氧化还原反应及电化学基础
氧化还原反应和电化学

氧化还原反应和电化学氧化还原反应和电化学是化学领域中重要的研究方向,它们在生产、能源、环境保护等各个领域都具有重要的应用价值。
本文将从氧化还原反应的基础知识入手,介绍氧化还原反应的定义、特征以及电化学的相关概念和应用。
一、氧化还原反应的基本概念和特征1.1 氧化还原反应的定义氧化还原反应是指化学反应中,电子从一种物质转移到另一种物质的过程。
在氧化还原反应中,发生氧化的物质失去电子,而发生还原的物质则获得电子。
整个过程涉及到电子的转移和能量的释放。
1.2 氧化还原反应的特征氧化还原反应的特征可以总结为以下几个方面:1)电子的转移:氧化还原反应中,电子从一个物质转移到另一个物质,导致物质的氧化或还原。
2)氧化和还原:氧化是指物质失去电子,还原是指物质获得电子。
3)氧化剂和还原剂:氧化剂是指能接受电子的物质,还原剂是指能提供电子的物质。
4)氧化态和还原态:在氧化还原反应中,物质的氧化态和还原态发生变化。
二、电化学的基本概念和应用2.1 电化学的基本概念电化学是研究电能与化学能之间相互转化的学科。
它涉及到电解、电池等重要概念。
2.2 电化学的应用电化学在许多领域都有广泛的应用。
以下是电化学的几个应用方面:1)电解:通过电解,可以将化合物分解为原子或离子,使得某些实验或工业过程得以实现。
2)电池:电化学电池是将化学能转化为电能的装置,广泛应用于电子产品、交通工具等领域。
3)腐蚀和防腐:电化学腐蚀是指金属在电解质中发生的一种化学腐蚀过程,而电化学防腐则是通过电化学方法来保护金属材料。
4)电解池:电解池是用于电解过程的装置,广泛应用于化学实验、电镀、电解精炼等领域。
三、氧化还原反应与电化学的关系氧化还原反应和电化学有着密切的关系。
氧化还原反应中的电子转移过程是电化学研究的基础。
通过电化学的方法,我们可以控制和利用氧化还原反应,实现能量的转化和化学反应的控制。
例如,电化学电池就是通过氧化还原反应来产生电能的装置。
氧化还原反应与电化学

氧化还原反应与电化学氧化还原反应是化学反应中常见的重要类型之一,也是电化学研究的核心内容。
在化学中,氧化还原反应涉及到电子的转移过程,使得一个物质被氧化而另一个物质被还原。
电子转移的同时,伴随着原子、离子或者分子的氧化还原状态的变化。
本文将介绍氧化还原反应的基本概念和电化学的相关知识。
一、氧化还原反应的基本概念氧化还原反应是指在化学反应中,某些物质失去电子而被氧化,同时,其他物质获得这些电子而被还原的过程。
在氧化还原反应中,常常涉及到电子的传递。
被氧化的物质叫做还原剂,因为它让其他物质被还原;而被还原的物质则称为氧化剂,因为它让其他物质被氧化。
氧化还原反应可以通过氧化态的变化来体现。
在氧化还原反应中,原子、离子或者分子的氧化态增加,表示该物质被氧化;而氧化态减少则表示该物质被还原。
氧化态是衡量原子或者离子相对电荷的一种方式,通常用希腊字母表示。
例如,“+”表示正的氧化态,“-”表示负的氧化态。
二、电化学基础知识电化学是研究电能与化学反应之间关系的学科。
它包括两个主要的分支:电解学和电池学。
1. 电解学:电解学研究的是化学反应受到外加电压影响的过程。
在电解学中,电解是指通过外加电压使得非自发性的氧化还原反应发生。
在电解池中,被氧化的物质进入阳极,转化成离子或者原子,同时释放出电子;而被还原的物质进入阴极,接受这些电子,转化成原子或者离子的形式。
2. 电池学:电池学研究的是化学反应产生电能的过程。
在电池中,化学反应是自发进行的,并且通过电子流动产生电流。
电池包括两个电极:阳极和阴极。
阳极是发生氧化反应的地方,阴极是发生还原反应的地方。
在电池中,正极指的是发生还原反应的电极,而负极指的是发生氧化反应的电极。
三、应用举例氧化还原反应和电化学在我们的生活中有着广泛的应用。
