2012高考理科数学数列 (答案详解)
(完整版)2012年重庆市高考数学试卷(理科)答案与解析

2012年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个备选选项中,只有一个是符合题目要求的1.(5分)(2012•重庆)在等差数列{a n}中,a2=1,a4=5,则{a n}的前5项和S5=()A.7B.15 C.20 D.25考点:等差数列的性质.专题:计算题.分析:利用等差数列的性质,可得a2+a4=a1+a5=6,再利用等差数列的求和公式,即可得到结论.解答:解:∵等差数列{a n}中,a2=1,a4=5,∴a2+a4=a1+a5=6,∴S5=(a1+a5)=故选B.点评:本题考查等差数列的性质,考查等差数列的求和公式,熟练运用性质是关键.2.(5分)(2012•重庆)不等式≤0的解集为()A.B.C.D.考点:其他不等式的解法.专题:计算题.分析:由不等式可得,由此解得不等式的解集.解答:解:由不等式可得,解得﹣<x≤1,故不等式的解集为,故选A.点评:本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.3.(5分)(2012•重庆)对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心考点:直线与圆的位置关系.专题:探究型.分析:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=2内,故可得结论.解答:解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=2内∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心故选C.点评:本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.4.(5分)(2012•重庆)的展开式中常数项为()A.B.C.D.105考点:二项式定理的应用.专题:计算题.分析:在的展开式通项公式中,令x的幂指数等于零,求出r的值,即可求得展开式中常数项.解答:解:的展开式通项公式为T r+1==,令=0,r=4.故展开式中常数项为=,故选B.点评:本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,属于中档题.5.(5分)(2012•重庆)设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为()A.﹣3 B.﹣1 C.1D.3考点:两角和与差的正切函数;根与系数的关系.专题:计算题.分析:由tanα,tanβ是方程x2﹣3x+2=0的两个根,利用根与系数的关系分别求出tanα+tanβ及tanαtanβ的值,然后将tan(α+β)利用两角和与差的正切函数公式化简后,将tanα+tanβ及tanαtanβ的值代入即可求出值.解答:解:∵tanα,tanβ是方程x2﹣3x+2=0的两个根,∴tanα+tanβ=3,tanαtanβ=2,则tan(α+β)===﹣3.故选A点评:此题考查了两角和与差的正切函数公式,以及根与系数的关系,利用了整体代入的思想,熟练掌握公式是解本题的关键.6.(5分)(2012•重庆)设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()A.B.C.D.10考点:数量积判断两个平面向量的垂直关系;向量的模;平面向量共线(平行)的坐标表示.专题:计算题.分析:由两个向量垂直的性质可得2x﹣4=0,由两个向量共线的性质可得﹣4﹣2y=0,由此求出x=2,y=﹣2,以及的坐标,从而求得||的值.解答:解:∵向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则有2x﹣4=0,﹣4﹣2y=0,解得x=2,y=﹣2,故=(3,﹣1 ).故有||==,故选B.点评:本题主要考查两个向量共线的性质,两个向量垂直的性质,两个向量坐标形式的运算,属于基础题.7.(5分)(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件考点:必要条件、充分条件与充要条件的判断;奇偶性与单调性的综合.专题:函数的性质及应用;简易逻辑.分析:由题意,可由函数的性质得出f(x)为[﹣1,0]上是减函数,再由函数的周期性即可得出f(x)为[3,4]上的减函数,由此证明充分性,再由f(x)为[3,4]上的减函数结合周期性即可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数即可得出f(x)为[0,1]上的增函数,由此证明必要性,即可得出正确选项解答:解:∵f(x)是定义在R上的偶函数,∴若f(x)为[0,1]上的增函数,则f(x)为[﹣1,0]上是减函数,又∵f(x)是定义在R上的以2为周期的函数,且[3,4]与[﹣1,0]相差两个周期,∴两区间上的单调性一致,所以可以得出f(x)为[3,4]上的减函数,故充分性成立.若f(x)为[3,4]上的减函数,同样由函数周期性可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数可得出f(x)为[0,1]上的增函数,故必要性成立.综上,“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.故选D.点评:本题考查充分性与必要性的判断,解题的关键是理解充分性与必要性证明的方向,即由那个条件到那个条件的证明是充分性,那个方向是必要性,初学者易搞不清证明的方向导致表述上出现逻辑错误.8.(5分)(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(﹣2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(﹣2)D.函数f(x)有极大值f(﹣2)和极小值f(2)考点:函数在某点取得极值的条件;函数的图象.专题:计算题.分析:利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.解答:解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).故选D.点评:本题考查函数与导数的应用,考查分析问题解决问题的能力,函数的图象的应用.9.