【真卷】2016-2017年广东省韶关市乐昌市八年级(上)数学期中试卷带答案

合集下载

八年级上册韶关数学全册全套试卷综合测试(Word版 含答案)

八年级上册韶关数学全册全套试卷综合测试(Word版 含答案)

八年级上册韶关数学全册全套试卷综合测试(Word版含答案)一、八年级数学三角形填空题(难)∠=,边AB的垂直平分线交边BC于点D,边AC的垂直平分线1.在ABC中,BACα∠的度数为______.(用含α的代数式表示)交边BC于点E,连结AD,AE,则DAE【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-a,再根据角的和差关系进行计算即可.解:有两种情况:①如图所示,当∠BAC⩾90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAC−(∠BAD+∠CAE)=α−(180°−α)=2α−180°;②如图所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAD+∠CAE−∠BAC=180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.如图,△AEF是直角三角形,∠AEF=900,B为AE上一点,BG⊥AE于点B,GF∥BE,且AD=BD=BF,∠BFG=600,则∠AFG的度数是___________。

【答案】20°【解析】根据平行线的性质,可知∠A=∠AFG,∠EBF=∠BFG=600,然后根据等腰三角形的性质,可知∠BDF=2∠A,∠A+∠AFB=3∠A=∠EBF,因此可得∠AFG=20°.故答案为:20°.3.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.4.等腰三角形的三边长分别为:x+1,2x+3,9,则x=________.【答案】3【解析】①当x+1=2x+3时,解得x=−2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形。

广东省韶关市八年级上学期数学期中考试试卷

广东省韶关市八年级上学期数学期中考试试卷

广东省韶关市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列四个实数中,是无理数的为()A . 0B .C . ﹣1D .2. (2分) (2018八上·孟州期末) 如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S1、S2、S3 ,则S1、S2、S3之间的关系是()A . S12+S22=S32B . S1+S2>S3C . S1+S2<S3D . S1+S2=S33. (2分)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A . 1、2、3B . 2、3、4C . 3、4、5D . 4、5、64. (2分)(2016·安顺) 如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A . 2B .C .D .5. (2分) (2017七下·广州期末) 定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有()A . 2个B . 3个C . 4个D . 5个6. (2分)若a <0,则点P(-a,2)应在()A . 第一象限内B . 第二象限内C . 第三象限内D . 第四象限内7. (2分) (2017八下·海安期中) 一次函数y=x-2的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)一架2.5米长的梯子斜靠在一竖直的墙上,这时梯子的顶端距墙脚2.4米。

那么梯足离墙脚的距离是()A . 0.7米B . 0.9米C . 1.5米D . 2.4米9. (2分)(2014·梧州) 下列计算正确的是()A . + =B . =4C . 3 ﹣ =3D . • =10. (2分)若正比例函数y=(1-2m)x的图象经过点A(x1 , y1)和点B(x2 , y2),当x1<x2时,y1>y2 ,则m的取值范围是()A . m<0B . m>0C . m<D . m>二、填空题 (共6题;共6分)11. (1分) (2017八下·三门期末) 如图,直线y=-x与y=ax+3a(a≠0)的交点的横坐标为-1.5,则关于x 的不等式-x>ax+3a>0的整数解为________。

湘教版八年级数学上册期中考试题及答案【必考题】

湘教版八年级数学上册期中考试题及答案【必考题】

湘教版八年级数学上册期中考试题及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .3 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A.x>﹣2 B.x<﹣2 C.x>4 D.x<48.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 10.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.33B.6 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.比较大小:3133.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x y x y +=⎧⎨-=⎩ (2)12163213x y x y --⎧-=⎪⎨⎪+=⎩2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.4.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、D5、D6、A7、A8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、52、<3、14、145、1 (21,2) n n--6、16三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、-33a+,;12-.3、(1)a=5,b=2,c=3 ;(2)±4.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)略;(2)8.6、(1)A型号家用净水器每台进价为1000元,B型号家用净水器每台进价为1800元;(2)则商家购进A型号家用净水器12台,购进B型号家用净水器8台;购进A型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.。

八年级上册韶关数学全册全套试卷综合测试(Word版 含答案)

八年级上册韶关数学全册全套试卷综合测试(Word版 含答案)

八年级上册韶关数学全册全套试卷综合测试(Word版含答案)一、八年级数学三角形填空题(难)1.如图,△AEF是直角三角形,∠AEF=900,B为AE上一点,BG⊥AE于点B,GF∥BE,且AD=BD=BF,∠BFG=600,则∠AFG的度数是___________。