1. 腐蚀与防腐氧化还原反应是金属腐蚀的重要原因之一。
金属在与氧气接触时会发生氧化反应,使得金属表面产生氧化物。
腐蚀会导致金属的物理性质和化学性质发生变化,造成质量和经济上的损失。
氧化还原反应和电化学反应

氧化还原反应和电化学反应氧化还原反应是化学反应中最为重要和常见的反应之一。
它涉及到物质中的电子转移过程。
在氧化还原反应中,物质可以同时发生氧化和还原。
与之相伴随的是电化学反应,电化学反应是指在化学反应中涉及电子的转移和电流的流动的反应。
一、氧化还原反应氧化还原反应中,氧化和还原是同时进行的。
氧化是指物质失去电子;还原则是指物质获得电子。
这一过程中,电子从一个物质转移到另一个物质。
氧化和还原总是同时发生,因为电子不能独立存在。
例如,当铁和氧气发生反应时,铁原子(Fe)失去两个电子,被氧(O2)接受,生成氧化铁(Fe2O3)。
这里,铁原子发生了氧化,而氧气发生了还原。
氧化还原反应在日常生活中非常常见。
例如,金属的生锈、水的电解、电池的工作原理等都是氧化还原反应的例子。
二、电化学反应电化学反应是指在化学反应中涉及电子的转移和电流的流动的反应。
它是由氧化还原反应导致的。
电化学反应可以分为两种类型:电解反应和电池反应。
1. 电解反应电解反应是指在电解池中,通过外加电压使化学反应发生。
在电解过程中,正极(阳极)接受电子,发生氧化反应;负极(阴极)释放电子,发生还原反应。
电解反应在工业生产和实验室中广泛应用。
例如,电解盐水时,氯离子(Cl-)在阳极上接受电子,发生氧化反应生成氯气(Cl2),而阳离子(Na+)在阴极上释放电子,发生还原反应生成氢气(H2)。
2. 电池反应电池反应是指在电化学电池内,将化学能转化为电能的反应。
电池由两个半电池组成,每个半电池都有一个氧化反应和一个还原反应。
半电池之间通过电子流进行电荷平衡。
常见的电池包括干电池、蓄电池和燃料电池等。
干电池是通过将氧化剂和还原剂隔离,以阻止反应直接进行,并通过电子在电路中流动来提供电能。
蓄电池是通过可逆的氧化还原反应来存储和释放电能。
燃料电池是通过将燃料和氧气直接反应生成电能。
总结:氧化还原反应和电化学反应密切相关,涉及到电子转移和电流的流动。
氧化还原反应是物质中的电子转移过程,分为氧化和还原。
氧化还原反应及电化学基础

2)标准电极电势的测定
将待测的标准电极与标准氢电极组成原电池,在 25ºC下,用检流计确定
电池的正极(+)、负极(–) ,然后用电位计测定电池的电动势E来决定。 IUPAC 规定: E = (+) – (–)
International Union of Pure and Applied Chemistry 国际理论和应用化学联合会
(由稳定态单质生成1mol化合物的Gibbs自由能变)
对于电极反应:
ClO3-(aq) + 6 H+(aq) + 5e =
1 2
Cl2(g) + 3H2O(l)
查表f G (kJ/mol) - 3.3
0
0 -237.18
该反应的 rG = 3 × (-237.18) - (-3.3) = -708 (kJ/mol)
反应式(1): 2 Fe3+ + Sn2+ = 2 Fe2+ + Sn4+
lg K nE20.622 0.9 06 0.0590 1.075917
K9.1 21200
反应式(2): Fe3+ +
1 2
Sn2+ = Fe2+ +
1 2
Sn4+
lg K nE 0.62010.48 0.05917 0.05917
0 .0 n 5 9 1lg ( (氧 还 化 原 型 型 )) m q (2 5C )
电极反应式一般写为:m 氧化型 + n e = q 还原型
例 写出以下电极反应 的 Nernst 方程式:
O2(g) + 4H+ + 4e = 2H2O(l) = 1.229 (V)
