专题7.导数与函数性质

合集下载

导数的概念与性质

导数的概念与性质

导数的概念与性质导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。

导数的概念由数学家高斯于18世纪提出,至今仍被广泛应用于各个领域。

本文将对导数的概念以及其性质进行论述。

一、导数的概念导数是用来描述函数在某一点处的变化率的数值。

设函数f(x)在点x=a处可导,那么函数在该点处的导数记作f'(a),表示函数在点x=a处的瞬时变化率。

导数可以用极限的概念来定义,即:f'(a) = lim (x→a) (f(x)-f(a))/(x-a)其中,f(x)表示函数f在点x处的取值。

导数的概念可以形象地理解为函数图像上某一点处切线的斜率。

当函数在某点处的导数存在时,说明函数在该点处是光滑的,即函数图像在该点处没有转折或断裂的情况。

二、导数的性质导数具有以下一些重要的性质:1. 导数的存在性:一般而言,函数在某点处的导数可能存在也可能不存在。

当函数在某点处的导数存在时,我们称其为可导,否则称其为不可导。

2. 导数与函数的关系:导数是描述函数变化率的工具,它与函数的关系密切。

如果函数在某一范围内的导数都存在,那么我们可以得到函数在该范围内的变化趋势。

3. 导函数的性质:如果函数f(x)在某一点处可导,那么它的导函数f'(x)就是由f(x)导出的一个新函数。

导函数具有以下性质: - 导函数是原函数的变化率函数,描述了原函数在各点处的变化率。

4. 导数的运算规则:导数满足一些基本的运算规则,使我们能够更方便地求解复杂函数的导数。

其中,常见的导数运算规则包括常数倍法则、和差法则、乘积法则和商积法则等。

5. 导数与函数图像:导数不仅可以解释函数的变化率,还能给出函数图像的一些重要信息。

例如,函数在某一点处的导数为正,则说明函数在该点处上升;导数为负,则说明函数在该点处下降。

三、导数的应用导数在各个领域都有广泛的应用,例如:1. 物理学中的运动学:导数可以描述物体的位置、速度和加速度之间的关系,帮助我们分析物体的运动规律。

导数的定义与性质解析

导数的定义与性质解析

导数的定义与性质解析导数是微积分中的重要概念,它描述了函数的变化率。

在本文中,我们将探讨导数的定义、性质以及其在数学中的重要应用。

1. 导数的定义导数表示函数在某一点上的变化率。

对于函数y = f(x),它在点x处的导数记作f'(x)或dy/dx。

导数的定义可以通过极限表示:f'(x) = lim(h->0) [f(x+h)-f(x)]/h。

2. 导数的性质导数具有以下几个重要的性质:- 导数存在性:函数在某一点上导数存在的充分必要条件是函数在该点可导。

- 导数与函数图像:函数在某一点导数存在,则函数在该点的图像有切线。

切线的斜率即为导数的值。

- 导数与连续性:若函数在某点可导,则函数在该点连续。

- 导数的四则运算:若f(x)和g(x)在某点可导,则[f(x) ± g(x)]' = f'(x) ± g'(x);[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x);[f(x)/g(x)]' = [f'(x)g(x) -f(x)g'(x)]/g^2(x)(其中g(x) ≠ 0)。