【答案】20°【解析】根据平行线的性质,可知∠A=∠AFG,∠EBF=∠BFG=600,然后根据等腰三角形的性质,可知∠BDF=2∠A,∠A+∠AFB=3∠A=∠EBF,因此可得∠AFG=20°.故答案为:20°.2.直角三角形中,两锐角的角平分线所夹的锐角是_____度.【答案】45【解析】【分析】根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.【详解】如图所示△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=12∠CAB+12∠ABC=45°.故答案为45.【点睛】此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.3.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】÷=,连续左转后形成的正多边形边数为:4559︒÷=︒.则左转的角度是360940故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.【答案】45【解析】【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【详解】∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,CAD FBDBDF ADCBF AC∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为45.【点睛】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.5.将直角三角形(ACB∠为直角)沿线段CD折叠使B落在B'处,若50ACB'︒∠=,则ACD∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD的度数.【详解】解:∵△B′CD时由△BCD翻折得到的,∴∠BCD=∠B′CD,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.【答案】125°【解析】【分析】根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.【详解】:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴12OBC ABC∠=∠,12OCB ACB∠=∠,∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴1110552OBC OCB∠+∠=⨯︒=︒,∴∠BOC=180°-(∠OBC+∠OCB)=125°;故答案为:125.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.二、八年级数学三角形选择题(难)7.适合下列条件的△ABC中, 直角三角形的个数为①111345a b c ,,;===②6a =,∠A =45°;③∠A =32°, ∠B =58°; ④72425a b c ===,,;⑤22 4.a b c ===,,⑥::3:4:5a b c = ⑦::12:13:15A B C ∠∠∠=⑹5,25,5a b c === A .2个B .3个C .4个D .5个【答案】C【解析】 根据勾股定理的逆定理,可分别求出各边的平方,然后计算判断:222111+345≠()()(),故①不能构成直角三角形;当a=6,∠A=45°时,②不足以判定该三角形是直角三角形;根据直角三角形的两锐角互余,可由∠A+∠B=90°,可知③是直角三角形;根据72=49,242=576,252=625,可知72+242=252,故④能够成直角三角形;由三角形的三边关系,2+2=4可知⑤不能构成三角形;令a=3x ,b=4x ,c=5x ,可知a 2+b 2=c 2,故⑥能够成直角三角形;根据三角形的内角和可知⑦不等构成直角三角形;由a 2=5,b 2=20,c 2=25,可知a 2+b 2=c 2,故⑧能够成直角三角形.故选:C.点睛:此题主要考查了直角三角形的判定,解题关键是根据角的关系,两锐角互余,和边的关系,即勾股定理的逆定理,可直接求解判断即可,比较简单.8.如图,AB ∥CD ,点E 在线段BC 上,CD=CE ,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°【答案】B【解析】 分析:先由AB ∥CD ,得∠C=∠ABC=30°,CD=CE ,得∠D=∠CED ,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D .详解:∵AB ∥CD ,∴∠C=∠ABC=30°,又∵CD=CE ,∴∠D=∠CED ,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B .点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.在下列图形中,正确画出△ABC的AC边上的高的图形是()A.B.C.D.【答案】C【解析】【分析】△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段,根据定义即可作出判断.【详解】解:△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段.根据定义正确的只有C.故选:C.【点睛】本题考查了三角形的高线的定义,理解定义是关键.10.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9 B.8 C.7 D.6【答案】A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.11.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【详解】设第三边为x ,根据三角形的三边关系,得:4-1<x <4+1,即3<x <5,∵x 为整数,∴x 的值为4.三角形的周长为1+4+4=9.故选C.【点睛】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.12.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )A .180︒B .210︒C .360︒D .270︒【答案】B【解析】【分析】 根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.【详解】如图所示,利用三角形外角性质可知:∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D+∠4+∠F ,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠2+∠D+∠3+∠F=90°+30°+90°=210°,故选:B .【点睛】本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.三、八年级数学全等三角形填空题(难)13.如图,MN ∥PQ ,AB ⊥PQ ,点A ,D ,B ,C 分别在直线MN 和PQ 上,点E 在AB 上,AD +BC =7,AD =EB ,DE =EC ,则AB =_____.【答案】7【解析】由MN ∥PQ ,AB ⊥PQ ,可知∠DAE=∠EBC=90°,可判定△ADE ≌△BCE ,从而得出AE=BC ,则AB=AE+BE=AD+BC=7.故答案为:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.14.如图,52A ∠=︒,O 是ABC ∠、ACB ∠的角平分线交点,P 是ABC ∠、ACB ∠外角平分线交点,则BOC ∠=______︒,BPC ∠=_____︒,联结AP ,则PAB ∠=______︒,点O ____(选填“在”、“不在”或“不一定在”)直线AP 上.【答案】116 64 26 在【解析】【分析】∠ABC+∠ACB=180°-∠A ,∠OBC+∠OCB= 12(∠ABC+∠ACB ), ∠BOC=180°-(∠OBC+∠OCB ),据此可求∠BOC 的度数;∠BCP= 12∠BCE= 12(∠A+∠ABC ),∠PBC= 12∠CBF= 12(∠A+∠ACB ),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC ,据此可求∠BPC 的度数;作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,利用角平分线的性质定理可证明PG=PH,于是可证得AP平分∠BAC,据此可求∠PAB的度数;同理可证OA平分∠BAC,故点O在直线AP上.【详解】解:∵O点是∠ABC和∠ACB的角平分线的交点,∴∠OBC+∠OCB= 12(∠ABC+∠ACB)= 12(180°-∠A)=90°- 12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°+ 12∠A=90°+ 12∠A=90°+26°=116°;如图,∵BP、CP为△ABC两外角的平分线,∴∠BCP= 12∠BCE=12(∠A+∠ABC),∠PBC= 12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC=180°- 12[∠A+(∠A+∠ABC+∠ACB)]=180°- 12(∠A+180°)=90°- 12∠A=90°-26°=64°.如图,作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,连接AP,∵BP、CP为△ABC两外角的平分线,PG⊥AB,PH⊥AC,PK⊥BC,∴PG=PK,PK=PH,∴PG=PH,∴AP平分∠BAC,∠=26°∴PAB同理可证OA平分∠BAC,点O在直线AP上.故答案是:(1) 116 ;(2) 64;(3) 26;(4) 在.【点睛】此题主要考查了角平分线的性质定理和判定定理及三角形内角和定理,熟知定理并正确作出辅助线是解题关键.15.如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.【答案】112.【解析】【分析】连接OB、OC,根据角平分线的定义求出∠BAO=28°,利用等腰三角形两底角相等求出∠ABC,根据线段垂直平分线上的点到两端点的距离相等可得OA=OB,再根据等边对等角求出∠OBA,然后求出∠OBC,再根据等腰三角形的性质可得OB=OC,然后求出∠OCE,根据翻折变换的性质可得OE=CE,然后利用等腰三角形两底角相等列式计算即可得解.