麻花钻的结构以及工作原理
麻花钻的基本结构

麻花钻的基本结构
麻花钻是一种中国传统的面点食品,以其独特的形状和口感而受到广
大消费者的喜爱。
下面将介绍麻花钻的基本结构。
麻花钻主要由面粉、白糖、花生油、芝麻、食盐等原料制成。
制作麻
花钻的过程分为揉面、调糖、擀面、切片、拧成麻花形、炸制、撒芝麻等
步骤。
首先,面粉和适量的水混合揉搓成面团。
这个过程需要花费一定的时间,以使面筋充分发展。
揉面时,可以适量添加食盐,增加面团的弹性和
风味。
接下来,将揉好的面团分成小份,用擀面杖将其擀成薄片。
为了保证
麻花钻的口感,面片的厚度应该足够薄,一般在2-3毫米左右。
然后,将白糖和食盐混合,撒在面片上。
根据个人口味,可以适量调
节白糖和食盐的用量。
这样可以增加麻花钻的味道和口感。
接着,将面片切成长条形,宽度约为1-2厘米。
长条形的面片将通过
下一步的操作,形成麻花钻的特有形状。
然后,将切好的面条一端拉长,双手交叉扭转,形成一根扭曲的面条。
这个过程类似于拧麻花,因此得名麻花钻。
最后,将制作好的麻花钻放入热油中炸制。
炸制的时间一般在2-3分
钟左右,直到麻花钻变得金黄脆香。
炸好后,将麻花钻取出沥油,待温度
降至室温后,撒上适量的芝麻,增加口感和风味。
总结起来,麻花钻的基本结构包括面粉、水、白糖、食盐、花生油和芝麻等原料,通过揉面、调糖、擀面、切片、拧形、炸制和撒芝麻等步骤制作而成。
麻花钻钻孔参数

麻花钻钻孔参数麻花钻是一种常用的钻孔工具,其具有结构简单、使用便捷、适应性广泛等特点,因而在建筑、矿业、地质勘探等领域得到了广泛的应用。
本文将对麻花钻的钻孔参数进行详细的分析,并探讨其在不同领域中的应用。
一、麻花钻的结构和钻孔参数麻花钻的结构主要由钻头、钻杆和手柄组成。
钻头是麻花钻的主要部件,其直径和长度决定了钻孔的尺寸。
常见的麻花钻钻头直径包括6mm、8mm、10mm等,长度可根据实际需要来定制。
钻杆是连接钻头和手柄的部件,其长度取决于需要钻孔的深度,通常有20cm、30cm、40cm等不同规格。
手柄是用于旋转钻杆来进行钻孔作业的部件,其设计合理性会直接影响到操作者的工作效率和劳动强度。
麻花钻的钻孔参数包括转速、推力、冲击频率等。
通常情况下,麻花钻的转速为500-1500rpm,推力为15-50N,冲击频率为0-3000次/min。
这些参数的选取需根据具体的钻孔材料和工艺要求来进行合理的调整,从而达到最佳的钻孔效果。
二、麻花钻在建筑领域中的应用在建筑领域中,麻花钻主要用于墙体、地面、天花板等材料的钻孔作业,例如混凝土、砖石、钢筋混凝土等。
由于其钻孔效率高、操作简便、成本低廉,因此得到了广泛的应用。
对于建筑领域中的钻孔作业,需要根据具体的钻孔材料来调整麻花钻的参数。
在对混凝土进行钻孔时,通常需要选择较高的转速和推力,以确保能够快速有效地完成钻孔作业。
而在对砖石进行钻孔时,则可以适当降低转速和推力,以防止钻孔材料的损坏。
三、麻花钻在矿业领域中的应用在矿业领域中,麻花钻主要用于采矿工作中的地层勘探、爆破孔钻等作业。
由于矿石的硬度和地质条件的复杂性,对麻花钻的钻孔参数提出了更高的要求。
在进行地层勘探时,需要根据地质条件和勘探深度来选择合适的钻头直径和长度,并结合较高的冲击频率和转速,以确保快速高效地完成勘探作业。
而在进行爆破孔钻时,则需要对麻花钻的推力和冲击频率进行调整,以满足爆破孔的尺寸和平整度要求。