(5分)(2012•重庆)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是()A.(0,)B.(0,)C.(1,)D.(1,)考点:异面直线的判定;棱锥的结构特征.专题:计算题;压轴题.分析:先在三角形BCD中求出a的范围,再在三角形AED中求出a的范围,二者相结合即可得到答案.解答:解:设四面体的底面是BCD,BC=a,BD=CD=1,顶点为A,AD=在三角形BCD中,因为两边之和大于第三边可得:0<a<2 (1)取BC中点E,∵E是中点,直角三角形ACE全等于直角DCE,所以在三角形AED中,AE=ED=∵两边之和大于第三边∴<2得0<a<(负值0值舍)(2)由(1)(2)得0<a<.故选:A.点评:本题主要考察三角形三边关系以及异面直线的位置.解决本题的关键在于利用三角形两边之和大于第三边这一结论.10.(5分)(2012•重庆)设平面点集,则A∩B所表示的平面图形的面积为()A.B.C.D.考点:二元一次不等式(组)与平面区域;交集及其运算.专题:计算题;压轴题.分析:先分别画出集合A与集合B表示的平面区域,再画出它们的公共部分,最后利用圆的面积公式及图形的对称性,计算所求面积即可解答:解:∵⇔或其表示的平面区域如图,(x﹣1)2+(y﹣1)2≤1表示以(1,1)为圆心,1为半径的圆及其内部区域,其面积为π∴A∩B所表示的平面图形为上述两区域的公共部分,如图阴影区域,由于圆和y=均关于y=x对称,故阴影部分面积为圆的面积的一半,即故选:D.点评:本题主要考查了二元不等式表示平面区域的知识和延伸,准确的画出两集合表示的平面区域是解决本题的关键,属基础题二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2012•重庆)若(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,则a+b=4.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:由条件可得a+bi=1+3i,根据两个复数相等的充要条件求出a和b的值,即可求得a+b 的值.解答:解:∵(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,∴a+bi=1+3i,∴a=1,b=3,∴a+b=1+3=4,故答案为4.点评:本题主要考查两个复数代数形式的乘除法,两个复数相等的充要条件,属于基础题.12.(5分)(2012•重庆)=.考点:极限及其运算.专题:计算题.分析:把要求的式子化为,即,再利用极限及其运算法则求得所求式子的值.解答:解:由于====,故答案为:.点评:本题主要考查极限及其运算法则的应用,把要求的式子化为,是解题的关键,属于基础题.13.(5分)(2012•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且,则c=.考点:余弦定理;正弦定理.专题:计算题.分析:由A和B都为三角形的内角,且根据cosA及cosB的值,利用同角三角函数间的基本关系分别求出sinA和sinB的值,将sinC中的角C利用三角形的内角和定理变形后,将各自的值代入求出sinC的值,由sinC,b及sinB的值,利用正弦定理即可求出c 的值.解答:解:∵A和B都为三角形的内角,且cosA=,cosB=,∴sinA==,sinB==,∴sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=,又b=3,∴由正弦定理=得:c===.故答案为:点评:此题考查了同角三角函数间的基本关系,诱导公式,两角和与差的正弦函数公式,以及正弦定理,熟练掌握定理及公式是解本题的关键.14.(5分)(2012•重庆)过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若,则|AF|=.考点:抛物线的简单性质.专题:计算题;压轴题.分析:设出点的坐标与直线的方程,利用抛物线的定义表示出|AF|、|BF|再联立直线与抛物线的方程利用根与系数的关系解决问题,即可得到答案.解答:解:由题意可得:F(,0),设A(x1,y1),B(x2,y2).因为过抛物线y2=2x的焦点F作直线l交抛物线于A、B两点,所以|AF|=+x1,|BF|=+x2.因为,所以x1+x2=设直线l的方程为y=k(x﹣),联立直线与抛物线的方程可得:k2x2﹣(k2+2)x+=0,所以x1+x2=.∴∴k2=24∴24x2﹣26x+6=0,∴,∴|AF|=+x1=故答案为:点评:解决此类问题的关键是熟练掌握抛物线的定义,以及掌握直线与抛物线位置关系,并且结合准确的运算也是解决此类问题的一个重要方面15.(5分)(2012•重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).考点:等可能事件的概率.专题:概率与统计.分析:三门文化课排列,中间有两个空,若每个空各插入1节艺术课,则排法种数为,若两个空中只插入1节艺术课,则排法种数为•(•)•=216,三门文化课中相邻排列,则排法种数为=144,而所有的排法共有=720种,由此求得所求事件的概率.解答:解:把语文、数学、外语三门文化课排列,有种方法,这三门课中间存在两个空,在两个空中,①若每个空各插入1节艺术课,则排法种数为=72,②若两个空中只插入1节艺术课,则排法种数为•(•)•=216,③若语文、数学、外语三门文化课相邻排列,把三门文化课捆绑为为一个整体,然后和三门艺术课进行排列,则排法种数为=144,而所有的排法共有=720种,故在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为=,故答案为.点评:本题主要考查等可能事件的概率,体现了分类讨论的数学思想,属于基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(13分)(2012•重庆)设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:综合题.分析:(Ⅰ)求导函数,利用曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,可得f′(1)=0,从而可求a的值;(Ⅱ)由(Ⅰ)知,(x>0),=,确定函数的单调性,即可求得函数f(x)的极值.