- 链式法则:若y = f(g(x)),其中f(u)和g(x)分别可导,则y' = f'(g(x)) * g'(x)。

3. 导数的应用导数在数学和实际问题中都有广泛的应用,其中包括:- 切线与法线:导数可以求得函数曲线在某点的切线和法线,从而帮助我们研究函数图像的特性。

- 极值与拐点:函数在极值点导数为零,通过导数可以判断函数的最大值、最小值和拐点。

- 函数图像的草图:通过导数可确定函数图像的趋势、拐点以及关键点,有助于绘制函数的草图。

- 物理学应用:导数在物理学中常用于描述速度、加速度以及变化率等问题。

综上所述,导数是函数变化率的重要工具,通过导数的定义与性质,我们可以深入理解函数的特性与行为。

导数的定义与性质

导数的定义与性质

导数的定义与性质导数,是微积分中一个重要的概念,用于描述函数在某一点处的变化率。

它在数学和物理等领域中具有广泛的应用。

本文将介绍导数的定义与性质,以帮助读者更好地理解和运用导数。

一、导数的定义导数,通常用符号"f'(x)"或"dy/dx"表示,表示函数f(x)在某一点x处的变化率。

具体地说,导数定义为以下极限:f'(x) = lim┬(h→0)⁡〖(f(x+h)-f(x))/h〗其中,h为自变量x的增量。

这个极限表示当h趋近于0时,函数f(x)在点x处的变化率的极限值。

二、导数的几何意义导数可以给出函数图像的切线斜率。

在函数图像上任意一点x处,函数的导数等于切线的斜率。

这是因为在极小的增量h内,函数值的变化就近似于切线的斜率。

三、导数的计算1. 基本导数公式:可以通过基本导数公式计算导数,例如:常数函数(f(x)=c)的导数为0;幂函数(f(x)=x^n)的导数为f'(x)=nx^(n-1);指数函数(f(x)=a^x,其中a>0)的导数为f'(x)=a^x * ln(a);对数函数(f(x)=logₐ(x),其中a>0且a≠1)的导数为f'(x)=1/(x *ln(a));三角函数的导数为f'(x)=cos(x)、f'(x)=-sin(x)等。

2. 导数运算法则:导数具有一系列运算法则,包括常数倍数法则、加减法则、乘法法则、除法法则、复合函数法则等。

通过运用这些法则,可以计算复杂函数的导数。

四、导数的性质导数具有许多重要的性质,如下所示:1. 导数存在性:如果函数在某一点处可导,则该点处一定存在导数。

但是反过来并不一定成立,存在函数在某点的导数不存在的情况。

2. 函数连续性与可导性:如果函数在某一点可导,则该点处函数一定连续。

但是反过来也不一定成立,存在函数在某点连续但导数不存在的情况。

函数的导数性质与计算方法

函数的导数性质与计算方法

函数的导数性质与计算方法函数的导数是微积分中重要的概念之一,它不仅具有一系列重要的性质,还有多种计算方法。

本文将探讨函数的导数性质以及几种常见的计算方法。

一、导数的定义与性质函数的导数定义为函数在某一点处的变化率,表示函数曲线在该点的切线斜率。

导数的定义如下:如果函数f(x)在点x处的导数存在,则称函数f(x)在点x处可导。

导数用f'(x)或者dy/dx来表示。

对于可导函数,它具有以下性质:1. 导数的唯一性:一个函数在某一点处的导数只有一个值。

2. 运算性质:如果函数f(x)和g(x)都在某一点x处可导,那么它们的和、差、乘积和商的导数分别为:(f + g)'(x) = f'(x) + g'(x)(f - g)'(x) = f'(x) - g'(x)(f * g)'(x) = f'(x) * g(x) + f(x) * g'(x)(f / g)'(x) = (f'(x) * g(x) - f(x) * g'(x)) / (g^2(x))这些运算性质可通过导数的定义和极限运算进行推导。

3. 反函数与复合函数的导数:如果函数f(x)在某一点x处可导,且其反函数f^(-1)(x)也在相应点处可导,那么反函数的导数可以表示为: (f^(-1))'(x) = 1 / f'(f^(-1)(x))对于复合函数,如(f(g(x))), 它的导数可以表示为:(f(g(x)))' = f'(g(x)) * g'(x)这些性质提供了计算导数的基础。

二、常见的导数计算方法1. 基本导数公式:对于常见的基本函数,存在一些常用的导数公式,如:- 常数函数的导数为0:(k)' = 0- 幂函数的导数为幂乘以原函数的幂减一:(x^n)' = n * x^(n-1)- 指数函数的导数等于指数乘以常数:(a^x)' = a^x * ln(a)- 对数函数的导数等于1除以自变量:(ln(x))' = 1 / x- 三角函数的导数与函数本身有关:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x)这些公式可以通过导数的定义以及对基本函数的求导规律导出。