麻花钻头原理

麻花钻头原理
麻花钻头是一种在钻岩过程中使用的工具,其原理是利用旋转运动和一定的压力来钻穿硬质岩石。
它的设计结构使得在钻探过程中能够更高效地破碎岩石,提高钻探速度和效率。
麻花钻头主要由钻头身、钻翼、钻杆连接等部分组成。
钻头身具有扭矩传递功能,能够将旋转动力传递到钻翼上,从而实现岩石的破碎。
钻翼则是麻花钻头的重要部分,其外形呈螺旋状,具有一定的锋利度和硬度。
当麻花钻头旋转时,钻翼与岩石表面摩擦,施加压力并破碎岩石。
在实际工作中,麻花钻头通常与钻杆连接在一起。
钻杆通过传递旋转和推进力来控制钻探方向和速度。
钻杆和钻头的连接方式通常采用螺纹连接,使得钻头能够与钻杆紧密结合,实现有效的传递力量。
麻花钻头的工作原理可总结为以下几个步骤:首先,钻杆和麻花钻头被下到井口。
然后,开始施加旋转运动,通过传递动力到钻头,使其旋转。
同时,沿着钻孔方向施加一定的压力。
这样,钻翼就会与岩石表面摩擦,逐渐破碎岩石。
在钻探过程中,固体废渣会随着钻孔洞口卸出,通过泥浆或其他介质排出。
总之,麻花钻头通过旋转运动和压力来破碎岩石,实现钻探作业。
其结构设计和操作方法的合理性和灵活性,使得麻花钻头成为现代钻井工具中重要的一部分。
第五章 麻花钻与铰刀.

测量方便
6
第五章
3 刃倾角λs :
麻花钻与铰刀
一 麻花钻的结构与几何参数
在切削平面内,主切削刃与基面之间的夹角
端面刃倾角λt :
主切削刃与基面在端面投影中
ห้องสมุดไป่ตู้
的夹角
7
第五章
4 顶角2φ与主偏角κr :
麻花钻与铰刀
一 麻花钻的结构与几何参数
顶角2φ:两条主切削刃在与其平行的平面上投影的的夹角
标准麻花钻:2φ=118 °
30
第五章
四 铰刀
5 结构
工作部分 颈部 柄部
麻花钻与铰刀
引导锥:在切削部分的锥角2φ≤30º 时,为便于切入,
工作 部分
在其前端制成引导锥:0.5~2.5 X 45º 切削部分:锥角2φ 校准部分:有刃带(修光刃):bα1 = 0.2~0.4 mm 导向;修光;提高表面质量和刀具寿命;便于制造、检验; 圆柱部分: 倒锥部分:降低摩擦
15
第五章
2
麻花钻与铰刀
二 麻花钻切削部分结构的分析与改进
标准高速钢麻花钻切削部分的修磨与改进
(2)修磨前刀面
加工较硬材料时,可将 主切削刃外缘处的前刀 面磨去一部分,适当减 小该处前角,以保证足 够强度
当加工较软材料时,在前 刀面上磨出卷屑槽,加大 前角,减小切屑变形,降 低切削温度,改善工件表 面加工质量
是磨削钻头柄部时的砂轮越程槽
常用来标钻头的规格。 工作部分 分切削部分和导向部分 切削部分:担负切削工作 导向部分:导向 备磨部分 钻芯:正锥 锥度:1.4~2/100 外径:倒锥 锥度:0.03~0.12/100
2
第五章
切削部分: 2个前刀面:螺旋槽
[精彩]钻工实际常识教材
![[精彩]钻工实际常识教材](https://img.taocdn.com/s3/m/8cdbbd3a7275a417866fb84ae45c3b3566ecdd55.png)
麻花钻1、高速钢麻花钻的结构标准锥柄高速钢麻花钻由三部分组成(1)、工作部分又分为切削部分与导向部分,切削部分担负着主要切削工作,导向部分的作用是当切削部分的切入工件孔后起导向作用,也是切削部分的备磨部分。
为了提高钻头的刚性与强度,其工作部分的钻心直径向柄部方向递增,每100mm长度钻心的递增量为1.4-2.0mm。