解答:解:(Ⅰ)求导函数可得∵曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.∴f′(1)=0,∴,∴a=﹣1;(Ⅱ)由(Ⅰ)知,(x>0)=令f′(x)=0,可得x=1或x=(舍去)∵0<x<1时,f′(x)<0,函数递减;x>1时,f′(x)>0,函数递增∴x=1时,函数f(x)取得极小值为3.点评:本题考查导数知识的运用,考查导数的几何意义,函数的单调性与极值,正确求导是关键.17.(13分)(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:计算题.分析:设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=(k=1,2,3)(Ⅰ)记“甲获胜”为事件C,则P(C)=P(A1)+P()+P(),利用互斥事件的概率公式即可求解;(Ⅱ)投篮结束时甲的投篮次数ξ的可能值为1,2,3,求出相应的概率,即可得到ξ的分布列与期望.解答:解:设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=(k=1,2,3)(Ⅰ)记“甲获胜”为事件C,则P(C)=P(A1)+P()+P()=×+=;(Ⅱ)投篮结束时甲的投篮次数ξ的可能值为1,2,3P(ξ=1)=P(A1)+P()=P(ξ=2)=P()+P()== P((ξ=3)=P()==ξ的分布列为ξ 1 2 3P期望Eξ=1×+2×+3×=.点评:本题考查互斥事件概率的求解,考查离散型随机变量的分布列与期望,解题的关键是确定变量的取值,理解变量取值的含义,属于中档题.18.(13分)(2012•重庆)设f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π),其中ω>0.(Ⅰ)求函数y=f(x)的值域(Ⅱ)若f(x)在区间上为增函数,求ω的最大值.考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的定义域和值域;正弦函数的单调性.专题:计算题;转化思想.分析:(I)由题意,可由三角函数的恒等变换公式对函数的解析式进行化简得到f(x)=sin2ωx+1,由此易求得函数的值域;(II)f(x)在区间上为增函数,此区间必为函数某一个单调区间的子集,由此可根据复合三角函数的单调性求出用参数表示的三角函数的单调递增区间,由集合的包含关系比较两个区间的端点即可得到参数ω所满足的不等式,由此不等式解出它的取值范围,即可得到它的最大值.解答:解:f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π)=4(cosωx+sinωx)sinωx+cos2ωx=2cosωxsinωx+2sin2ωx+cos2ωx﹣sin2ωx=sin2ωx+1,∵﹣1≤sin2ωx≤1,所以函数y=f(x)的值域是[](II)因y=sinx在每个区间[],k∈z上为增函数,令,又ω>0,所以,解不等式得≤x≤,即f(x)=sin2ωx+1,(ω>0)在每个闭区间[,],k∈z上是增函数又有题设f(x)在区间上为增函数所以⊆[,],对某个k∈z成立,于是有.解得ω≤,故ω的最大值是.点评:本题考查三角恒等变换的运用及三角函数值域的求法,解题的关键是对所给的函数式进行化简,熟练掌握复合三角函数单调性的求法,本题考查了转化的思想,计算能力,属于中等难度的题19.(12分)(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.考点:用空间向量求平面间的夹角;与二面角有关的立体几何综合题;点、线、面间的距离计算.专题:综合题;转化思想.分析:(I)由题意,由于可证得CD⊥平面A1ABB1.故点C到平面的距离即为CD的长度,易求;(II)解法一:由题意结合图象,可通过作辅助线先作出二面角的平面角∠A1DD1,然后在直角三角形A1D1D中求出二面角的余弦;解法二:根据几何体的形状,可过D作DD1∥AA1交A1B1于D1,在直三棱柱中,可得DB,DC,DD1两两垂直,则以D为原点,射线DB,DC,DD1分别为X轴、Y 轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.给出各点的坐标,分别求出两平面的法向量,求出两向量的夹角即为两平面的夹角.解答:解:(I)由AC=BC,D为AB的中点,得CD⊥AB.又CD⊥AA1.故CD⊥平面A1ABB1.所以点C到平面A1ABB1的距离为CD==(II)解法一:如图1,取D1为A1B1的中点,连接DD1,则DD1∥AA1∥CC1.又由(I)知CD⊥平面A1ABB1.故CD⊥A1D,CD⊥D1D,所以∠A1DD1为所求的二面角A1﹣CD﹣C1的平面角.因A1D为A1C在面A1ABB1中的射影,又已知AB1⊥A1C由三垂线定理的逆定理得AB1⊥A1D.从而∠A1AB1、∠A1DA都与∠B1AB 互余.因此∠A1AB1=∠A1DA,所以Rt△A1AD∽Rt△B1A1A.因此AA1:AD=A1B1:AA1,即AA12=AD•A1B1=8,得AA1=2,从而A1D==2.所以Rt△A1D1D中,cos∠A1DD1===解法二:如图2,过D作DD1∥AA1交A1B1于D1,在直三棱柱中,有DB,DC,DD1两两垂直,以D为原点,射线DB,DC,DD1分别为X轴、Y轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.设直三棱柱的高为h,则A(﹣2,0,0),A1(﹣2,0,h),B1(2,0,h),C(0,,0),C1(0,,h),从而=(4,0,h),=(2,,﹣h)由AB1⊥A1C,可得8﹣h2=0,h=2,故=(﹣2,0,2),=(0,0,2),=(0,,0)设平面A1CD的法向量为=(x1,y1,z1),则有⊥,⊥∴•=0且•=0,即,取z1=1,则=(,0,1)设平面C1CD的法向量为=(x2,y2,z2),则⊥,⊥,即且=0,取x 2=1,得=(1,0,0),所以cos<,>===,所以二面角A1﹣CD﹣C1的平面角的余弦值点评:本题考查二面角的求法及点到面距离的求法,点到面的求法一般是作垂线,垂线段的长度即所求,二面角的余弦值的求法有两种,一种是几何法,找到二面角平面角所在的三角形,解三角形求出角的余弦值,第二种方法是现在比较常用的方法向量法,其特征是思维量小,计算量大,作题时对这两种方法要根据题设灵活选用20.