【详解】如图,连接OB、OC,∵OA 平分∠BAC ,∠BAC =56°,∴∠BAO =12∠BAC =12×56°=28°, ∵AB =AC ,∠BAC =56°, ∴∠ABC =12(180°﹣∠BAC )=12×(180°﹣56°)=62°, ∵OD 垂直平分AB ,∴OA =OB ,∴∠OBA =∠BAO =28°,∴∠OBC =∠ABC ﹣∠OBA =62°﹣28°=34°,由等腰三角形的性质,OB =OC ,∴∠OCE =∠OBC =34°, ∵∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE =CE ,∴∠OEC =180°﹣2×34°=112°.故答案是:112.【点睛】考查了翻折变换,等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.16.如图,在△ABC 中, ∠BAC=90°, AB=AC=22,点D ,E 均在边BC 上,且∠DAE=45°,若BD=1,则DE=__________.【答案】53【解析】 分析:根据等腰直角三角形的性质得45B ACB ∠=∠=,把△ABD 绕点A 逆时针旋转90得到△ACF ,连接,EF 如图,根据旋转的性质得,,AD AF BAD CAF =∠=∠45,ABD ACF ∠=∠=接着证明45,EAF ∠=然后根据“SAS”可判断△ADE≌△AFE,得到DE=FE,由于90ECF ACB ACF∠=∠+∠=,根据勾股定理得222CE CF EF+=,设,DE EF x==则3CE x=-,则()22231,x x-+=由此即可解决问题.详解:90BAC AB AC∠==,,∴45B ACB∠=∠=,把△ABD绕点A逆时针旋转90得到△ACF,连接,EF如图,则△ABD≌△ACF,,,45,AD AF BAD CAF ABD ACF=∠=∠∠=∠=∵45DAE∠=,∴45BAD CAE∠+∠=,∴45,CAF CAE∠+∠=即45,EAF∠=∴∠EAD=∠EAF,在△ADE和△AFE中AE AEEAD EAFAD AF=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△AFE,∴DE=FE,∵90ECF ACB ACF∠=∠+∠=,∴222CE CF EF+=,Rt△ABC中,∵22AB AC==,∴224BC AB AC+=,∵1BD=,设,DE EF x==则3CE x=-,则有()22231,x x-+=解得:5.3x=∴5.3DE=故答案为5 . 3点睛:本题属于全等三角形的综合题,涉及三角形旋转,全等三角形的判定与性质,勾股定理等知识点,综合性较强,难度较大.17.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形,∠ADC=30°,若CD=6,BD=6.5,则AD=_________.【答案】2.5【解析】解:以CD为边向外作出等边三角形DCE,连接AE,∵∠ADC=30°,∴∠ADE=90°,在△ACE 与△BCD中,∵AC=BC,∠ACE=∠BCD,CE=DC,∴△ACE≌△BCD,∴BD=AE=6.5,∴AD2+DE2=AE2,∴AD3+62=6.52,∴AD=2.5.故答案为:2.5.18.如图,△ABC与△DEF为等边三角形,其边长分别为a,b,则△AEF的周长为___________.【答案】a+b【解析】先根据全等三角形的判定AAS判定△AEF≌△BFD,得出AE=BF,从而得出△AEF的周长=AF+AE+EF=AF+BF+EF=a+b.故答案为:a+b四、八年级数学全等三角形选择题(难)19.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.若BE=7,AB=3,则AD 的长为()A.3 B.5 C.4 D.不确定【答案】C【解析】根据同角的余角相等求出∠ACD=∠E,再利用“角角边”证明△ACD≌△BCE,根据全等三角形对应边相等可得AD=BC,AC=BE=7,然后求解BC=AC-AB=7-3=4.故选:C.点睛:本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法是解题的关键.20.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF【答案】A【解析】【分析】通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.【详解】解:∵∠BAC=45°,BD⊥AC,∴∠CAB=∠ABD=45°,∴AD=BD,∵AB=AC,AE平分∠BAC,∴CE=BE=12BC,∠CAE=∠BAE=22.5°,AE⊥BC,∴∠C+∠CAE=90°,且∠C+∠DBC=90°,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,∴△ADF≌△BDC(AAS)∴AF=BC=2CE,故选项C不符合题意,∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°∴∠AHG=67.5°,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意,连接BH,∵AG=BG,DG⊥AB,∴AH=BH,∴∠HAB=∠HBA=22.5°,∴∠EHB=45°,且AE⊥BC,∴∠EHB=∠EBH=45°,∴HE=BE,故选项B不符合题意,故选:A.【点睛】本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.21.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D,其中正确的是( )A.①③B.①②④C.①③④D.①②③④【答案】C【解析】【分析】由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.【详解】∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,且∠ACD=15°,∵∠BCD=30°,∵∠BAC=∠BDC=90°,∴点A,点C,点B,点D四点共圆,∴∠ADC=∠ABC=45°,故①符合题意,∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,∵DF为∠BDA的平分线,∴∠ADF=∠BDF,∵∠AFD=∠BDF+∠DBF>∠ADF,∴AD≠AF,故②不合题意,如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,∵DH=AD,∠HDF=∠ADF,DF=DF,∴△ADF≌△HDF(SAS)∴∠DHF=∠DAF=30°,AF=HF,∵∠DHF=∠HBF+∠HFB=30°,∴∠HBF=∠BFH=15°,∴BH=HF,∴BH=AF,∴BD=BH+DH=AF+AD,故③符合题意,∵∠ADC=45°,∠DAB=30°=∠BCD,∴∠BED=∠ADC+∠DAB=75°,∵GD=DE,∠BDG=∠BDE=90°,BD=BD,∴△BDG≌△BDE(SAS)∴∠BGD=∠BED=75°,∴∠GBC =180°﹣∠BCD ﹣∠BGD =75°,∴∠GBC =∠BGC =75°,∴BC =BG ,∴BC =BG =2DE+EC ,∴BC ﹣EC =2DE ,故④符合题意,故选:C.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,22.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )A .5B .4C .3D .2【答案】B【解析】【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.【详解】①正确:∵ABC △是等边三角形,∴60BAC ︒∠=,∴CA AB =.∵ABD △是等腰直角三角形,∴DA AB =.又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,∴DA CA =,∴()1180150152ADC ACD ︒︒︒∠=∠=-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠A G③,④正确,由题意可得45DAF ABH︒∠=∠=,DA AB=,∵AE BD⊥,AH CD⊥.∴180EHG EFG︒∠+∠=.又∵180?DFA EFG∠+∠=,∴EHG DFA∠=∠,在DAF△和ABH中()AFD BHADAF ABH AASDA AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF△≌ABH.∴DF AH=.⑤正确:∵150CAD︒∠=,AH CD⊥,∴75DAH︒∠=,又∵45DAF︒∠=,∴754530EAH︒︒︒∠=-=又∵AE DB⊥,∴2AH EH=,又∵=AH DF,∴2DF EH=【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.23.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=2﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是()A.1个B.2个C.3个D.4个【答案】D【解析】【详解】①正确.作EM∥AB交AC于M.∵CA=CB,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=12∠CAB=22.5°,∴∠MEA=∠EAB=22.5°,∴∠CME=45°=∠CEM,设CM=CE=a,则2,∴tan ∠CAE=212CE AC a a==-+,故①正确, ②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF ,∴∠PCE=∠PFE=45°,∵∠EFA=∠ACE=90°,∴∠PFA=∠PFE=45°,∴若将△PEF 沿PF 翻折,则点E 一定落在AB 上,故③正确.④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,∴∠CPE=∠CEP ,∴CP=CE ,故④正确,⑤错误.∵△APC ≌△APF ,∴S △APC =S △APF ,假设S △APF =S 四边形DFPE ,则S △APC =S 四边形DFPE ,∴S △ACD =S △AEF ,∵S △ACD =12S △ABC ,S △AEF =S △AEC ≠12S △ABC , ∴矛盾,假设不成立.故⑤错误. .故选D.24.