导数与函数的变化率关系解析与归纳

导数与函数的变化率关系解析与归纳

导数与函数的变化率关系解析与归纳在微积分中,导数是一个重要的概念,它描述了函数在某一点处的变化率。

函数的变化率是指函数的输出值随着输入值变化而变化的快慢程度。

导数不仅对于研究函数的性质和特征有着重要的作用,还在物理学、经济学等多个领域中具有广泛的应用。

本文将解析导数与函数的变化率之间的关系,并对导数的性质进行归纳和总结。

1. 导数的定义在数学中,函数f(x)在x点处的导数可以通过极限的概念定义为:f'(x) = lim (h->0) [f(x+h) - f(x)] / h其中,f'(x)表示函数f(x)在点x处的导数,h表示自变量的增量。

导数可以理解为函数在该点附近的平均变化率。

2. 变化率与导数的关系函数的变化率与导数密切相关。

导数可以用来描述函数在某一点的瞬时变化率,即函数在该点处的瞬时变化速度。

具体来说,如果函数在某点的导数为正,说明函数在该点处递增;如果函数的导数为负,说明函数在该点处递减;如果函数的导数为零,说明函数在该点处取得极值。

3. 导数与函数的性质导数具有许多重要的性质,这些性质对于研究函数的变化率和特征非常有用。

以下是几个常见的导数性质:- 导数的可导性:几乎所有常见的函数都具有导数。

只有在某些特殊的情况下,函数可能不可导。

例如,函数在某一点处的导数不存在,当且仅当该点存在间断、角点或垂直切线。

- 导数的线性性质:导数具有线性运算的性质。

即,对于任意常数a 和b,以及函数f(x)和g(x),有以下成立:- [af(x) + bg(x)]' = af'(x) + bg'(x)- 导函数的乘积法则:对于两个函数f(x)和g(x),其乘积的导数可以通过以下公式计算:- [f(x) * g(x)]' = f'(x) * g(x) + f(x) * g'(x)- 链式法则:对于复合函数,可以使用链式法则计算导数。