氧化还原反应与电化学

氧化还原反应与电化学氧化还原反应是一种在化学反应中非常重要的类型,它涉及物质的电荷转移和电子流动。
与氧化还原反应密切相关的是电化学,电化学则是研究电荷转移和电流在化学反应中的应用。
本文将探讨氧化还原反应与电化学之间的联系以及它们在现实生活中的应用。
一、氧化还原反应氧化还原反应(简称氧化反应和还原反应)是指物质中原子氧化态和还原态发生变化的过程。
在氧化反应中,物质失去电子并增加氧化态;而在还原反应中,物质获得电子并减少氧化态。
氧化还原反应是一种相互联系的电子流动过程,其中一个物质被氧化,同时另一个物质被还原。
氧化还原反应具有普遍性和广泛性。
它们在自然界和工业生产中都起着非常重要的作用。
例如,许多金属的氧化反应会导致它们产生锈蚀,损失金属的本来特性和价值。
此外,许多生化反应,如呼吸和新陈代谢中产生的能量,也是通过氧化还原反应进行的。
二、电化学基础电化学是研究电荷转移与电流在化学反应中的应用的科学学科。
它探究了氧化还原反应如何与电流和电势相关,并通过控制电流和电势来实现对化学反应的控制和调节。
电化学中的两个重要概念是电解和电池。
电解是一种利用外加电流引起氧化还原反应的过程。
在电解中,阳极发生氧化反应,阴极发生还原反应。
电池是一种将化学能转化为电能的装置,其中氧化还原反应是产生电流的基础。
三、氧化还原反应在电化学中的应用氧化还原反应在电化学中有许多实际应用。
以下是几个常见的例子:1. 腐蚀防护:通过将金属制品镀上一层不易被氧化的物质,例如使用电镀技术将锌镀在铁上,可以防止金属产生氧化反应,减缓腐蚀的速度。
2. 电解水制氢:电解水是一种将水分解为氢气和氧气的反应。
通过将电流通过含水溶液中的两个电极,可以将水分解为氢气和氧气,从而产生可用于能源和化学反应的氢气。
3. 电池技术:电池是一种将化学能转化为电能的设备。
它基于氧化还原反应,通过控制金属离子和氧化物之间的电子传递来产生电流。
电池在我们日常生活中被广泛使用,例如干电池、锂电池和燃料电池。
大学无机化学-第七章-氧化还原反应-电化学基础-课件

种元素的原子总数各自相等且电荷数相等 ④ 确定两半反应方程式得、失电子数目的最小公倍
数。将两个半反应方程式中各项分别乘以相应的 系数,使得、失电子数目相同。然后,将两者合 并,就得到了配平的氧化还原反应的离子方程式。 有时根据需要可将其改为分子方程式。
3Cl2 (g) + 6OH- = 5Cl- + ClO3- + 3H2O 3Cl2 (g) + 6NaOH = 5NaCl + NaClO3 + 3H2O
无机化学
§7.1 氧化还原反应的基本概念
例 4 配平方程式
Cr(OH)3 (s) + Br2 (l) + KOH
K2CrO4 + KBr
Cr(OH)3 (s) + Br2 (l)
电极组成:Pt , Cl2(p) | Cl- (a)
电极反应: Cl2 + 2e
2Cl-
无机化学
§7.2 电化学电池
3. 金属-金属难溶盐-阴离子电极
将金属表面涂有其金属难溶盐的固体,然后浸 入与该盐具有相同阴离子的溶液中构成的电极
电极组成:Ag ,AgCl(s)| Cl- (a) 电极反应:AgCl + e Ag + Cl电极组成:Hg ,Hg2Cl2(s)| Cl- (a) 电极反应:Hg2Cl2+2e 2Hg +2Cl-
无机化学
§7.1 氧化还原反应的基本概念
2-2 半反应法(离子—电子法) 配平原则 (1)反应过程中氧化剂得到的电子数等于还
原剂失去的电子数 (2)反应前后各元素的原子总数相等
氧化还原反应和电化学基础

8
⑷ 离子型化合物中,元素的氧化数等于该 ⑸ 离共子价所型带化的合电物荷中数,,共如用:电N子aC对I。偏向于电负性大 的原子 ,两原子的形式电荷数即为它们的氧化数, 如:HCI。 ⑹ 中性分子中,各元素原子氧化数的代数和为9 零。