在△ABC 中, ∠C=90°,AC=BC ,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,AB=18cm ,则△DBE 的周长为( )A .16cmB .8cmC .18cmD .10cm【答案】C【解析】因为 ∠C=90°,AC=BC ,AD 是∠BAC 的平分线,DE ⊥AB ,易证△ACD≌△AED,所以AE =AC=BC ,ED=CD.△DBE 的周长=BE+DE+DB=BE+CD+DB=BE+BC=BE+AE=AB.因为AB=12,所以△DBE 的周长=12.故选C.点睛:本题主要考查了全等三角形的判定的性质及角平分线的性质定理,角的平分线上的点到角的两边的距离相等,运用这个性质,结合等腰三角形有性质,将△DBE 的周长转化为AB 的长.五、八年级数学轴对称三角形填空题(难)25.如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α.以OC 为一边作等边三角形OCD ,连接AC 、AD ,当△AOD 是等腰三角形时,求α的角度为______【答案】110°、125°、140°【解析】【分析】先求出∠DAO=50°,分三种情况讨论:①AO=AD ,则∠AOD=∠ADO ,②OA=OD ,则∠OAD=∠ADO ,③OD=AD ,则∠OAD=∠AOD ,分别求出α的角度即可.【详解】解:∵设∠CBO=∠CAD=a ,∠ABO=b ,∠BAO=c ,∠CAO=d ,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b ﹣d=10°,∴(60°﹣a )﹣d=10°,∴a+d=50°,即∠DAO=50°,分三种情况讨论:①AO=AD ,则∠AOD=∠ADO ,∴190°﹣α=α﹣60°,∴α=125°;②OA=OD ,则∠OAD=∠ADO ,∴α﹣60°=50°,∴α=110°;③OD=AD ,则∠OAD=∠AOD ,∴190°﹣α=50°,∴α=140°;所以当α为110°、125°、140°时,三角形AOD 是等腰三角形,故答案为:110°、125°、140°.【点睛】本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.26.如图,点P 是AOB 内任意一点,5OP cm ,点P 与点C 关于射线OA 对称,点P与点D关于射线OB对称,连接CD交OA于点E,交OB于点F,当PEF的周长是5cm时,AOB的度数是______度.【答案】30【解析】【分析】根据轴对称得出OA为PC的垂直平分线,OB是PD的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP,12POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,OP=OD=5cm,求出△COD是等边三角形,即可得出答案.【详解】解:如图示:连接OC,OD,∵点P与点C关于射线OA对称,点P与点D关于射线OB对称,∴OA为PC的垂直平分线,OB是PD的垂直平分线,∵OP=5cm,∴12COA AOP COP,12POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,OP=OD=5cm,∵△PEF的周长是5cm,∴PE+EF+PF=CE+EF+FD=CD=5cm,∴CD=OD=OD=5cm,∴△OCD是等边三角形,∴∠COD=60°,∴11122230 AOB AOP BOP COP DOP COD,故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.27.如图,点P是AOB∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线OB上的动点,PN PM MN++的最小值是5 cm,则AOB∠的度数是__________.【答案】30°【解析】试题解析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.28.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.29.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,利用对称的性质得到△PQR 周长=P′P″,根据两点之间线段最短可判断此时△PQR 周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR 周长的最小值【详解】解:作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.30.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F 再连接CE 、CF 此时△CEF 的周长最小,理由如下:在AD 、AB 上任意取E 1、F 1两点根据对称性:∴CE=C 1E ,CE 1=C 1E 1,CF=C 2F ,CF 1=C 2F 1∴△CEF 的周长= CE +EF +CF= C 1E +EF +C 2F= C 1C 2而△CE 1F 1的周长= CE 1+E 1F 1+CF 1= C 1E 1+E 1F 1+C 2F 1根据两点之间线段最短,故C 1E 1+E 1F 1+C 2F 1>C 1C 2∴△CEF 的周长的最小为:C 1C 2.∵∠A=60°, ∠ADC=∠ABC=90°∴∠DCB=360°-∠A -∠ADC -∠ABC=120°∴∠C C 1C 2+∠C C 2C 1=180°-∠DCB=60°根据对称性:∠C C 1C 2=∠E CD ,∠C C 2C 1=∠F CB∴∠E CD +∠F CB=∠C C 1C 2+∠C C 2C 1=60°∴∠ECF =∠DCB -(∠E CD +∠F CB )=60°故答案为:60°【点睛】 此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.六、八年级数学轴对称三角形选择题(难)31.如图所示,在ABC 中,AC BC =,90ACB ︒∠=,AD 平分BAC ∠,BE AD ⊥交AC 的延长线F ,E 为垂足.则有:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】利用全等三角形的判定定理及其性质以及等腰三角形的三线合一的性质逐项分析即可得出答案.【详解】解:∵AC BC =,90ACB ︒∠=∴45CAB ABC ︒∠=∠=∵AD 平分BAC ∠∴22.5BAE EAF ︒∠=∠=∵90EAF F FBC F ︒∠+∠=∠+∠=∴EAF FBC ∠=∠∴ADC BFC ≅∴AD=BF ,CF=CD ,故①②正确;∵CD=CF,∴AC+CD=AC+CF=AF∵67.5F ︒∠=∵18018067.54567.5ABF F CAB ︒︒︒︒︒∠=-∠-∠=--=∴AF=AB ,即AC+CD=AB ,故③正确;由③可知,三角形ABF 是等腰三角形,∵BE AD ⊥ ∴12BE BF = 若BE CF =,则30CBF ∠=︒与②中结论相矛盾,故④错误;∵三角形ABF 是等腰三角形,∵BE AD ⊥ ∴12BE BF = ∴BF=2BE ,故⑤正确;综上所述,正确的选项有4个.故选:D .【点睛】本题考查的知识点是全等三角形的判定定理及其性质,等腰三角形的判定与性质,等腰直角三角形的性质,掌握以上知识点是解此题的关键.32.如图,30MON ∠=︒.点1A ,2A ,3A ,⋯,在射线ON 上,点1B ,2B ,3B ,⋯,在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,⋯均为等边三角形,若11OA =,则201920192020A B A ∆的边长为( )A .20172B .20182C .20192D .20202【答案】B【解析】【分析】 根据等边三角形的性质和30MON ∠=︒,可求得1130∠=︒OB A ,进而证得11OA B ∆是等腰三角形,可求得2OA 的长,同理可得22OA B ∆是等腰三角形,可得222=A B OA ,同理得规律333、、=⋅⋅⋅=n n n A B OA A B OA ,即可求得结果. 【详解】解:∵30MON ∠=︒,112A B A ∆是等边三角形,∴11260∠=︒B A A ,1112A B A A =∴1111230∠=∠-∠=︒OB A B A A MON ,∴11∠=∠OB A MON ,则11OA B ∆是等腰三角形,∴111=A B OA ,∵11OA =,∴11121==A B A A OA =1,21122=+=OA OA A A ,同理可得22OA B ∆是等腰三角形,可得222=A B OA =2,同理得23342==A B 、34482==A B ,根据以上规律可得:2018201920192=A B ,即201920192020A B A ∆的边长为20182,故选:B .【点睛】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.33.如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若△ABC 的周长为24,CE =4,则△ABD 的周长为( )A.16 B.18 C.20 D.24【答案】A【解析】【分析】根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,BC=2CE=8又∵AABC的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.34.如图, 在△DAE中, ∠DAE=40°, B、C两点在直线DE上,且∠BAE=∠BEA,∠CAD=∠CDA,则∠BAC的大小是()A.100°B.90°C.80°D.120°【答案】A【解析】【分析】由已知条件,利用了中垂线的性质得到线段相等及角相等,再结合三角形内角和定理求解.【详解】解:如图,∵BG是AE的中垂线,CF是AD的中垂线,∴AB=BE,ACECD∴∠AED=∠BAE=∠BAD+∠DAE,∠CDA=∠CAD=∠DAE+∠CAE,∵∠DAE+∠ADE+∠AED=180°∴∠BAD+∠DAE+∠DAE+∠CAE+∠DAE=3∠DAE+∠BAD+∠EAC=120°+∠BAD+ ∠EAC=180°∴∠BAD+∠EAC=60°∴. ∠BAC=∠BAD+∠EAC+∠DAE=60°+40°=100°;故选:A【点睛】本题考查了中垂线的性质、三角形内角和定理及等腰三角形的判定与性质;找着各角的关系利用内角和列式求解是正确解答本题的关键.35.如图,∠AOB =30º,∠AOB 内有一定点 P ,且 OP =12,在 OA 上有一动点 Q ,OB 上有 一动点 R 。