链式法则是导数运算中的一种基本规则。

导数的线性运算与导数的性质运用

导数的线性运算与导数的性质运用

导数的线性运算与导数的性质运用导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。

在研究导数的性质时,我们需要了解导数的线性运算以及如何运用导数的性质进行问题的求解。

一、导数的线性运算导数的线性运算指的是对于两个函数进行运算后的导数与分别对两个函数求导后的导数相同。

具体来说,如果f(x)和g(x)是可导函数,c是常数。

1. 导数的和的规则若h(x) = f(x) + g(x),则h'(x) = f'(x) + g'(x)。

2. 导数的差的规则若h(x) = f(x) - g(x),则h'(x) = f'(x) - g'(x)。

3. 导数与常数的乘积规则若h(x) = c*f(x),则h'(x) = c*f'(x)。

4. 导数的常数倍规则若h(x) = c*f(x),则h'(x) = c*f'(x)。

这些规则使得我们可以对复杂的函数进行简化求导,提高求解效率。

二、导数的性质运用1. 切线与法线导数的几何意义之一是函数图像上一点处的切线斜率。

对于函数f(x),若f'(x0)=k,则点(x0, f(x0))处的切线斜率为k。

此外,切线斜率的相反数为法线斜率,即垂直于切线的直线斜率。

2. 极值点与最值导数的另一个重要性质是用于确定函数的极值点,即函数的最大值和最小值点。

对于函数f(x),若f'(x)=0,则x为函数的极值点。

极大值对应曲线上的局部最高点,极小值对应曲线上的局部最低点。

3. 凹凸性与拐点函数的导数还可以用于判断函数的凹凸性和拐点。

对于函数f(x),若f''(x)>0,则函数在该区间上为凹函数;若f''(x)<0,则函数在该区间上为凸函数。

拐点是函数由凹转为凸或由凸转为凹的点,它对应着函数曲线的一种特殊形态。

这些性质的运用使得我们可以更加深入地理解函数的特性和行为。

导数与函数的定义与性质

导数与函数的定义与性质

导数与函数的定义与性质导数是微积分中一个重要的概念,它描述了函数在某一点上的变化率。

在本文中,我们将探讨导数的定义及其性质。

一、导数的定义在开始讨论导数之前,我们先来回顾下函数的定义。

在数学中,函数可以被定义为一个输入集合和一个输出集合之间的关系。

对于函数f(x),其导数表示为 f'(x),可以通过极限来定义。

在一段区间内,如果存在一个极限值lim(x→c) [f(x)-f(c)]/(x-c),则该极限值即为函数 f(x) 在点 c 处的导数。

换句话说,导数衡量了函数在某一点的变化速率。

二、导数的性质1. 导数存在的条件函数在某一点处有导数的充分条件是函数在该点处连续。

换言之,如果一个函数在某一点处不连续,那么它在该点处就没有导数。

2. 导数与函数的关系导数是函数在某一点上的变化率,可以揭示函数的整体性质。

通过导数,我们可以判断函数在某一点上是增加还是减少,以及函数的最值所在的位置。

3. 导数与函数的图像函数的导数可以帮助我们画出函数的图像。

当导数为正时,函数图像是上升的;当导数为负时,函数图像是下降的。

在导数为零的点处,函数图像会达到最值。

4. 导数的运算法则导数具有一些重要的运算法则,包括常数法则、幂法则、和差法则、乘法法则和除法法则等。

这些法则可以帮助我们更方便地计算导数。

5. 高阶导数除了一阶导数,函数还可以有更高阶的导数,即二阶导数、三阶导数等。

高阶导数可以告诉我们函数的曲率以及曲线的弯曲程度。

了解导数的定义和性质对于理解函数的变化趋势和特征非常重要。

通过对导数的研究,我们可以更深入地理解函数在数学和实际问题中的应用。

结论本文讨论了导数的定义及其性质,包括导数的存在条件、导数与函数的关系、导数与函数图像的关系、导数的运算法则以及高阶导数等。

导数作为微积分中的重要概念,对于理解函数的特性和应用具有重要意义。

希望通过本文的介绍,读者们能更好地掌握导数的知识和运用。

导数的定义与性质

导数的定义与性质

导数的定义与性质导数是微积分中的核心概念之一,它是用来描述一个函数的变化趋势的。

导数被广泛应用于物理、工程、经济和生物等领域,因此理解导数的定义和性质是非常重要的。

一、导数的定义导数的定义是函数在某一点处的切线斜率。

这个定义是通过极限的概念来实现的。

假设f(x)是定义在R上的一个函数,如果它在x=a处可导,那么导数f’(a)的定义如下:f’(a) = lim [f(x) - f(a)] / (x - a)其中x是趋向于a的一个实数。

这个极限表达式表示当x接近a时,f(x)和f(a)之差除以x-a的商会趋向于一个特定的实数,这个实数就是导数。

注意,这个定义只能在限定的点上使用。

对于连续的函数,可以求得每个点的导数,从而知道函数整体的单调性,极值等重要信息。

二、导数的性质导数具有许多有用的性质。

以下是其中一些:1. 导数的可加性如果f(x)和g(x)都在x=a处可导,那么(f(x)+g(x))在x=a处也可导,且有:[f(x)+g(x)]’|x=a = f’(a) + g’(a)这个性质表明如果一个函数可以写成两个函数的和,那么它的导数是两个函数的导数之和。

2. 导数的乘法规则如果f(x)和g(x)都在x=a处可导,那么(f(x)g(x))在x=a处也可导,且有:[f(x)g(x)]’|x=a = f’(a)g(a) + f(a)g’(a)这个性质是求导时最常用的,它叫做导数的乘法规则。

它表明如果一个函数可以写成两个函数的乘积,那么它的导数可以通过这两个函数及其导数的乘积来计算。

3. 链式法则如果f(x)和g(x)都在x=a处可导,那么f(g(x))在x=a处也可导,且有:[f(g(x))]’|x=a = f’(g(a))g’(a)这个性质是一个很重要的求导方法,叫做链式法则。