(2)、柄部钻头的夹持部分,并用来传递扭矩。
柄部分直柄和锥柄两种,前者用于小直径钻头,后者用于大直径钻头。
(3)、颈部颈部位于工作部分与柄部之间,磨柄部时退砂轮之用,也是钻头打标记的地方。
为了制造方便,直柄麻花钻一般不制有柄部。
麻花钻的切削部分有两个前面、后面、副后面(临近注切削刃的棱带)、主切削刃、副切削刃及一个横刃组成。
2、麻花钻切削部分的几何参数(1)、基面与切削平面基面:主切削刃上任意点的基面,即通过该点,垂直于该点切削速度方向的平面,主切削刃上各点因切削速度方向不同,基面位置也不同。
切削平面:主切削刃上任意点的切削平面,是包含该点切削速度方向而又切于该点加工表面的平面。
同样,由于主切削刃上各点的切削速度方向不同,切削平面位置不同。
(2)、螺旋角β钻头外圆柱面与螺旋槽交线的切线与钻头轴线夹角为螺旋角β。
由于螺旋槽上各点的导程P相等,因而在麻花钻的主切削刃上沿半径方向各点的螺旋角β就不相同,钻头外径处的螺旋角最大,越靠近钻头中心,其螺旋角越小。
螺旋角实际上就是钻头进给前角。
因此,螺旋角越大,会消弱钻头强度,散热条件也差。
标准麻花钻的螺旋角一般在18°-30°之间。
(3)、刃倾角与端面刃倾角由于麻花钻的主切削刃不通过钻头轴线,从而形成刃倾角。
它是在切削平面内主切削刃与基面之间的夹角,因为主切削刃上各点基面与平面位置不同。
因此刃倾角也是有变化的。
麻花钻主切削刃上任意点的端面刃倾角,是该点的基面与主切削刃在端面投影中的夹角,由于主切削刃三各点的基面不同,因各点的端面刃倾角也不相等,外缘处最小,越接近钻芯越大。
麻花钻

一、麻花钻结构特点麻花钻是最常用的孔加工刀具,此类钻头的直线型主切削刃较长,两主切削刃由横刃连接,容屑槽为螺旋形(便于排屑),螺旋槽的一部分构成前刀面,前刀面及顶角(2Ø)决定了前角g的大小,因此钻尖前角不仅与螺旋角密切相关,而且受到刃倾角的影响。
麻花钻的结构及几何参数见图1。
D:直径 y:横刃斜角 a:后角 b:螺旋角Ø:顶角 d:钻芯直径 L:工作部分长度图1 麻花钻结构及切削部分示意图横刃斜角y是在端面投影中横刃与主切削刃之间的夹角,y的大小及横刃的长短取决于靠钻芯处的后角和顶角的大小。
当顶角一定时,后角越大,则y越小,横刃越长(一般将y控制在50°~55°范围内)。
二、麻花钻受力分析麻花钻钻削时的受力情况较复杂,主要有工件材料的变形抗力、麻花钻与孔壁和切屑间的摩擦力等。
钻头每个切削刃上都将受到Fx、Fy、Fz三个分力的作用。
图2 麻花钻切削时的受力分析如图2所示,在理想情况下,切削刃受力基本上互相平衡。
其余的力为轴向力和圆周力,圆周力构成扭矩,加工时消耗主要功率。
麻花钻在切削力作用下产生横向弯曲、纵向弯曲及扭转变形,其中扭转变形最为显著。
扭矩主要由主切削刃上的切削力产生。
经有限元分析计算可知,普通钻尖切削刃上的扭矩约占总扭矩的80%,横刃产生的扭矩约占10%。
轴向力主要由横刃产生,普通钻尖横刃上产生的轴向力约占50%~60%,主切削刃上的轴向力约占40%。
图3 钻芯直径d-刚度Do关系曲线以直径D=20mm麻花钻为例,在其它参数不变情况下改变钻芯厚度,从其刚度变化曲线(见图3)可以看出,随着钻芯直径d增加,刚度Do增大,变形量减小。
由此可见,钻芯厚度增加明显增加了麻花钻工作时的轴向力,直接影响刀具切削性能,且刀具刚度的大小对加工几何精度也有影响。