广东省韶关乐昌市 2023-2024学年八年级上学期期中数学试题(含答案)

广东省韶关乐昌市 2023-2024学年八年级上学期期中数学试题(含答案)

乐昌市2023—2024学年第一学期期中教学质量抽测八年级数学科试卷说明:1、本试卷共4页,考试时间为90分钟,满分120分.2、本试题设有答题卡,请考生将答案写在答题卡上,注意答案写在问卷上将不计分.3、必须使用黑色字迹的钢笔或签字笔作答.一、选择题(本大题共10个小题,每小题3分,共30分,答案写在答题卡上)1.下列图形中,是轴对称图形的个数为( )A .1个B .2个C .3个D .4个2.下列长度的三条线段不能组成三角形的是( )A .5,5,10B .4,5,6C .4,4,4D .3,4,53.下列图形中具有稳定性的有( )A .正方形B .长方形C .直角三角形D .梯形4.等腰三角形的周长,其中一边长为,则该等腰三角形的底边长为( )A .B .C .D .5.如图,的周长为,的垂直平分线交于,为垂足,,则的周长为( )A .B .C .D .6.等腰三角形中一个内角等于,则另两个内角的度数分别为( )A .,B .,或,C .,D .,7.在和中,,,补充条件后仍不一定能保证,则补充的这个条件是( )A .B .C .D.8.如图,在中,,是的平分线,,垂足为,若,,则的长度为( )12cm 3cm 6cm3cm 9cm 5cm ABC △19cm AC DE BC D E 3cm AE =ABD△19cm16cm 13cm 10cm 50︒40︒40︒65︒65︒80︒50︒50︒50︒65︒80︒ABC △A B C '''△AB A B ''=B B '∠=∠ABC A B C '''≌△△BC B C =''A A '∠=∠AC A C ''=C C '∠=∠ABC △90C ∠=︒AD BAC ∠DE AB ⊥E 10cm AB =6cm AC =BEA .B .C .D .9.正十边形的所有对角线的条数是()A .7B .10C .35D .7010.如图,在中,,和的平分线交于点,得;和的平分线交于点,得;…和的平分线交于点,则( )A.B .C .D .二、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)11.点关于轴对称的点的坐标是__________.12.若一个多边形的内角和是外角和的2倍,则这个多边形边数是__________.13.如图,,,,__________.14.如图所示,在中,,平分,,,则点到直线的距离为__________.15.如图,小亮从点出发,沿直线前进20米后向左转,再沿直线前进20米,又向左转,照这样走下去,他第一次回到出发地点时,一共走了__________米.10cm6cm 4cm 2cm ABC △A m ∠=︒ABC ∠ACD ∠1A 1A ∠1A BC ∠1A CD ∠2A 2A ∠2023A BC ∠2022A CD ∠2023A 2023A ∠=202212m 202112m 202412m 202312m (3,2)P -X P 'AEB ADC ≌△△60A ∠=︒24B ∠=︒ADC ∠=ABC △90C ∠=︒AD CAB ∠8cm BC =5cm BD =D AB cm A 30︒30︒A三、解答题(一)(本大题共3个小题,每小题7分,共21分,解答过程写在答题卡上)16.作图题:如图,内有两点,,请你确定一点,使点到,的距离相等,且到,的距离也相等,在图上标出它的位置.17.如图,在中,,,是的角平分线.求的度数.18.如图,且,求证:.四、解答题(二):(本大题共3个小题,每小题8分,共24分,解答过程写在答题卡上)19.已知如图:,,.求证:(1);(2).20.如图所示,在中,已知点,,分别为边,,的中点,且.求AOB ∠M N P P M N OA OB ABC △60B ∠=︒40C ∠=︒AD ABC △CAD ∠AC BD =A B ∠=∠AO BO =BE CD ⊥BE DE =BC DA =BEC DEA ≌△△DF BC ⊥ABC △D E F BC AD CE 24cm ABC S =△(1)的面积;(2)的面积.21.如图,中,是的平分线,于,于.求证:(1);(2)垂直平分.五、解答题(三)(本大题共2个小题,第22题12分,第23题13分,共25分,解答过程写在答题卡上)22.如图所示,,,三点在同一直线上,且.(1)你能说明、、之间的数量关系吗?(2)请你猜想满足什么条件时,?23.如图1,,,以点为顶点、为腰在第三象限作等腰.图1图2(1)求点的坐标;(2)如图2,为轴负半轴上一个动点,当点向轴负半轴向下运动时,以为顶点,为腰作等腰,过作轴于点,求的值.ABD S △BEF S △ABC △AD BAC ∠DE AB ⊥E DF AC ⊥F AED AFD ≌△△AD EF A D E BAD ACE ≌△△BD DE CE ABD △//BD CE 2OA =4OB =A AB Rt ABC △C P y P y P PA Rt APD △D DE x ⊥E OP DE -乐昌市2023—2024学年第一学期期中教学质量抽测八年级数学科答案一、选择题(本题共计10小题,每题3分,共计30分)1.C 2.A 3.C 4.B 5.C 6.B 7.C 8.C 9.C 10.D二、填空题(本题共计5小题,每题4分,共计20分)11.12.六13.14.315.240三、解答题(本题共计8小题,共计70分)16.(7分)【答案】解:作图略.作的角平分线,作的垂直平分线,确定点的位置.17.(7分)【答案】解:在中,,,,是的角平分线,.18.(7分)【答案】证明:在和中,,,.四、解答题(二):(本大题共3个小题,每小题8分,共24分,解答过程写在答题卡上)19.(8分)【答案】证明:,,在与中,,,.(2),.,,,.即.20.(8分)【答案】解:点为的中点,,点为的中点,,,点为的中点,,即阴影部分的面积为.21.(8分)【答案】证明:(1)是的角平分线,,,,,(3,2)--96︒AOB ∠MN P ABC △60B ∠=︒40C ∠=︒180180604080BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒AD ABC △11804022CAD BAC ∴∠=∠=⨯︒=︒ AOC △BOD △AOC BOD A B AC BD ∠=∠∠=∠=⎧⎪⎨⎪⎩(AAS)AOC BOD ∴≌△△AO BO ∴=BE CD ⊥90BEC BED ∴∠=∠=︒Rt BEC △Rt DEA △BC DA =BE DE =Rt Rt BEC DEA ∴≌△△BEC DEA≌△△B D ∴∠=∠90D DAE ∠+∠=︒ DAE BAF ∠=∠90BAF B ∴∠+∠=︒90BFA ∴∠=︒DF BC ⊥ D BC 122ABD ADC ABC S S S ∴===△△△ E AD 112EBD EDC ABD S S S ∴===△△△2EBC EBD EDC S S S ∴=+=△△△ F EC 112BEF BEC S S ∴==△△21cm AD ABC △DE AB ⊥DF AC ⊥DE DF ∴=90AED AFD ∠=∠=︒在和中,,;(2),,,垂直平分.五、解答题(三)(本大题共2个小题,第22题12分,第23题13分,共25分,解答过程写在答题卡上)22.(12分)【答案】解:(1)理由:,,,,即.(2)满足时,.理由是:,(添加的条件足),,.23.(13分)【答案】解:(1)如图,过作轴于点,, ,则,在和中,,,,点的坐标为.(2)如图,过作于点,则,,,,,在和中,,,即.Rt AED △Rt AFD △AD AD DE DF =⎧⎨=⎩Rt Rt AED AFD ∴≌△△Rt Rt AED AFD ≌△△AE AF ∴=DE DF =AD ∴EF BD DE CE=+BAD ACE≌△△BD AE ∴=AD CE =BD AE AD DE CE DE ∴==+=+BD DE CE =+ABD △90ADB ∠=︒//BD CE BAD ACE ≌△△90E ADB ∴∠=∠=︒90ADB ∠=︒1809090BDE E ∴∠=︒-︒=︒=∠//BD CE ∴C CM x ⊥M 90MAC OAB ∠+∠=︒ 90OAB OBA ∠+∠=︒MAC OBA ∠=∠MAC △OBA △90,,.CMA AOB MAC OBA AC AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩(AAS)MAC OBA ∴≌△△2CM OA ∴==4MA OB ==246OM OA AM ∴=+=+=∴C (6,2)--D DQ OP ⊥Q DE OQ =OP DE OP OQ PQ ∴-=-=90APO QPD ∠+∠=︒ 90APO OAP ∠+∠=︒QPD OAP ∴∠=∠AOP △PQD △90,,.AOP PQD OAP QPD AP PD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩(AAS)AOP PQD ∴≌△△2PQ OA ∴==2OP DE -=。