它表明如果一个函数有一个内部函数,那么它的导数可以通过内部函数的导数和外部函数的导数的乘积来计算。

4. 高阶导数如果f(x)在x=a处具有导数,那么f(x)也可以在x=a处具有二阶导数、三阶导数等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题能力训练7导数与函数的单调性、极值、最值能力突破训练1.已知函数f(x)的导函数为f'(x),且满足f(x)=af'(1)x+ln x,若f'=0,则a=()A.-1B.-2C.1D.22.(2017浙江,7)函数y=f(x)的导函数y=f'(x)的图象如图所示,则函数y=f(x)的图象可能是()3.若定义在R上的函数f(x)满足f(0)=-1,其导函数f'(x)满足f'(x)>k>1,则下列结论中一定错误的是()A.fB.fC.fD.f4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f'(x),f'(x)≤0的解集为{x|-2≤x≤3}.若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.55.若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=.6.在曲线y=x3+3x2+6x-1的切线中,斜率最小的切线方程为.7.设函数f(x)=a e x++b(a>0).(1)求f(x)在[0,+∞)上的最小值;(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=x,求a,b的值.8.设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.9.设a>1,函数f(x)=(1+x2)e x-a.(1)求f(x)的单调区间;(2)证明:f(x)在区间(-∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤-1.10.已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.思维提升训练11.(2017陕西咸阳二模)已知定义在R上的函数f(x)的导函数为f'(x),对任意x∈R满足f(x)+f'(x)<0,则下列结论正确的是()A.e2f(2)>e3f(3)B.e2f(2)<e3f(3)C.e2f(2)≥e3f(3)D.e2f(2)≤e3f(3)12.已知f'(x)为定义在R上的函数f(x)的导函数,对任意实数x,都有f(x)<f'(x),则不等式f(m+1)<e m+1f的解集为.13.已知函数f(x)=.(1)求函数f(x)的单调区间;(2)当x>0时,若f(x)>恒成立,求整数k的最大值.14.已知函数f(x)=ln x-ax2+x,a∈R.(1)若f(1)=0,求函数f(x)的单调递减区间;(2)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值;(3)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,求证:x1+x2≥.15.(2017山东,理20)已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e≈2.718 28…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程.(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.参考答案专题能力训练7导数与函数的单调性、极值、最值能力突破训练1.D解析因为f'(x)=af'(1)+,所以f'(1)=af'(1)+1,易知a≠1,则f'(1)=,所以f'(x)=又因为f'=0,所以+2=0,解得a=2.故选D.2.D解析设导函数y=f'(x)的三个零点分别为x1,x2,x3,且x1<0<x2<x3.所以在区间(-∞,x1)和(x2,x3)上,f'(x)<0,f(x)是减函数,在区间(x1,x2)和(x3,+∞)上,f'(x)>0,f(x)是增函数,所以函数y=f(x)的图象可能为D,故选D.3.C解析构造函数F(x)=f(x)-kx,则F'(x)=f'(x)-k>0,∴函数F(x)在R上为单调递增函数.