5米表示向南移动5米D. 向南移动5米,也可记作向南移动—5米 练5. 下列有正数和负数表示相反意义的量,其中正确的是( ) A. 一天凌晨的气温是—50C ,中午比凌晨上升100C ,所以中午的气温是+100C B. 如果生产成本增加12%,记作+12%,那么—12%表示生产成本降低12% C. 如果+5.2米表示比海平面高5.2米,那么—6米表示比海平面低—6米 D. 如果收入增加10元记作+10元,那么—8表示支出减少8元练6. 神舟六号飞船于北京时间(UTC+8)2005年10月12日上午9:00在酒泉卫星发射中心发 射升空, 费俊龙和聂海胜两名中国航天员被送入太空。
按照神舟号飞船环境控制与生命保障系统的设计指标,通过温湿度控制系统“神舟”六号飞船返回舱的温度为21°C ±4°C ,相对湿度50%±20%该返回舱的最高温度为 °C ,最低温度为 °C【例3】在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()练7.如果全班某次数学测试的平均成绩为80分,某同学考了85分,记作+5分,得分90分和80分应分别记作_________________________.练8.某粮店出售三种品牌的面粉,袋上分别标有质量为(50±0.1)kg、(50±0.2)kg、(50±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差.【例4】在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.练9.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______, -4万元表示________________.练10.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是()A 1B -6C2或-6D不同于以上答案【例5】在一次数学竞赛中,成绩在120分以上为优秀100分到119分为合格,100分以下的不合格.老师将他班上的十位同学竞赛成绩以110分为标准简记为:-10、-5、0、-28、+10、20、-3、+15、+8、-23,则这十位同学中优秀的有几名【解析】:以110分为标准,120分以上为合格,这就是说,120分记作+10,要找大于等于+10的数,包含:+10,20,+15练11.如果某股票第一天跌了3.01%,应表示为________,第二天涨了4.21%,•应表示为_____________。
【例6】(2014年商丘八中七年级第一次月考)某地一天早晨的气温为﹣3℃,中午比早晨上升了7℃,夜间又比中午下降了8℃,则这天的夜间的气温是()A.﹣5℃ B.4℃C.﹣4℃D.﹣16℃练12.(2014年商丘八中七年级第一次月考)某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差________kg.练13.味精袋上标有“300±5克”字样,还说明这袋味精的质量应该是____~____1. 如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作()2.月球是地球的近邻,它的起源一直是人类不断探索的谜题之一.全球迄今进行了126次月球探测活动,因为研究月球可提高人类对宇宙的认识,包括认识太阳系的演化及特点,认识地球自然系统与太空自然现象之间的关系.我们已认识到,在月球表面,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到﹣183℃.下面对“﹣183℃”叙述不正确的是()3. 杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()4.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()5.(2015年中山一中月考)有一批食品罐头,现抽取10听样品进行检测, 结果如下表(单位: 克)464459454449454质量109876听号454459454459444质量54321听号请用简便的方法求这10听罐头的平均质量是多少?6. (2014年文汇中学第一次月考) 在北京2008奥运会召开的前夕,为了相应绿色奥运的号召,小莉同学调查了她所在居民楼一个月内扔垃圾袋的数量,如以每户每个月扔30个垃圾袋为基准,超出次基数用正数表示,不足此基数用负数表示,其中10户居民某个月扔垃圾袋的个数如下:+1 -4 +4 -7 +2 -2 0 -3 +6,+3求这10户居民这个月共扔掉多少个垃圾袋?_______________________________________________________________________________ _______________________________________________________________________________1.(2014年北京中考)2的相反数是 A .2B .2-C .12-D .122. 2014年,山西省公共财政同比增长2.2%,记作+2.2%,那么,一般公共服务支出同比下降6.3%,应记作( )3.如果收入80元记作+80元,那么支出20元记作( )4、若a 是有理数,则|a|一定:A 、是正数;B 、不是正数;C 、是负数;D 、不是负数 5、下列说法正确的是:A 、“黑色”和“白色”表示具有相反意义的量;B 、“快”和“慢”表示具有相反意义的量;C 、“向南100米”和“向北1000米”表示具有相反意义的量;D、“+15米”就表示向东走了15米6、用-a表示的数一定是:A、负数;B、正数;C、正数或负数;D、以上都不对7.一辆汽车从P站出发向东行驶40千米,然后再向西行驶30千米,此时汽车的位置是在()8.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数9.向东行进-30米表示的意义是()A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米10.甲、乙两人同时从A地出发,如果向南走48m,记作+48m,则乙向北走32m,记为 m这时甲乙两人相距 m.11.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在℃至℃范围内保存才合适。
12.测量一座公路桥的长度,各次测得的数据是:255米,270米,265米,267米,258米.(1)求这五次测量的平均值;(2)如以求出的平均值为基准数,用正、负数表示出各次测量的数值与平均值的差;13甲、乙两人同时从A地出发,如果甲向南走50m记为+50m,则乙向北走30m记为什么?这时甲、乙两人相距多少米?14摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增长值如下表:根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?15.明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样.小明拿去称了一下,发现只有297g.则食品生产厂家(填“有”或“没有”)欺诈行为.。