S4O62- 4x+(-2)×6=-2 x=2.5 H5IO6 I:+7 ; S2O32- S:+2 例:求MnO4-中Mn的氧化值
2×3
0
+5
Zn+ HNO3
+2
+2
Zn(NO3)2+ NO + H2O
3 ×2
56
配系数
先配变价元素,再用观察法配平其 它元素原子的系数。
15
用氧化数表示氧化还原的状态 对于离子化合物的氧化还原反应来说,电 子是完全失去或完全得到的。但是,对于共价化 合物来说,在氧化还原反应中,有电子的偏移, 但还没有完全的失去或得到,因此用氧化数来表 示就更为合理。
16
例如:
H2+Cl2=2HCl 这个反应的生成物是共价化合物,氢原子的电子 没有完全失去,氯原子也没有完全得到电子,只是形成 的电子对偏离氢,偏向氯罢了。用氧化数的升降来表示 就是氯从0到-1,氢从0到+1。这样,氧化数的升高就是 氧化,氧化数的降低就是还原。在氧化还原反应里,一 种元素氧化数升高的数值总是跟另一种元素氧化数降低 的数值相等的。
11
一、氧化值的定义
在氧化还原反应中,电子转移引起某些原子的价 电子层结构发生变化,从而改变了这些原子的带电状 态。为了描述原子带电状态的改变,表明元素被氧化 的程度,提出了氧化态的概念。表示元素氧化态的的 数值称为元素的氧化值,又称氧化数。
无机化学-氧化还原反应及电化学基础

6-3 电池电动势和电极电势
第二十七页,共69页。
6-3 电池电动势和电极电势
E 甘汞参比电极
构成: 由Hg/Hg2Cl2/KCl溶液组成;
2) 电极反响: H 2 C 2 g (s )l 2 e 2 H (l) g 2 C (a l)q 3) 电极电势:
-3,
; E 0.280V
电极符号:Pt2, H H2︱H2 +e(c ) H2PtC , C2l2l (p2 )︱eC l- (2c)Cl
“︱〞表示气体与溶液之间的界面,即气液界面
(p) 表示压力;
第十四页,共69页。
6-2 原电池
2 电极的类型和电池符号:
C 离子电极 组成:由同一种元素的不同氧化态的两种离子的溶液; 例:Fe3+/Fe2+电极
第十九页,共69页。
6-2 原电池
2.2 电池符号:
负极: 离子电极
电池反响:
电M 池符号4 : 8 n H O 5 F 2 e M 2 5 F n 3 4 e H 2 O
(-) Pt︱Fe2+ (c1), Fe3+(c2)‖MnO4+ (c3), H+(c4),Mn2+(c5)︱Pt (+)
和绿色Cr2(SO4)3,配平反响方程;
氧化数确定:
反响物: K2Cr2O7 [+6] FeSO4
[+2]
A
生成物: Cr2(SO4)3 [+3] Fe2(SO4)3 [+3]
每个Cr原子变化数=3
B
每个Fe原子变化数=1
C 总氧化数降低(2x3)x1
D
C 2 O 4 2 r 2 3 F 2 1 e H 4 2 C 3 2 r 3 F 3 7 e H 2 O
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
Fe2+ +
Cu
氧化还原反应
还原态 = 氧化态 + n e, 电子转移
( 酸 = 碱 + n H+
质子转移)
氧化态、还原态的共轭关系
2 氧化数与电子转移 Fe + Cu2+ = Fe2+ + H 2O Cu
2个 “e‖ 的转 移
H2 + 0.5 O2
共价键 (电子偏移情况的反映)
―形式电荷” +1 -2 称为“氧化数”
思考题: 配平方程式、改错
1)原来:2 Cr3+ + 3Cl2 + 8OH- = 2CrO42- + 6Cl- + 8H+
分析: 碱性条件、酸性条件 ? 若在碱性条件下, Cr3+
OH Cr(OH)3
OHCl2 Cl- + ClO2e OH-
Cl-
改正: 碱性介质中:
2 Cr(OH)3 + 3Cl2 + 10 OH- = 2CrO42- + 6Cl- + 8 H2O 酸性介质中: 2 Cr3+ + 3Cl2 + 7 H2O = Cr2O72- + 6Cl- + 14 H+ 2)原来: Pb(Ac)2 + ClO- + H2O = 2 H+ + 2 Ac- + PbO2 + Cl-
iGm + hGm +
rGm
rGm + rGm
nFE
表 碱金属的电极电势
Li
sGm
Na
K
Rb
Cs
rGm /(kJ· -1) mol
rGm /(kJ· mol-1)
rGm + rGm
/(kJ· -1) mol mol iGm /(kJ· -1) hGm /(kJ· -1) mol
O S 2O 3 O S OS的氧化数为+2, S
2-
+4, (+6) 0, (-2)
3 氧化还原反应方程式的配平 例: 在酸性介质中,K2Cr2O7氧化FeSO4, 生成 Fe2(SO4)3 和
绿色Cr2(SO4)3, 配平此反应方程式。 解:1)写出反应物、产物及反应条件 Cr2O72- + Fe2+ + H+ = Fe3+ +
3)电池反应及电池符号: Zn + Cu2+ = Zn2+ + Cu (-) Zn | Zn2+ (c ) || Cu2+ (c ) | Cu 1 2
(+)
4)电极的类型及符号
四种电极
(1)金属-金属离子电极 如: Zn2+/Zn, Cu2+/Cu 等 电极符号: Zn|Zn2+ (c) Cu|Cu2+ (c) Cl2/Cl(2)气体-离子电极 如: H+/H2 Pt,H2(p)|H+(c)
铂片上表面镀一层 海绵状铂(铂黒,很强的 吸附H2的能力பைடு நூலகம்插入H+ 浓 度为1mol/dm3 的溶液中, 25°C下,不断地通入标 准压力的纯 H2气流,与 溶液中的H+ 达平衡。
2)标准电极电势的测定
将待测的标准电极与标准氢电极组成原电池,在25°C下,用检流计确 定电池的正、负极,然后用电位计测定电池的电动势。 IUPAC 规定:
例: 在稀H2SO4溶液中,KMnO4 和FeSO4发生以下反应:
MnO4-
+
H+
+
Fe2+ Mn2+
+
Fe3+
如将此反应设计为原电池,写出正、负极的反应,电 池反应,和电池符号。 解:电极为离子电极,即将一金属铂片插入到含有Fe2+、 Fe3+ 溶液中,另一铂片插入到含有MnO4- 、Mn2+ 及H+ 的溶液中,分 别组成负极和正极:
M(g)
iGm
M+(g)
s:sublimation i:ionization
d:dissociation
h:hydration
M(s)
M+(aq) + e
sGm + iGm + hGm
1 2 H2(g)
1 G 2 d m
rGm
H+(aq) + e
rGm
改正:Pb(Ac)2 + ClO- + H2O = 2 HAc + PbO2 + Cl-
配平注意事项:
写出的方程式必须与实验事实相符合 • 反应介质: 酸性介质中,不能出现 OH- 碱性介质中,不能出现 H+
In acidic solution, balance O by adding H2O to the side of each half-reaction that needs O, and then balance H by adding H+ to the side that needs H. In basic solution, balance O by adding H2O to the side that needs O. Then balance H by adding H2O to the side that needs H, and for each H2O molecule added, add an OH- ion the the other side.