(12分)(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(Ⅰ)设椭圆的方程为,F2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2为直角,从而,利用c2=a2﹣b2,可求,又S=|B1B2||OA|==4,故可求椭圆标准方程;(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2,代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韦达定理及PB2⊥QB2,利用可求m的值,进而可求直线l的方程.解答:解:(Ⅰ)设椭圆的方程为,F2(c,0)∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2为直角,从而|OA|=|OB2|,即∵c2=a2﹣b2,∴a2=5b2,c2=4b2,∴在△AB1B2中,OA⊥B1B2,∴S=|B1B2||OA|=∵S=4,∴b2=4,∴a2=5b2=20∴椭圆标准方程为;(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16=0①设P(x1,y1),Q(x2,y2),∴,∵,∴=∵PB2⊥QB2,∴∴,∴m=±2所以满足条件的直线有两条,其方程分别为x+2y+2=0和x﹣2y+2=0.点评:本题考查椭圆的标准方程,考查椭圆的几何性质,考查直线与椭圆的位置关系,考查向量知识的运用,考查三角形的面积计算,综合性强.21.(12分)(2012•重庆)设数列{a n}的前n项和S n满足S n+1=a2S n+a1,其中a2≠0.(Ⅰ)求证:{a n}是首项为1的等比数列;(Ⅱ)若a2>﹣1,求证,并给出等号成立的充要条件.考点:数列与不等式的综合;等比数列的前n项和;等比关系的确定;数列与函数的综合.专题:综合题;压轴题.分析:(Ⅰ)根据S n+1=a2S n+a1,再写一式,两式相减,即可证得{a n}是首项为1的等比数列;(Ⅱ)当n=1或2时,等号成立,设n≥3,a2>﹣1,且a2≠0,由(I)知a1=1,,所以要证的不等式可化为(n≥3),即证(n≥2),a2=1时,等号成立;再证明a2>﹣1且a2≠1时,()()>0,即可证得结论.解答:证明:(Ⅰ)∵S n+1=a2S n+a1,①∴S n+2=a2S n+1+a1,②②﹣①可得:a n+2=a2a n+1∵a2≠0,∴∵S n+1=a2S n+a1,∴S2=a2S1+a1,∴a2=a2a1∵a2≠0,∴a1=1∴{a n}是首项为1的等比数列;(Ⅱ)当n=1或2时,等号成立设n≥3,a2>﹣1,且a2≠0,由(Ⅰ)知a1=1,,所以要证的不等式可化为(n≥3)即证(n≥2)a2=1时,等号成立当﹣1<a2<1时,与同为负;当a2>1时,与同为正;∴a2>﹣1且a2≠1时,()()>0,即上面不等式n分别取1,2,…,n累加可得∴综上,,等号成立的充要条件是n=1或2或a2=1.点评:本题考查等比数列的证明,考查不等式的证明,考查叠加法的运用,需要一定的基本功,属于中档题.。
2012年高考全国卷数学试题及答案详解

2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A0 B 0或3 C 1 D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B)(C)(D)(7)已知α为第二象限角,sinα+sinβ=3,则cos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。
2012年上海市高考数学试卷(理科)答案与解析

2012年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(4分)(2012•上海)计算:=1﹣2i(i为虚数单位).考点:复数代数形式的乘除运算.专题:计算题.分析:由题意,可对复数代数式分子与分母都乘以1﹣i,再由进行计算即可得到答案解答:解:故答案为1﹣2i点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握2.(4分)(2012•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=(﹣,3).考点:交集及其运算.专题:计算题.分析:由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案解答:解:由题意A={x|2x+1>0}={x|x>﹣},B={x||x﹣1|<2}={x|﹣1<x<3},所以A∩B=(﹣,3)故答案为(﹣,3)点评:本题考查交集的运算,解题的关键是熟练掌握交集的定义及运算规则,正确化简两个集合对解题也很重要,要准确化简3.(4分)(2012•上海)函数f(x)=的值域是.考点:二阶矩阵;三角函数中的恒等变换应用.专题:计算题.分析:先根据二阶行列式的运算法则求出函数的解析式,然后化简整理,根据正弦函数的有界性可求出该函数的值域.解答:解:f(x)==﹣2﹣sinxcosx=﹣2﹣sin2x∵﹣1≤sin2x≤1∴﹣≤﹣sin2x≤则﹣≤﹣2﹣sin2x≤﹣∴函数f(x)=的值域是故答案为:点评:本题主要考查了二阶行列式的求解,以及三角函数的化简和值域的求解,同时考查了计算能力,属于基础题.4.(4分)(2012•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为arctan2(结果用反三角函数值表示).考点:平面向量坐标表示的应用.专题:计算题.分析:根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据k=tanα可求出倾斜角.解答:解:∵=(﹣2,1)是直线l的一个法向量∴可知直线l的一个方向向量为(1,2),直线l的倾斜角为α得,tanα=2∴α=arctan2故答案为:arctan2点评:本题主要考查了方向向量与斜率的关系,以及反三角的应用,同时运算求解的能力,属于基础题.5.(4分)(2012•上海)在的二项展开式中,常数项等于﹣160.考点:二项式定理的应用.专题:计算题.分析:研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应的r,从而可求出常数项.解答:解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣160点评:本题主要考查了利用二项展开式的通项求解指定项,同时考查了计算能力,属于基础题.6.