广东省韶关市八年级上学期数学期中考试试卷

广东省韶关市八年级上学期数学期中考试试卷

广东省韶关市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)等腰三角形的两条边长分别为3cm,7cm,则等腰三角形的周长为()cmA . 13或17B . 17C . 13D . 102. (2分) (2018·东莞模拟) 观察下列图形,其中既是轴对称又是中心对称图形的是()A .B .C .D .3. (2分)(2019·江北模拟) 如图,∠ABD=∠ABC,补充一个条件,使得△ABD≌△ABC,则下列选项错误的是()A . ∠D=∠CB . ∠DAB=∠CABC . BD=BCD . AD=AC4. (2分) (2017八上·上杭期末) 和三角形三个顶点的距离相等的点是()A . 三条角平分线的交点B . 三边中线的交点C . 三边上高所在直线的交点D . 三边的垂直平分线的交点5. (2分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A .B .C .D . 16. (2分) (2019八下·卢龙期中) 如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A′B′C′,则与点B′关于x轴对称的点的坐标是()A . (0,﹣1)B . (1,1)C . (2,﹣1)D . (1,﹣2)7. (2分)小明有两根3cm、7cm的木棒,他想以这两根木棒为边做一个三角形,还需再选用的木棒长为()A . 3cmB . 4cmC . 9cmD . 10cm8. (2分) (2019八上·黄石港期中) 如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A . m﹣a>b﹣nB . m﹣a<b﹣nC . m﹣a=b﹣nD . m﹣a>b﹣n或m﹣a<b﹣n9. (2分) (2017八上·杭州期中) 如图,已知等腰Rt△ABC和等腰Rt△ADE,AB=AC=4,∠BAC=∠EAD=90°,D是射线BC上任意一点,连接EC.下列结论:①△AEC △ADB;② EC⊥BC ;③以A、C、D、E为顶点的四边形面积为8;④当BD= 时,四边形AECB的周长为;⑤ 当BD= B时,ED= AB;其中正确的有()A . 5个B . 4个C . 3 个D . 2个10. (2分)下列条件能判定△ABC≌△DEF的一组是()A . AB=DE,BC=EF,∠A=∠DB . ∠A=∠D,∠B=∠E,∠C=∠FC . AB=DE,△ABC的周长等于△DEF的周长D . ∠A=∠D,∠C=∠F,AC=DF11. (2分) (2020八上·昆明期末) 如图,△ABC 的三边 AB、BC、CA 长分别是 10、15、20,其三条角平分线将△ABC 分为三个三角形,则S△ABO:S△BCO:S△CAO 等于()A . 1∶1∶1B . 1∶2∶3C . 2∶3∶4D . 3∶4∶512. (2分) (2018八上·天台期中) 如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC 交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90+ ∠A;③点G到△ABC 各边的距离相等;④设GD=m,AE+AF=n,则 =mn.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分) (2017八上·马山期中) 如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是________.14. (1分)(2017·绥化) 一个多边形的内角和等于900°,则这个多边形是________边形.15. (1分) (2019八上·柳州期末) 已知△ABC的三个内角分别是∠A.∠B、∠C,若∠A=60°,∠C=2∠B,则∠C=________16. (1分) (2018八上·扬州月考) 如图所示,△ABC中,BC的垂直平分线交AB于点E,若△ABC的周长为10,BC=4,则△ACE的周长是________.17. (1分)如图,石头A和石头B相距80cm,且关于竹竿l对称,一只电动青蛙在距竹竿30cm,距石头A 为60cm的P1处,按如图所示的顺序循环跳跃.青蛙跳跃25次后停下,此时它与石头A相距________cm,与竹竿l相距________cm.18. (1分)如图,梯形ABCD中,AD//BC,∠B+∠C=900,AD=2,BC=12,AB=6,DC=8.E、F分别是AD、BC的中点,则EF=________三、解答题 (共8题;共70分)19. (5分) (2016八上·济源期中) 某地有两个村庄M、N和两条相交叉的公路OA,OB,现计划修建一个物资仓库,希望仓库到两个村庄的距离相等,到两条公路的距离也相等,请你用尺规作图的方法确定该点P.(注意保留作图痕迹,不用写作法)20. (10分) (2019八上·北京期中) 已知,如图,是上一点,,, .求证: .21. (5分) (2016九上·瑞安期中) 已知:如图,AB,AC是⊙O的两条弦,AO平分∠BAC.求证:.22. (5分) (2018八上·焦作期末) 如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.23. (15分)如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.24. (10分) (2019七下·福田期末) 己知:为等边三角形,点E为射线AC上一点,点D为射线CB上一点,.(1)如图1,当E在AC的延长线上且时,AD是的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.25. (10分)(2018·重庆模拟) 已知菱形ABCD的边长为5,∠DAB=60°.将菱形ABCD绕着A逆时针旋转得到菱形AEFG,设∠EAB=α,且0°<α<90°,连接DG、BE、CE、CF.(1)如图(1),求证:△AGD≌△AEB;(2)当α=60°时,在图(2)中画出图形并求出线段CF的长;(3)若∠CEF=90°,在图(3)中画出图形并求出△CEF的面积.26. (10分) (2016八上·余杭期中) 如图,点在的外部,点边上,交于点,若,,.(1)求证:;(2)若,判断的形状,并说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共70分)19-1、20-1、21-1、22-1、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。

韶关市八年级上学期期中数学试卷(五四学制)

韶关市八年级上学期期中数学试卷(五四学制)

韶关市八年级上学期期中数学试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)下列各式由左到右的变形中,属于分解因式的是()A . a(m+n)=am+anB . a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C . 10x2﹣5x=5x(2x﹣1)D . x2﹣16+6x=(x+4)(x﹣4)+6x2. (2分)下列运算中正确的是()。

A .B .C .D .3. (2分)某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是()分数(分)8992959697评委(位)12211A . 92分B . 93分C . 94分D . 95分4. (2分)多项式12ab3c﹣8a3b的公因式是()A . 4ab2B . ﹣4abcC . ﹣4ab2D . 4ab5. (2分)一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是()A . 前一组数据的中位数是200B . 前一组数据的众数是200C . 后一组数据的平均数等于前一组数据的平均数减去200D . 后一组数据的方差等于前一组数据的方差减去2006. (2分)若分式的值为零,则x的值为()A . 0B . 2C . -2D . ±27. (2分)若x=1,,则x2+4xy+4y2的值是()A . 2B . 4C .D .8. (2分) (2017七下·抚宁期末) 分解因式2x2 − 4x + 2的最终结果是()A . 2x(x − 2)B . 2(x2 − 2x +1)C . 2(x − 1)2D . (2x − 2)29. (2分) (2020八下·椒江期末) 为了在甲、乙两名运动员中选拔一人发加全省射击比赛,对他们的射击水平进行考核.在相同的情况下,两人的比赛成绩经统计计算后如下表;运动员射击次数中位数(环)方差平均数(环)甲157 1.68乙1580.78某同学根据上表分析得出如下结论:①甲、乙两名运动员成绩的平均水平相同;②乙运动员优秀的次数多于甲运动员(环数≥8环为优秀);③甲运动员成绩的波动比乙大,上述结论正确的是()A . ①②③B . ①②C . ①③D . ②③10. (2分)(2014·贺州) 张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+ (x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+ );当矩形成为正方形时,就有x= (x>0),解得x=1,这时矩形的周长2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A . 2B . 1C . 6D . 1011. (2分)把分式中的a、b都扩大4倍,则分式的值()A . 扩大8倍B . 不变C . 缩小4倍D . 扩大4倍12. (2分)将分式方程去分母后得到的整式方程,正确的是()A . x−2=2xB . x2−2x=2xC . x−2=xD .x=2x−413. (2分) (2017七下·丰台期中) 已知,,则().A .B .C .D .14. (2分)(2017·江东模拟) 小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()A . = ×B . = ×C . + =D . ﹣ =二、填空题 (共8题;共10分)15. (1分)因式分解4m2﹣n2= ________16. (2分)(2020·呼和浩特) 分式与的最简公分母是________,方程的解是________.17. (1分)(2020·福清模拟) 某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:则这15名学生一周在校参加体育锻炼时间的中位数为________h .锻炼时间/h5678人数265218. (2分)已知数x1 , x2 , x3 , x4 ,…,xn的平均数是5,方差为2,则3x1+4,3x2+4,…,3xn+4的平均数是________,方差是________.19. (1分) (2020八下·哈尔滨月考) 若一个三角形的三边长a,b,c满足,则这个三角形的形状是________.20. (1分)若分式方程(其中k为常数)产生增根,则k=________.21. (1分)若x﹣y=3,xy=1,则x2+y2=________.22. (1分) (2017八上·罗庄期末) 某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是________.三、解答题 (共6题;共58分)23. (10分) (2018八上·如皋期中) 分解因式:(1)-3x2+6xy-3y2;(2).24. (15分)(2016·云南) 有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.25. (5分) (2016九上·思茅期中) 先化简,再求值:(1﹣)÷ ,其中a=2.26. (11分) (2016八上·驻马店期末) 请阅读下列材料并回答问题:在解分式方程时,小明的解法如下:解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3=1①去括号,得2x﹣1=3﹣1 ②解得x=检验:当x= 时,(x+1)(x﹣1)≠0③所以x= 是原分式方程的解④(1)你认为小明在哪里出现了错误________(只填序号)(2)针对小明解分式方程出现的错误和解分式方程中的其他重要步骤,请你提出三条解分式方程时的注意事项;(3)写出上述分式方程的正确解法.27. (12分)(2017·全椒模拟) 某校兴趣小组对网上吐糟较为频繁的“医患关系”产生了兴趣,利用节假日在某社区开展了“造成医患关系紧张的原因”的问卷调查.造成医患关系紧张的原因(单选)A.药价高B.检测项目太多且收费太高C.住院报销比例低D.医疗费与个人收入不相称E.其他根据调查结果绘制出了如下两幅尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的总人数为________人;(2)在扇形统计图中,“A”所在扇形的圆心角的度数为________;(3)补全条形统计图;(4)若该市有1000万人,请你估计选D的总人数.28. (5分)(2020·枣阳模拟) 甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.⑴问乙单独整理多少分钟完工?参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共8题;共10分)15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、三、解答题 (共6题;共58分) 23-1、23-2、24-1、24-2、24-3、25-1、26-1、26-2、26-3、27-1、27-2、27-3、27-4、28-1、。