>0,∴F>F(0).∵F(0)=f(0)=-1,∴f>-1,即f-1=,∴f,故C错误.4.C解析依题意得f'(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,则b=-,c=-18a.函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,则-a=-81,解得a=2.故选C.5.1-ln 2解析对函数y=ln x+2求导,得y'=,对函数y=ln(x+1)求导,得y'=设直线y=kx+b与曲线y=ln x+2相切于点P1(x1,y1),与曲线y=ln(x+1)相切于点P2(x2,y2),则y1=ln x1+2,y2=ln(x2+1).由点P1(x1,y1)在切线上,得y-(ln x1+2)=(x-x1),由点P2(x2,y2)在切线上,得y-ln(x2+1)=(x-x2).因为这两条直线表示同一条直线,所以解得x1=,所以k==2,b=ln x1+2-1=1-ln2.6.3x-y-2=0解析y'=3x2+6x+6=3(x+1)2+3≥3.当x=-1时,y'min=3;当x=-1时,y=-5.故切线方程为y+5=3(x+1),即3x-y-2=0.7.解(1)f'(x)=a e x-当f'(x)>0,即x>-ln a时,f(x)在区间(-ln a,+∞)内单调递增;当f'(x)<0,即x<-ln a时,f(x)在区间(-∞,-ln a)内单调递减.①当0<a<1时,-ln a>0,f(x)在区间(0,-ln a)内单调递减,在区间(-ln a,+∞)内单调递增,从而f(x)在区间[0,+∞)内的最小值为f(-ln a)=2+b;②当a≥1时,-ln a≤0,f(x)在区间[0,+∞)内单调递增,从而f(x)在区间[0,+∞)内的最小值为f(0)=a++b.(2)依题意f'(2)=a e2-,解得a e2=2或a e2=-(舍去).所以a=,代入原函数可得2++b=3,即b=故a=,b=8.解(1)因为f(x)=x e a-x+bx,所以f'(x)=(1-x)e a-x+b.依题设,解得a=2,b=e.(2)由(1)知f(x)=x e2-x+e x.由f'(x)=e2-x(1-x+e x-1)及e2-x>0知,f'(x)与1-x+e x-1同号.令g(x)=1-x+e x-1,则g'(x)=-1+e x-1.所以,当x∈(-∞,1)时,g'(x)<0,g(x)在区间(-∞,1)上单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)>0,x∈(-∞,+∞).综上可知,f'(x)>0,x∈(-∞,+∞).故f(x)的单调递增区间为(-∞,+∞).9.解(1)由题意可知函数f(x)的定义域为R,f'(x)=(1+x2)'e x+(1+x2)(e x)'=(1+x)2e x≥0,故函数f(x)的单调递增区间为(-∞,+∞),无单调递减区间.(2)∵a>1,∴f(0)=1-a<0,且f(a)=(1+a2)e a-a>1+a2-a>2a-a=a>0.∴函数f(x)在区间(0,a)上存在零点.又由(1)知函数f(x)在区间(-∞,+∞)内单调递增,∴函数f(x)在区间(-∞,+∞)内仅有一个零点.(3)由(1)及f'(x)=0,得x=-1.又f(-1)=-a,即P,∴k OP==a-又f'(m)=(1+m)2e m,∴(1+m)2e m=a-令g(m)=e m-m-1,则g'(m)=e m-1,∴由g'(m)>0,得m>0,由g'(m)<0,得m<0.∴函数g(m)在区间(-∞,0)内单调递减,在区间区间(0,+∞)内单调递增.∴g(m)min=g(0)=0,即g(m)≥0在R上恒成立,即e m≥m+1.∴a-=(1+m)2e m≥(1+m)2(1+m)=(1+m)3,即1+m.故m-1.10.解(1)f'(x)=x2+(1-a)x-a=(x+1)(x-a).由f'(x)=0,得x1=-1,x2=a>0.当x变化时,f'(x),f(x)的变化情况如下表:故函数f(x)的单调递增区间是(-∞,-1),(a,+∞);单调递减区间是(-1,a).(2)由(1)知f(x)在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f(x)在区间(-2,0)内恰有两个零点当且仅当解得0<a<所以a的取值范围是(3)当a=1时,f(x)=x3-x-1.