(4分)(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,V n,…,则(V1+V2+…+V n)═.考点:数列的极限;棱柱、棱锥、棱台的体积.专题:计算题.分析:由题意可得,正方体的体积=是以1为首项,以为公比的等比数,由等不数列的求和公式可求解答:解:由题意可得,正方体的棱长满足的通项记为a n则∴=是以1为首项,以为公比的等比数列则(V1+V2+…+v n)==故答案为:点评:本题主要考查了等比数列的求和公式及数列极限的求解,属于基础试题7.(4分)(2012•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(﹣∞,1].考点:指数函数单调性的应用.专题:综合题.分析:由题意,复合函数f(x)在区间[1,+∞)上是增函数可得出内层函数t=|x﹣a|在区间[1,+∞)上是增函数,又绝对值函数t=|x﹣a|在区间[a,+∞)上是增函数,可得出[1,+∞)⊆[a,+∞),比较区间端点即可得出a的取值范围解答:解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数又t=|x﹣a|在区间[a,+∞)上是增函数所以[1,+∞)⊆[a,+∞),故有a≤1故答案为(﹣∞,1]点评:本题考查指数函数单调性的运用及复合函数单调性的判断,集合包含关系的判断,解题的关键是根据指数函数的单调性将问题转化为集合之间的包含关系,本题考查了转化的思想及推理判断的能力,属于指数函数中综合性较强的题型.8.(4分)(2012•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可.解答:解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为:=.故答案为:.点评:本题考查旋转体的条件的求法,侧面展开图的应用,考查空间想象能力,计算能力.9.(4分)(2012•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)=﹣1.考点:函数奇偶性的性质;函数的值.专题:计算题.分析:由题意,可先由函数是奇函数求出f(﹣1)=﹣3,再将其代入g(﹣1)求值即可得到答案解答:解:由题意,y=f(x)+x2是奇函数,且f(1)=1,所以f(1)+1+f(﹣1)+(﹣1)2=0解得f(﹣1)=﹣3所以g(﹣1)=f(﹣1)+2=﹣3+2=﹣1故答案为:﹣1.点评:本题考查函数奇偶性的性质,利用函数奇偶性求值,解题的关键是根据函数的奇偶性建立所要求函数值的方程,基本题型.10.(4分)(2012•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=.考点:简单曲线的极坐标方程.专题:计算题.分析:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ,在三角形POM中,利用正弦定理建立等式关系,从而求出所求.解答:解:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ在三角形POM中,利用正弦定理可知:解得ρ=f(θ)=故答案为:点评:本题主要考查了简单曲线的极坐标方程,以及正弦定理的应用,同时考查了分析问题的能力和转化的思想,属于基础题.11.(4分)(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可.解答:解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择故有且仅有两人选择的项目完全相同的概率是=故答案为:点评:本题主要考查了古典概型及其概率计算公式,解题的关键求出有且仅有两人选择的项目完全相同的个数,属于基础题.12.(4分)(2012•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是[2,5].考点:平面向量的综合题.专题:计算题.分析:画出图形,建立直角坐标系,利用比例关系,求出M,N的坐标,然后通过二次函数求出数量积的范围.解答:解:建立如图所示的直角坐标系,则B(2,0),A(0,0),D(),设==λ,λ∈[0,1],M(2+),N(),所以=(2+)•()=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故答案为:[2,5].点评:本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力.13.(4分)(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.考点:函数的图象.专题:计算题;综合题;压轴题.分析:根据题意求得f(x)=,从而y=xf(x)=,利用定积分可求得函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积.解答:解:由题意可得,f(x)=,∴y=xf(x)=,设函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S,则S=10x2dx+(﹣10x2+10x)dx=10×+(﹣10)×+10×=﹣+5﹣==.故答案为:.点评:本题考查函数的图象,着重考查分段函数的解析式的求法与定积分的应用,考查分析运算能力,属于难题.14.(4分)(2012•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.考点:棱柱、棱锥、棱台的体积.专题:计算题;压轴题.分析:作BE⊥AD于E,连接CE,说明B与C都是在以AD为焦距的椭球上,且BE、CE 都垂直于焦距AD,BE=CE.取BC中点F,推出四面体ABCD的体积的最大值,当△ABD是等腰直角三角形时几何体的体积最大,求解即可.解答:解:作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦点的椭圆上,且BE、CE都垂直于焦距AD,AB+BD=AC+CD=2a,显然△ABD≌△ACD,所以BE=CE.