[好卷]韶关市乐昌市八年级上期末数学试卷有答案

[好卷]韶关市乐昌市八年级上期末数学试卷有答案

广东省韶关市乐昌市八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.3.(3分)将0.000 015用科学记数法表示为()A.1.5×10﹣5B.1.5×10﹣4C.1.5×10﹣3D.1.5×10﹣24.(3分)分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.(3分)若等腰三角形的顶角为80°,则它的底角度数为()A.80°B.50°C.40°D.20°6.(3分)计算a2•a的结果是()A.a2B.2a3C.a3D.2a27.(3分)下列计算中,正确的是()A.x3•x2=x4B.(x+y)(x﹣y)=x2+y2C.x(x﹣2)=﹣2x+x2D.3x3y2÷xy2=3x48.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.= B.= C.=D.=9.(3分)化简:﹣=()A.0 B.1 C.x D.10.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN二、填空题(每小题3分,共18分)11.(3分)点P(1,2)关于y轴对称的点的坐标是.12.(3分)计算10ab3÷5ab的结果是.13.(3分)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为.14.(3分)已知一个多边形的内角和是1620°,则这个多边形是边形.15.(3分)若a m=3,a n=4,则a m+n=.16.(3分)如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为.三.解答题(一)(共16分)17.(5分)计算:(a﹣1b2)3.18.(5分)分解因式:a2b﹣b3.19.(6分)(1)计算:m(m﹣2n)+2mn(2)解分式方程:=.四.解答题(二)(每小题6分,共18分)20.(6分)作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A,B,C 的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)作△ABC关于y轴对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标.21.(6分)先化简,再求值:(x﹣4y)(x+4y)+(3x﹣4y)2,其中x=2,y=﹣1.22.(6分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?五.解答题(每小题6分,共18分)23.(6分)如图,△ABC中,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,与AB、AC 分别相交于E、F,若已知AB=9,AC=7,求△AEF的周长.24.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=25cm,BE=8cm,求DE的长.25.(6分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).2017-2018学年广东省韶关市乐昌市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3分)下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.【解答】解:含有三角形结构的支架不容易变形.故选:B.3.(3分)将0.000 015用科学记数法表示为()A.1.5×10﹣5B.1.5×10﹣4C.1.5×10﹣3D.1.5×10﹣2【解答】解:将0.000 015用科学记数法表示为1.5×10﹣5,故选:A.4.(3分)分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.5.(3分)若等腰三角形的顶角为80°,则它的底角度数为()A.80°B.50°C.40°D.20°【解答】解:∵等腰三角形的顶角为80°,∴它的底角度数为(180°﹣80°)=50°.故选B.6.(3分)计算a2•a的结果是()A.a2B.2a3C.a3D.2a2【解答】解:a2•a=a3.故选:C.7.(3分)下列计算中,正确的是()A.x3•x2=x4B.(x+y)(x﹣y)=x2+y2C.x(x﹣2)=﹣2x+x2D.3x3y2÷xy2=3x4【解答】解:A、结果是x5,故本选项不符合题意;B、结果是x2﹣y2,故本选项不符合题意;C、结果是﹣2x+x2,故本选项符合题意;D、结果是3x2,故本选项不符合题意;故选C.8.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.= B.= C.=D.=【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.9.(3分)化简:﹣=()A.0 B.1 C.x D.【解答】解:原式==x.故选:C10.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.二、填空题(每小题3分,共18分)11.(3分)点P(1,2)关于y轴对称的点的坐标是(﹣1,2).【解答】解:∵点P(m,n)关于y轴对称点的坐标P′(﹣m,n),∴点P(1,2)关于y轴对称的点的坐标为(﹣1,2).12.(3分)计算10ab3÷5ab的结果是2b2.【解答】解:10ab3÷5ab=2b2.故答案为:2b2.13.(3分)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为70°.【解答】解:∵∠B=40°,∠C=30°,∴∠CAD=∠B+∠C=70°,故答案为:70°.14.(3分)已知一个多边形的内角和是1620°,则这个多边形是11边形.【解答】解:设所求多边形的边数是x,则(n﹣2)•180°=1620,解得n=11.15.(3分)若a m=3,a n=4,则a m+n=12.【解答】解:∵a m=3,a n=4,∴a m+n=a m•a n=3×4=12.故答案为:12.16.(3分)如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为22.【解答】解:∵BC边的垂直平分线交AB,∴BE=CE,∵△ACE的周长为12,∴AC+AE+CE=AC+AE+BE=AC+AB=12,∵BC=10,∴△ABC的周长为:AB+AC+BC=22.故答案为:22.三.解答题(一)(共16分)17.(5分)计算:(a﹣1b2)3.【解答】解:(a﹣1b2)3=a﹣3b6=.18.(5分)分解因式:a2b﹣b3.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b).19.(6分)(1)计算:m(m﹣2n)+2mn(2)解分式方程:=.【解答】解:(1)原式=m2﹣2mn+2mn=m2;(2)去分母得:3(x﹣2)=x,解得:x=3,检验:把x=3代入x(x﹣2)=3≠0.∴原方程的解为:x=3.四.解答题(二)(每小题6分,共18分)20.(6分)作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A,B,C 的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)作△ABC关于y轴对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)点A1、B1、C1的坐标分别为(2,1),(4,5),(5,2).21.(6分)先化简,再求值:(x﹣4y)(x+4y)+(3x﹣4y)2,其中x=2,y=﹣1.【解答】解:当x=2,y=﹣1时,原式=x2﹣16y2+9x2﹣24xy+16y2=10x2﹣24xy=8822.(6分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【解答】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.五.解答题(每小题6分,共18分)23.(6分)如图,△ABC中,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,与AB、AC 分别相交于E、F,若已知AB=9,AC=7,求△AEF的周长.【解答】解:∵BD是角平分线,∴∠ABD=∠CBD,∵FE∥BC,∴∠DBC=∠DBE,∴∠DBE=∠EDB,∴BE=ED,同理DF=DC,∴△AED的周长=AE+AF+EF=AB+AC=9+7=16.24.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=25cm,BE=8cm,求DE的长.【解答】解:(1)∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠BEC=∠ACB=∠ADC=90°,∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE,在△BC E和△CAD中,,∴△BCE≌△CAD;(2)∵△BCE≌△CAD,∴AD=CE,BE=CD,∴DE=CE﹣CD=AD﹣BE=25﹣8=17(cm).25.(6分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是B;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【解答】解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴12=4(x﹣2y)得:x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年广东省韶关市乐昌市八年级(上)期中数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)在△ABC中,∠A=30°,∠B=60°,则∠C=()A.30°B.45°C.60°D.90°2.(2分)已知三角形的两边长分别是5、7,则第三边长a的取值范围是()A.2<a<12 B.2≤a≤12 C.a>2 D.a<123.(2分)下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.2,4,5 D.1,7,94.(2分)如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE=()A.10°B.15°C.20°D.30°5.(2分)观察下列图形,是轴对称图形的是()A.B.C.D.6.(2分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定7.(2分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN8.