由(1)知f(x)在区间[-3,-1]上单调递增,在区间[-1,1]上单调递减,在区间[1,2]上单调递增.①当t∈[-3,-2]时,t+3∈[0,1],-1∈[t,t+3],f(x)在区间[t,-1]上单调递增,在区间[-1,t+3]上单调递减.因此f(x)在区间[t,t+3]上的最大值M(t)=f(-1)=-,最小值m(t)为f(t)与f(t+3)中的较小者.由f(t+3)-f(t)=3(t+1)(t+2)知,当t∈[-3,-2]时,f(t)≤f(t+3),则m(t)=f(t),所以g(t)=f(-1)-f(t).因为f(t)在区间[-3,-2]上单调递增,所以f(t)≤f(-2)=-故g(t)在区间[-3,-2]上的最小值为g(-2)=-②当t∈[-2,-1]时,t+3∈[1,2],且-1,1∈[t,t+3].下面比较f(-1),f(1),f(t),f(t+3)的大小.因为f(x)在区间[-2,-1],[1,2]上单调递增,所以f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2).因为f(1)=f(-2)=-,f(-1)=f(2)=-,从而M(t)=f(-1)=-,m(t)=f(1)=-所以g(t)=M(t)-m(t)=综上,函数g(t)在区间[-3,-1]上的最小值为思维提升训练11.A解析利用单调性解抽象不等式时,关键要注意结论与已知条件的联系,通过构造合适的函数来求解.令g(x)=e x f(x),则g'(x)=e x(f(x)+f'(x))<0,所以g(x)在R上单调递减,所以g(2)>g(3),即e2f(2)>e3f(3).故选A.12.(-∞,-2)解析若g(x)=,则g'(x)=>0,所以g(x)在R上为增函数.又不等式f(m+1)<e m+1f等价于,即g(m+1)<g,所以m+1<,解得m<-2.13.解(1)由f(x)=,知x∈(-1,0)∪(0,+∞).所以f'(x)=-令h(x)=1+(x+1)ln(x+1),则h'(x)=1+ln(x+1).令h'(x)=0,得x=-1,易得h(x)在区间内单调递减,在区间内单调递增.所以h(x)min=h=1->0,∴f'(x)<0.故f(x)的单调递减区间为(-1,0),(0,+∞).(2)当x>0时,f(x)>恒成立,则k<(x+1)f(x).令g(x)=(x+1)f(x)=,则g'(x)=令φ(x)=1-x+ln(x+1)(x>0)⇒φ'(x)=-<0,所以φ(x)在区间(0,+∞)内单调递减.又φ(2)=ln3-1>0,φ(3)=2ln2-2<0,则存在实数t∈(2,3),使φ(t)=0⇒t=1+ln(t+1).所以g(x)在区间(0,t)内单调递减,在区间(t,+∞)内单调递增.所以g(x)min=g(t)==t+1∈(3,4),故k max=3.14.解(1)因为f(1)=1-=0,所以a=2.此时f(x)=ln x-x2+x,x>0.则f'(x)=-2x+1=(x>0).令f'(x)<0,则2x2-x-1>0.又x>0,所以x>1.所以f(x)的单调递减区间为(1,+∞).(2)(方法一)令g(x)=f(x)-(ax-1)=ln x-ax2+(1-a)x+1,则g'(x)=-ax+(1-a)=当a≤0时,因为x>0,所以g'(x)>0.所以g(x)在区间(0,+∞)内是增函数,又g(1)=ln1-a×12+(1-a)+1=-a+2>0,所以关于x的不等式f(x)≤ax-1不能恒成立.当a>0时,g'(x)==-(x>0),令g'(x)=0,得x=所以当x时,g'(x)>0;当x时,g'(x)<0,因此函数g(x)在x内是增函数,在x内是减函数.故函数g(x)的最大值为g=ln a+(1-a)+1=-ln a.令h(a)=-ln a,因为h(1)=>0,h(2)=-ln2<0,又h(a)在a∈(0,+∞)内是减函数,且a为整数,所以当a≥2时,h(a)<0.所以整数a的最小值为2.(方法二)由f(x)≤ax-1恒成立,得ln x-ax2+x≤ax-1在(0,+∞)内恒成立,问题等价于a在区间(0,+∞)内恒成立.令g(x)=,因为g'(x)=,令g'(x)=0,得-x-ln x=0.设h(x)=-x-ln x,因为h'(x)=-<0,所以h(x)在区间(0,+∞)上单调递减,不妨设-x-ln x=0的根为x0.