取BC中点F,∴EF⊥BC,EF⊥AD,要求四面体ABCD的体积的最大值,因为AD 是定值,只需三角形EBC的面积最大,因为BC是定值,所以只需EF最大即可,当△ABD是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a,∴AB=a,所以EB=,EF=,所以几何体的体积为:×=.故答案为:.点评:本题考查棱柱、棱锥、棱台的体积,考查空间想象能力,逻辑推理能力以及计算能力.二、选择题(20分):15.(5分)(2012•上海)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣1考点:复数相等的充要条件.专题:计算题;转化思想.分析:由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b的方程组,解方程得出a,b的值即可选出正确选项解答:解:由题意1+i是关于x的实系数方程x2+bx+c=0∴1+2i﹣2+b+bi+c=0∴,解得b=﹣2,c=3故选B点评:本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题16.(5分)(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定考点:余弦定理的应用;三角形的形状判断.专题:解三角形.分析:由sin2A+sin2B<sin2C,结合正弦定理可得,a2+b2<c2,由余弦定理可得CosC=可判断C的取值范围解答:解:∵sin2A+sin2B<sin2C,由正弦定理可得,a2+b2<c2由余弦定理可得cosC=∴∴△ABC是钝角三角形故选C点评:本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础试题17.(5分)(2012•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:计算题;压轴题.分析:根据随机变量ξ1、ξ2的取值情况,计算它们的平均数,根据随机变量ξ1、ξ2的取值的概率都为0.2,即可求得结论.解答:解:由随机变量ξ1、ξ2的取值情况,它们的平均数分别为:=(x1+x2+x3+x4+x5),=(++++)=且随机变量ξ1、ξ2的取值的概率都为0.2,所以有Dξ1>Dξ2,故选择A.点评:本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题.18.(5分)(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100考点:数列的求和;三角函数的周期性及其求法.专题:计算题;压轴题.分析:由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断解答:解:由于f(n)=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f(n)=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,故选D点评:本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.三、解答题(共5小题,满分74分)19.(12分)(2012•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.考点:直线与平面垂直的性质;异面直线及其所成的角.专题:证明题;综合题;空间位置关系与距离;空间角.分析:(1)可以利用线面垂直的判定与性质,证明出三角形PCD是以D为直角顶点的直角三角形,然后在Rt△PAD中,利用勾股定理得到PD=2,最后得到三角形PCD的面积S;(2)[解法一]建立如图空间直角坐标系,可得B、C、E各点的坐标,从而=(1,,1),=(0,2,0),利用空间向量数量积的公式,得到与夹角θ满足:cosθ=,由此可得异面直线BC与AE所成的角的大小为;[解法二]取PB的中点F,连接AF、EF,△PBC中,利用中位线定理,得到EF∥BC,从而∠AEF或其补角就是异面直线BC与AE所成的角,然后可以通过计算证明出:△AEF是以F为直角顶点的等腰直角三角形,所以∠AEF=,可得异面直线BC与AE所成的角的大小为.解答:解:(1)∵PA⊥底面ABCD,CD⊂底面ABCD,∴CD⊥PA.∵矩形ABCD中,CD⊥AD,PA、AD是平面PDC内的相交直线.∴CD⊥平面PDA,∵PD⊂平面PDA,∴CD⊥PD,三角形PCD是以D为直角顶点的直角三角形.∵Rt△PAD中,AD=2,PA=2,∴PD==2.∴三角形PCD的面积S=×PD×DC=2.(2)[解法一]如图所示,建立空间直角坐标系,可得B(2,0,0),C(2,2,0),E(1,,1).∴=(1,,1),=(0,2,0),设与夹角为θ,则cosθ===,∴θ=,由此可得异面直线BC与AE所成的角的大小为.[解法二]取PB的中点F,连接AF、EF、AC,∵△PBC中,E、F分别是PC、PB的中点,∴EF∥BC,∠AEF或其补角就是异面直线BC与AE所成的角.∵Rt△PAC中,PC==4.∴AE=PC=2,∵在△AEF中,EF=BC=,AF=PB=∴AF2+EF2=AE2,△AEF是以F为直角顶点的等腰直角三角形,∴∠AEF=,可得异面直线BC与AE所成的角的大小为.点评:本题根据一个特殊的四棱锥,求异面直线所成的角和证明线面垂直,着重考查了异面直线及其所成的角和直线与平面垂直的性质等知识,属于中档题.20.(14分)(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.考点:函数的周期性;反函数;对数函数图象与性质的综合应用.专题:计算题.分析:(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解.解答:解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则由解得:﹣1<x<1.由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,∵x+1>0,∴x+1<2﹣2x<10x+10,∴.由,得:.(2)当x∈[1,2]时,2﹣x∈[0,1],∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),由单调性可知y∈[0,lg2],又∵x=3﹣10y,∴所求反函数是y=3﹣10x,x∈[0,lg2].点评:本题考查对数的运算以及反函数与原函数的定义域和值域相反等知识,属于易错题.21.