由于普通麻花钻的横刃为大负前角切削,钻削时会发生严重挤压,不仅要产生较大轴向抗力,而且要产生较大扭矩。
对于一些厚钻芯钻头,如抛物线钻头(G钻头)和部分硬质合金钻头(其特点之一是将钻芯厚度由普通麻花钻直径的11%~15%加大到25%~60%)等,其刚性较好,钻孔直线度好,孔径精确,进给量可加大20%。
麻花钻和手钻的用途是什么

麻花钻和手钻的用途是什么麻花钻和手钻是常见的工具设备,被广泛应用于工业生产、建筑工程、木工加工等领域。
它们有着不同的特点和用途,下面将分别从麻花钻和手钻的定义、结构特点、用途以及各自的优缺点等方面进行详细介绍。
一、麻花钻的定义、结构特点与用途:1. 定义:麻花钻是一种通过旋转运动,以钻头在工件上形成孔洞或挖掘的工具。
它通常由电动机、减速机、传动装置、工作设备等组成。
2. 结构特点:麻花钻通常采用电动驱动,具有单手持握、便于操作的特点。
它的传动装置可以实现高速旋转,使钻头具有强大的钻孔能力。
3. 用途:(1)金属加工:麻花钻可以用于金属制品的钻孔加工,如钢材、铝材、铜材等。
它可以用于制作机械零部件、金属管道等;(2)木工加工:麻花钻也可以用于木材制品的加工,如家具、门窗等。
它可以实现精确的孔洞定位和钻孔;(3)建筑工程:麻花钻可以用于建筑工程中的钻孔处理,如钢筋混凝土、瓷砖等。
它可以用于固定门窗、安装管道等。
麻花钻的优点:1. 高效性:麻花钻的高速旋转可以提高钻孔的速度和效率;2. 精确性:麻花钻可以实现精密定位和穿孔,适用于要求高精度的加工任务;3. 多功能性:麻花钻具有多种钻头和配件,可实现不同材质和形状的钻孔。
麻花钻的缺点:1. 尺寸限制:麻花钻的尺寸较大,不适合在狭小空间进行钻孔操作;2. 重量较大:麻花钻的电机和减速机等部分较为庞大,使用时相对沉重;3. 使用限制:麻花钻在工件较薄、易碎或不规则的情况下,操作不便或容易导致损坏。
二、手钻的定义、结构特点与用途:1. 定义:手钻是一种通过手动操作,以钻头在工件上形成孔洞或挖掘的工具。
它通常由手柄、主轴、钻头等组成。
2. 结构特点:手钻采用人力驱动,手柄是主要的操作部位,通过旋转手柄使主轴带动钻头进行旋转;3. 用途:(1)家庭维修:手钻是日常家庭维修常用的工具,如安装挂钩、拆卸家具等;(2)艺术创作:手钻在工艺品制作中有着广泛的应用,如雕刻木雕、雕刻玉石等;(3)电路维修:手钻可用于电路板上的各种维修和配线工作。
项目四--麻花钻.讲义

刃磨麻花钻要求两个主切削刃和麻花钻的轴 线成相同的角度并且长度相同。横刃斜角为55 。 刃磨要注意冷却,防止切削部分过热 口诀: 刃口摆平轮面靠 钻轴斜放出锋角 由刃向背磨后面 上下摆动尾别翘
15
o
引起退火。
(1)钻头摆放位置
麻花钻中心高于 砂轮中心,主切削 刃保持水平位置。 麻花钻中心线与砂 轮外圆表面的夹角 约为59 ,同时钻柄 向下倾斜。
几何角度
12
麻花钻顶角的大小对切削刃和加工的影响
顶角 2κr>118º 2κr=118º (标准麻花钻) 2κr<118º
图示
主切削刃 的形状
凹曲线
直线 适中
凸曲线
顶角大 , 则切削刃短、 定心差,钻出的孔容易 对加工的 扩大;同时前角也增大, 影响 使切削省力
适用的材料 钻削较硬的材料
顶角小,则切削刃 长、定心准,钻出的 孔不容易扩大;同时 前角也减小,使切削 阴力大
特点