当x∈(0,x0)时,g'(x)>0;当x∈(x0,+∞)时,g'(x)<0,所以g(x)在x∈(0,x0)内是增函数;在x∈(x0,+∞)内是减函数.所以g(x)max=g(x0)=因为h=ln2->0,h(1)=-<0,所以<x0<1,此时1<<2,即g(x)max∈(1,2).所以a≥2,即整数a的最小值为2.(3)证明:当a=-2时,f(x)=ln x+x2+x,x>0.由f(x1)+f(x2)+x1x2=0,得ln x1++x1+ln x2++x2+x1x2=0,从而(x1+x2)2+x1+x2=x1·x2-ln(x1·x2).令t=x1·x2(t>0),φ(t)=t-ln t,则φ'(t)=可知,φ(t)在区间(0,1)内单调递减,在区间(1,+∞)内单调递增.所以φ(t)≥φ(1)=1,所以(x1+x2)2+x1+x2≥1,因此x1+x2或x1+x2(舍去).15.解(1)由题意f(π)=π2-2,又f'(x)=2x-2sin x,所以f'(π)=2π,因此曲线y=f(x)在点(π,f(π))处的切线方程为y-(π2-2)=2π(x-π),即y=2πx-π2-2.(2)由题意得h(x)=e x(cos x-sin x+2x-2)-a(x2+2cos x),因为h'(x)=e x(cos x-sin x+2x-2)+e x(-sin x-cos x+2)-a(2x-2sin x)=2e x(x-sin x)-2a(x-sin x)=2(e x-a)(x-sin x),令m(x)=x-sin x,则m'(x)=1-cos x≥0,所以m(x)在R上单调递增.因为m(0)=0,所以当x>0时,m(x)>0;当x<0时,m(x)<0.①当a≤0时,e x-a>0,当x<0时,h'(x)<0,h(x)单调递减,当x>0时,h'(x)>0,h(x)单调递增,所以当x=0时h(x)取到极小值,极小值是h(0)=-2a-1;②当a>0时,h'(x)=2(e x-e ln a)(x-sin x),由h'(x)=0得x1=ln a,x2=0.(ⅰ)当0<a<1时,ln a<0,当x∈(-∞,ln a)时,e x-e ln a<0,h'(x)>0,h(x)单调递增;当x∈(ln a,0)时,e x-e ln a>0,h'(x)<0,h(x)单调递减;当x∈(0,+∞)时,e x-e ln a>0,h'(x)>0,h(x)单调递增.所以当x=ln a时h(x)取到极大值.极大值为h(ln a)=-a[ln2a-2ln a+sin(ln a)+cos(ln a)+2],当x=0时h(x)取到极小值,极小值是h(0)=-2a-1;(ⅱ)当a=1时,ln a=0,所以当x∈(-∞,+∞)时,h'(x)≥0,函数h(x)在(-∞,+∞)上单调递增,无极值;(ⅲ)当a>1时,ln a>0,所以当x∈(-∞,0)时,e x-e ln a<0,h'(x)>0,h(x)单调递增;当x∈(0,ln a)时,e x-e ln a<0,h'(x)<0,h(x)单调递减;当x∈(ln a,+∞)时,e x-e ln a>0,h'(x)>0,h(x)单调递增.所以当x=0时h(x)取到极大值,极大值是h(0)=-2a-1;当x=ln a时h(x)取到极小值,极小值是h(ln a)=-a[ln2a-2ln a+sin(ln a)+cos(ln a)+2].综上所述:当a≤0时,h(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,函数h(x)有极小值,极小值是h(0)=-2a-1;当0<a<1时,函数h(x)在区间(-∞,ln a)和区间(0,+∞)上单调递增,在区间(ln a,0)上单调递减,函数h(x)有极大值,也有极小值,极大值是h(ln a)=-a[ln2a-2ln a+sin(ln a)+cos(ln a)+2],极小值是h(0)=-2a-1;当a=1时,函数h(x)在区间(-∞,+∞)上单调递增,无极值;当a>1时,函数h(x)在区间(-∞,0)和(ln a,+∞)上单调递增,在区间(0,ln a)上单调递减,函数h(x)有极大值,也有极小值,极大值是h(0)=-2a-1,极小值是h(ln a)=-a[ln2a-2ln a+sin(ln a)+cos(ln a)+2].。

相关文档
最新文档