(14分)(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?考点:圆锥曲线的综合.专题:应用题.分析:(1)t=0.5时,确定P的横坐标,代入抛物线方程中,可得P的纵坐标,利用|AP|=,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2),从而可得vt=,整理得,利用基本不等式,即可得到结论.解答:解:(1)t=0.5时,P的横坐标x P=7t=,代入抛物线方程中,得P的纵坐标y P=3.…2分由|AP|=,得救援船速度的大小为海里/时.…4分由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向为北偏东arctan 弧度.…6分(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2).由vt=,整理得.…10分因为,当且仅当t=1时等号成立,所以v2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.…14分点评:本题主要考查函数模型的选择与运用.选择恰当的函数模型是解决此类问题的关键,属于中档题.22.(16分)(2012•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.考点:直线与圆锥曲线的综合问题;圆锥曲线的综合.专题:计算题;压轴题;转化思想.分析:(1)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积.(2)设直线PQ的方程为y=kx+b,通过直线PQ与已知圆相切,得到b2=2,通过求解=0.证明PO⊥OQ.(3)当直线ON垂直x轴时,直接求出O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),推出直线OM的方程为y=,利用,求出,,设O到直线MN的距离为d,通过(|OM|2+|ON|2)d2=|OM|2|ON|2,求出d=.推出O到直线MN的距离是定值.解答:解:(1)双曲线C1:左顶点A(﹣),渐近线方程为:y=±x.过A与渐近线y=x平行的直线方程为y=(x+),即y=,所以,解得.所以所求三角形的面积为S=.(2)设直线PQ的方程为y=kx+b,因直线PQ与已知圆相切,故,即b2=2,由,得x2﹣2bx﹣b2﹣1=0,设P(x1,y1),Q(x2,y2),则,又y1y2=(x1+b)(x2+b).所以=x1x2+y1y2=2x1x2+b(x1+x2)+b2=2(﹣1﹣b2)+2b2+b2=b2﹣2=0.故PO⊥OQ.(3)当直线ON垂直x轴时,|ON|=1,|OM|=,则O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),则直线OM的方程为y=,由得,所以.同理,设O到直线MN的距离为d,因为(|OM|2+|ON|2)d2=|OM|2|ON|2,所以==3,即d=.综上,O到直线MN的距离是定值.点评:本题考查直线与圆锥曲线的综合问题,圆锥曲线的综合,向量的数量积的应用,设而不求的解题方法,点到直线的距离的应用,考查分析问题解决问题的能力,考查计算能力.23.(18分)(2012•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.考点:数列与向量的综合;元素与集合关系的判断;平面向量的综合题.专题:计算题;证明题;综合题;压轴题.分析:(1)在Y中取=(x,2),根据数量积的坐标公式,可得Y中与垂直的元素必有形式(﹣1,b),所以x=2b,结合x>2,可得x的值.(2)取=(x1,x1),=(s,t)根据,化简可得s+t=0,所以s、t异号.而﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,从而证出1∈X,最后通过反证法,可以证明出当x n>1时,x1=1.(3)[解法一]先猜想结论:x i=q i﹣1,i=1,2,3,…,n.记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n,通过反证法证明出引理:若A k+1具有性质P,则A k也具有性质P.最后用数学归纳法,可证明出x i=q i﹣1,i=1,2,3,…,n;[解法二]设=(s1,t1),=(s2,t2),则等价于,得到一正一负的特征,再记B={|s∈X,t∈X且|s|>|t|},则可得结论:数集X具有性质P,当且仅当数集B关于原点对称.又注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数,所以B∩(0.+∞)也有n﹣1个数.最后结合不等式的性质,结合三角形数阵加以说明,可得==…=,最终得到数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.解答:解:(1)选取=(x,2),则Y中与垂直的元素必有形式(﹣1,b),所以x=2b,又∵x>2,∴只有b=2,从而x=4.(2)取=(x1,x1)∈Y,设=(s,t)∈Y,满足,可得(s+t)x1=0,s+t=0,所以s、t异号.因为﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,所以1∈X,假设x k=1,其中1<k<n,则0<x1<1<x n.再取=(x1,x n)∈Y,设=(s,t)∈Y,满足,可得sx1+tx n=0,所以s、t异号,其中一个为﹣1①若s=﹣1,则x1=tx n>t≥x1,矛盾;②若t=﹣1,则x n=sx1<s≤x n,矛盾;说明假设不成立,由此可得当x n>1时,x1=1.(3)[解法一]猜想:x i=q i﹣1,i=1,2,3,…,n记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n先证明若A k+1具有性质P,则A k也具有性质P.任取=(s,t),s、t∈A k,当s、t中出现﹣1时,显然有满足当s、t中都不是﹣1时,满足s≥1且t≥1.因为A k+1具有性质P,所以有=(s1,t1),s1、t1∈A k+1,使得,从而s1、t1其中有一个为﹣1不妨设s1=﹣1,假设t1∈A k+1,且t1∉A k,则t1=x k+1.由(s,t)(﹣1,x k+1)=0,得s=tx k+1≥x k+1,与s∈A k矛盾.所以t1∈A k,从而A k也具有性质P.