直柄:钻头直径﹤14MM 锥柄:钻头直径﹤14MM
1标注钻头直径,材料牌号和商标 1颈部较大的钻头 2制造麻花钻 2退刀槽 1切削 作用 2导向 作用 切削作用 保持钻削方向,修光 孔壁
8
直柄麻花钻
9
锥柄麻花钻
10
2、 麻花钻的几何形状
1 、螺旋槽: 排除切屑. 通入切削液. 构成切削刃. 2、 前刀面: 指切削部分的螺旋槽面 3、主后刀面:指钻头的螺旋圆锥面 4、主切削刃:担负主要切削工作 5、横刃:影响麻花钻的钻尖强度.(轴向力) 6、棱边:确定钻削方向, 修光孔壁 作为切削部分的后备部分
主 后 主切削刃 面
主切削刃
前面 主 后 面 棱边 副切削刃
副后面
11
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
麻花钻的结构以及工作原理
摘要:麻花钻原理-工艺-技术篇:对麻花钻的工作原理进行图解,让消费者能从图中充分了
解其结构和工作原理。
以下内容由买购网整理,提供给您参考。
麻花钻的结构以及工作原理
在金属切削中,孔加工占很大比重。
孔加工的刀具种类很多,按其用途可分为两类:一类是在实心材料上加工出孔的刀具,如麻花钻、扁钻、深孔钻等;另一类是对工件已有孔进行再加工的刀具,如扩孔钻、铰刀、镗刀等。
本节介绍常用的几种孔加工刀具。
(一)麻花钻
1 •麻花钻的结构要素
图7 —32为麻花钻的结构图。
它由工作部分、柄部和颈部组成
ltηβ
M⅛√; It
(1)工作部分
麻花钻的工作部分分为切削部分和导向部分
①切削部分
麻花钻可看成为两把内孔车刀组成的组合体。
如图7 - 33所示。
而这两把
内孔车刀必须有一实心部分——钻心将两者联成一个整体。
钻心使两条主切削刃不能直
接相交于轴心处,而相互错开,使钻心形成了独立的切削刃一一横刃。
因此麻花钻的切
削部分有两条主切削刃、两条副切削刃和一条横刃(如图7 —32b 所示)。
麻花钻的钻心直径取为(0.125~0.15)do (do为钻头直径)。
为了提高
钻头的强度和刚度,把钻心做成正锥体,钻心从切削部分向尾部逐渐增大,其增大量每100mm 长度上为1.4~2.0mm。
(a)车内孔
® 7-33钻孔与车内孔示意
两条主切削刃在与它们平行的平面上投影的夹角称为锋角2①,如图7 —34所示。
标准麻花钻的锋角2①=118 °,此时两条主切削刃呈直线;若磨出的锋角2①〉118 则主切削刃呈凹形;若2ΦV 118 °,则主切削刃呈凸形。
②导向部分
导向部分在钻孔时起引导作用,也是切削部分的后备部分
导向部分的两条螺旋槽形成钻头的前刀面,也是排屑、容屑和切削液流入的空间。
螺旋槽的螺旋角β是指螺旋槽最外缘的螺旋线展开成直线后与钻头轴线之间的夹角,如图T—34所示。
愈靠近钻头中心螺旋角愈小。
螺旋角β增大,可获得较大前角,因而切削轻快,易于排屑,但会削弱切削刃的强度和钻头的刚性。
导向部分的棱边即为钻头的副切削刃,其后刀面呈狭窄的圆柱面。
标准麻花钻导向部分直径向柄部方向逐渐减小,其减小量每IOOmm长度上
0.03~0.12mm ,螺旋角β可减小棱边与工件孔壁的摩擦,也形成了副偏角。
柄部用来装夹钻头和传递扭矩。
钻头直径do V 12mm常制成圆柱柄(直柄);钻头直径do > 12mm常采用圆锥柄。
(3)颈部
颈部是柄部与工作部分的连接部分,并作为磨外径时砂轮退刀和打印标记处。
小直径钻头不做出颈部。