ε= E (+) – E(-)
如:标准锌电极与标准氢电极组成原电池,锌为负极, 氢为正极,测得 ε = 0.7618 (V) , 则 E(Zn2+/Zn) = 0.0000 – 0.7618 = -0.7618(V)
标准电极电势表
标准电极电势表
E(Li+/Li)值最小的原因:(严宣申,王长富《普通无机化学》(第二版)p10) 热 sGm hGm 化 学 M(s) + H+(aq) M+(aq) + 1 H2(g) 2 循 1 G hGm 2 d m 环 iGm + H(g) H (g)
氧化还原反应及电化学基础
一、氧化数及氧化还原反应方程式的配平
1 氧化还原反应 2 氧化数 3 氧化还原反应方程式的配平
二、电池电动势()与电极电势()
1 原电池 2 电池电动势 3 电极电势 4 标准电极电势
三、标准电极电势与氧化还原平衡
1 与 G 2 平衡常数与标准电池电势
氧化还原反应及电化学基础
四、电极电势的计算
1 由标准Gibbs自由能变(G)计算 2 由已知电对的E计算
五、影响电极电势的因素
1 Nernst方程 2 浓度对电极电势的影响 3 酸度对电极电势的影响
六、电极电势的应用
1 2 3 4 比较氧化剂、还原剂的强弱 判断氧化还原反应的方向 Ksp 的确定 Ka 的测定
一、氧化数及氧化还原反应方程式的配平
• 难溶或弱电解质应写成分子形式 • 注明沉淀的生成,气体的产生等
二、电池电动势()与电极电势()
负极
正极
Cu-Zn 原电池
二、电池电动势()与电极电势()
1 原电池(Galvanic cells) 化学能转化成电能的装置 1)组成: ① 半电池(电极) ② 检流计 ③ 盐桥(琼脂 + 强电解质 (KCl, KNO3等) 补充电荷、维持电荷平衡 2)电极反应:
正极(Cu): 负极(Zn): + 2e = Cu Zn = Zn2+ + 2e Cu2+
(电解池 electrolytic cells) 写电池符号应注意事项:
• 正、负极: (-) 左,
(+) 右
• 界面“|‖: 单质与 “极棒”写在一起,写 在“|‖外面。 • 注明离子浓度(c), 气态时用分压(p). 物 质状态:固态(s), 液 态(l) 等 • 盐桥: ―||‖
128.0 77.8 61.1 54.0 51.1 523.0 497.9 418.4 404.6 377.4 -515.0 -410.0 -336.0 -314.6 -282.4 140.5 165.7 143.5 144 146.1 -431.7 -431.7 -431.7 -431.7 -431.7 -291.2 -266.0 -288.2 -287.7 -285.6 -3.02 -3.03 -2.76 -2.99 -2.98 -2.96
需用一个惰性固体导体如铂(Pt)或石墨。 Pt,Cl2(p)|Cl-(c) Pt与H2之间用逗号隔开,p 为气体的压力。 (3)离子电极 如 Fe3+/Fe2+ 等体系 将惰性电极插入到同一种元素不同氧化态的两种离子的溶液中 所组成的电极。
Pt|Fe2+(c1), Fe3+(c2)
(4)金属-金属难溶盐电极 如 Hg2Cl2/Hg 由金属及其难溶盐浸在含有难溶盐负离子溶液中组成的电极。 如甘汞电极: Hg2Cl2 + 2e = 2 Hg + 2 Cl- Pt,Hg,Hg2Cl2(s)|Cl-(c)
指定温度(25°C),浓度均为 1 mol/dm3, 气体的分压都是标准压力(100 kPa), 固体及液体都是纯净物状态下的电极电势。用 E(V)来表示。 无法测定其绝对值,只有相对值。
规定 “H+/H2(p)(标准氢电极)= 0‖
1) 标准氢电极:
2 H+ + 2e
H2
E(H+/H2) = 0.0000 (V)
2 电池电动势
电池正、负电极之间的电势差-电池电动势() 用高阻抗的晶体管伏特计(电位差计)可直接测量出 如:锌铜电池的标准电动势为 1.10 V. (-) Zn|Zn2+(1 mol/dm3)||Cu2+(1 mol/dm3)|Cu (+) 铜银电池的标准电动势为 0.46 V. (-) Cu|Cu2+(1 mol/dm3)||Ag+(1 mol/dm3)|Ag (+)