(2分)如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到AC的距离为3,则点P到AB的距离为()A.1 B.2 C.3 D.49.(2分)如图,△ABC与△ADC关于AC所在的直线对称,∠BCA=35°,∠B=80°,则∠DAC的度数为()A.55°B.65°C.75°D.85°10.(2分)如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AE B.DB=EC C.∠ADE=∠AED D.DE=BC二、填空题(共6小题,每小题3分,满分18分)11.(3分)线段是轴对称图形,它的对称轴有条.12.(3分)一个多边形的内角和是720°,这个多边形的边数是.13.(3分)已知点A(3,1),则点A关于x轴的对称点A1的坐标是.14.(3分)正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于.15.(3分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.16.(3分)如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,…,则在图5中,互不重叠的三角形共有个.三、解答题(共9小题,满分62分)17.(6分)如图,已知AC=AD,∠CAB=∠DAB,求证:BC=BD.18.(6分)如图,在△ABC中,AB=AC.(1)利用尺规作图法作边BC的高AD,垂足为D,(要求:保留作图痕迹,不写作法).(2)求证:BD=CD.19.(6分)如图.(1)求图形中的x的值;(2)求:∠A、∠B、∠C、∠D的度数.20.(7分)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1.21.(7分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.22.(7分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=6cm,DE=4cm,求BE的长度.23.(7分)如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.24.(8分)如图,△ABC、△ADE是等边三角形,B、C、D在同一直线上.求证:(1)CE=AC+DC;(2)∠ECD=60°.25.(8分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.2016-2017学年广东省韶关市乐昌市八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)在△ABC中,∠A=30°,∠B=60°,则∠C=()A.30°B.45°C.60°D.90°【解答】解:∵在△ABC中,∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°,故选:D.2.(2分)已知三角形的两边长分别是5、7,则第三边长a的取值范围是()A.2<a<12 B.2≤a≤12 C.a>2 D.a<12【解答】解:∵三角形的第三边大于两边之差小于两边之和,∴三角形的两边长分别是5、7,则第三边长a的取值范围是2<a<12.故选:A.3.(2分)下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.2,4,5 D.1,7,9【解答】解:A、错误.因为3+4<8.B、错误.因为5+6=11.C、正确.因为2+4>5.D、错误.因为1+7<9.故选:C.4.(2分)如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE=()A.10°B.15°C.20°D.30°【解答】解:∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=∠B+20°,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠B=∠C,∠ADE=∠AED,∴∠C+∠EDC=∠ADC﹣∠EDC=∠B+20°﹣∠EDC,解得∠EDC=10°.故选:A.5.(2分)观察下列图形,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.6.(2分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【解答】解:A、锐角三角形,三条高线交点在三角形内,故错误;B、钝角三角形,三条高线不会交于一个顶点,故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点,可以得出这个三角形是直角三角形,故正确;D、能确定C正确,故错误.7.(2分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B 选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.8.(2分)如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到AC的距离为3,则点P到AB的距离为()A.1 B.2 C.3 D.4【解答】解:过P作PQ⊥AC于Q,PW⊥BC于W,PR⊥AB于R,∵△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,∴PQ=PW,PW=PR,∴PR=PQ,∵点P到AC的距离为3,则点P到AB的距离为3,故选:C.9.(2分)如图,△ABC与△ADC关于AC所在的直线对称,∠BCA=35°,∠B=80°,则∠DAC的度数为()A.55°B.65°C.75°D.85°【解答】解:∵∠BCA=35°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣35°﹣80°=65°,∵△ABC与△ADC关于AC所在的直线对称,∴∠DAC=∠BAC=65°.故选:B.10.(2分)如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AE B.DB=EC C.∠ADE=∠AED D.DE=BC【解答】解:∵DE∥BC,∴=,∠ADE=∠B,∵AB=AC,∴AD=AE,DB=EC,∠B=∠C,∴∠ADE=∠AED,而DE不一定等于BC,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)线段是轴对称图形,它的对称轴有2条.【解答】解:线段是轴对称图形,它的对称轴有2条.故答案为:2.12.(3分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(3分)已知点A(3,1),则点A关于x轴的对称点A1的坐标是(3,﹣1).【解答】解:点A(3,1)关于x轴的对称点A1的坐标是(3,﹣1).故答案为:(3,﹣1).14.(3分)正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于120°.【解答】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC=30°,∠ICB=∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.15.(3分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.16.(3分)如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,…,则在图5中,互不重叠的三角形共有16个.【解答】解:图1中互不重叠的三角形有4个图2中互不重叠的三角形有7=4+3个图3中互不重叠的三角形有10=4+3×2个按此规律图n中互不重叠的三角形有4+3(n﹣1)=3n+1个,∴当n=5时,3n+1=16,故答案为:16.三、解答题(共9小题,满分62分)17.(6分)如图,已知AC=AD,∠CAB=∠DAB,求证:BC=BD.【解答】证明:在△ACB和△ADB中,,∴△ACB≌△ADB(AAS),∴BC=BD.18.(6分)如图,在△ABC中,AB=AC.(1)利用尺规作图法作边BC的高AD,垂足为D,(要求:保留作图痕迹,不写作法).(2)求证:BD=CD.【解答】(1)解:如图,点D即为所求;(2)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD与△ACD中,∵,∴△ABD≌△ACD(HL),∴BD=CD.19.(6分)如图.(1)求图形中的x的值;(2)求:∠A、∠B、∠C、∠D的度数.【解答】解:(1)依题意有:3x+3x+4x+2x=360°,解得x=30°;(2)∠A=∠B=3×30°=90°,∠C=2×30°=60°,∠D=4×30°=120°.20.(7分)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1(﹣1,2)B1(﹣3,1)C1(2,﹣1).【解答】解:(1)所作图形如下所示:(2)A1,B1,C1的坐标分别为:(﹣1,2),(﹣3,1),(2,﹣1).故答案为:(﹣1,2),(﹣3,1),(2,﹣1).21.(7分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.22.(7分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=6cm,DE=4cm,求BE的长度.【解答】(1)证明:∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠E=∠ADC=∠ACB=90°,∴∠BCE+∠ACD=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△ADC和△CEB中∴△ADC≌△CEB(AAS);(2)解:∵△ADC≌△CEB,AD=6cm,∴CE=AD=6cm,BE=CD,∵DE=4cm,∴BE=CD=CE﹣DE=6cm﹣4cm=2cm.23.(7分)如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵,∴△ADF≌△BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.24.(8分)如图,△ABC、△ADE是等边三角形,B、C、D在同一直线上.求证:(1)CE=AC+DC;(2)∠ECD=60°.【解答】证明:(1)∵△ABC、△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即:∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC,∵BD=BC+CD=AC+CD,∴CE=BD=AC+CD;(2)由(1)知:△BAD≌△CAE,∴∠ACE=∠ABD=60°,∴∠ECD=180°﹣∠ACB﹣∠ACE=60°,∴∠ECD=60°.25.(8分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.。

相关文档
最新文档