2.麻花钻切削部分的几何角度
由图7-33 所示,钻头实际上相当于正反安装的两把内孔车刀的组合刀具,只是这两把内孔车刀的主切削刃高于工件中心(因为有钻心而形成横刃的缘故,钻心半径为)。
(1 )基面和切削平面
在分析麻花钻的几何角度时,首先必须弄清楚钻头的基面和切削平面。
①基面:切削刃上任一点的基面,是通过该点,且垂直于该点切削速度方向的平面,如图7 -35a 所示。
在钻削时,如果忽略进给运动,钻头就只有圆周运动,主切削刃上每一点都绕钻头轴线做圆周运动,它的速度方向就是该点所在圆的切线方向,如图7 —35b中A点的切削速度垂直于A点的半径方向,B点的切削速度垂直于B 点的半径方向。
不难看出,切削刃上任一点的基面就是通过该点并包含钻头轴线的平面。
由于切削刃上各点的切削速度方向不同,所以切削刃上各点的基面也就不同。
②切削平面:切削刃上任一点的切削平面是包含该点切削速度方向,而又切于该点加工表面的平面(图7 —35a所示为钻头外缘刀尖A点的基面和切削平面)切削刃上各点的切削平面与基面在空间相互垂直,并且其位置是变化的。
制<M
(2 )主切削刃的几何角度,如图 7-36所示
①端面刃倾角
为方便起见,钻头的刃倾角通常在端平面内表示。
钻头主切削刃上某点的端面刃倾角是主切削刃在端平面的投影与该点基面之间的夹角。
如图7 —36所示, 其值总是负的。
且主切削刃上各点的端面刃倾角是变化的,愈靠近钻头中心端面刃倾角的绝对值愈大(见图7 —36b )。
②主偏角
麻花钻主切削刃上某点的主偏角是该点基面上主切削刃的投影与钻头进给
方向之间的夹角。
由于主切削刃上各点的基面不同,各点的主偏角也随之改变。
主切削刃上各点的主偏角是变化的,外缘处大,钻心处小
③ 前角
的基面不同,所以主切削刃上各点的前角也是变化的,如图 的值
从外缘到钻心附近大约由+30 °减小到30 °,其切削条件很差
④ 后角
切削刃上任一点的后角 ,是该点的切削平面与后刀面之间的夹角。
钻头后
角不在主剖面内度量,而是在假定工作平面(进给剖面)内度量(见图7 — 36a )。
在钻削过程中,实际起作用的是这个后角,同时测量也方便。
钻头的后角是刃磨得到的,刃磨时要注意使其外缘处磨得小些(约8°10 ° ) 靠
近钻心处要磨得大些(约20 °30 °)。
这样刃磨的原因,是可以使后角与主 切削刃前角的变化相适应,使各点的楔角大致相等,从而达到其锋利程度、强度、 耐用度相对平衡;其次能弥补由于钻头的轴向进给运动而使刀刃上各点实际工作 后角减少一个该点的合成速度角 μ (见图7 — 36中f-f 剖面)所产生的影响;此 外还能改变横刃处的切削条件
麻花钻的前角是正交平面内前刀面与基面间的夹角
由于主切削刃上各点
7 — 36所示。
前角 <"J (⅛)
(3 )横刃的几何角度如图7-37所示
①横刃前角
由于横刃的基面位于刀具的实体内,故横刃前角为负值(约-45 °-60 ° )
所以钻削时在横刃处发生严重的挤压而造成
很大的轴向力。
②横刃后角
横刃后角≈90 °- Il ,故≈30 °~35 °。
③横刃主偏角=90 ° O
④横刃刃倾角=O
⑤横刃斜角Ψ
0-0
切削平■
图横刃切削角度
横刃斜角是在钻头的端面投影中, 横刃与主切削刃之间的夹角。
它是刃磨钻头时自然形成的,锋角一定时,后角刃磨正确的标准麻花钻横刃斜角Ψ为47
~55 °,而后角愈大则Ψ愈小,横刃的长度会增加。