再用数学归纳法,证明x i=q i﹣1,i=1,2,3,…,n当n=2时,结论显然成立;假设当n=k时,A k═{﹣1,x1,x2,…,x k}具有性质P,则x i=q i﹣1,i=1,2,…,k 当n=k+1时,若A k+1═{﹣1,x1,x2,…,x k+1}具有性质P,则A k═{﹣1,x1,x2,…,x k}具有性质P,所以A k+1═{﹣1,q,q2,…,q k﹣1,x k+1}.取=(x k+1,q),并设=(s,t)∈Y,满足,由此可得s=﹣1或t=﹣1若t=﹣1,则x k+1=,不可能所以s=﹣1,x k+1=qt=q j≤q k且x k+1>q k﹣1,因此x k+1=q k综上所述,x i=q i﹣1,i=1,2,3,…,n[解法二]设=(s1,t1),=(s2,t2),则等价于记B={|s∈X,t∈X且|s|>|t|},则数集X具有性质P,当且仅当数集B关于原点对称注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数.所以B∩(0,+∞)也有n﹣1个数.由于<<<…<,已经有n﹣1个数对以下三角形数阵:<<<…<,<<<…<…注意到>>>…>,所以==…=从而数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.点评:本题以向量的数量积的坐标运算为载体,着重考查了数列的通项公式的探索、集合元素的性质和数列与向量的综合等知识点,属于难题.本题是一道综合题,请同学们注意解题过程中的转化化归思想、分类讨论的方法和反证法的运用.。
2012年山东省高考数学试卷(理科)答案与解析

2012年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)(2012•山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则3.(5分)(2012•山东)设a>0且a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)34.(5分)(2012•山东)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,5.(5分)(2012•山东)设变量x,y满足约束条件,则目标函数z=3x﹣y的B(6.(5分)(2012•山东)执行程序框图,如果输入a=4,那么输出的n的值为()7.(5分)(2012•山东)若,,则sinθ=()B解:因为=﹣,,=8.(5分)(2012•山东)定义在R上的函数f(x)满足f(x+6)=f(x),当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)=9.(5分)(2012•山东)函数y=的图象大致为().B.D.,﹣y=10.(5分)(2012•山东)已知椭圆C:+=1(a>b>0)的离心率为,与双曲线x2﹣y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程+=1 B+=1 +=1 +=1+=1.利用:=1+=111.(5分)(2012•山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种种取法,由此可得结论.种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有故所求的取法共有﹣﹣12.(5分)(2012•山东)设函数f(x)=,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正是奇函数,所以二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2012•山东)若不等式|kx﹣4|≤2的解集为{x|1≤x≤3},则实数k=2.,14.(4分)(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1﹣EDF的体积为.为顶点,则=,=××S故答案为:15.(4分)(2012•山东)设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=.==.故答案为:.16.(4分)(2012•山东)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为(2﹣sin2,1﹣cos2).=,即为向量的坐标.=﹣﹣的坐标为(三、解答题:本大题共6小题,共74分.17.(12分)(2012•山东)已知向量=(sinx,1),=(Acosx,cos2x)(A>0),函数f(x)=•的最大值为6.(Ⅰ)求A;(Ⅱ)将函数y=f(x)的图象像左平移个单位,再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0,]上的值域.)的图象像左平移个单位,再将所得图象各点的横坐标倍,纵坐标不变,得到函数,•(2x+))的图象向左平移个单位后得到,)]2x+倍,4x+)的图象.因此4x+,==时函数取得最小值﹣]18.(12分)(2012•山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F﹣BD﹣C的余弦值.,﹣,=,﹣,,的一个法向量为,则••x=z=,=,>==CG==CGFGC=的余弦值为19.(12分)(2012•山东)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.+,A=BB)(()))))×))﹣×)﹣﹣×)﹣))×﹣)((﹣××﹣﹣﹣×BC)B=××﹣)×=)××=×××+1×+2×+3×+4×+5×=20.(12分)(2012•山东)在等差数列{a n}中,a3+a4+a5=84,a9=73.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m项和S m.,由可求公差可得==9≤21.(13分)(2012•山东)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;(Ⅲ)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,|AB|2+|DE|2的最小值.y=)时,)上,﹣)=得,=时,由(Ⅱ)的)r=的方程为,整理得(,==.⇒2t+2t+﹣t)t t=,k=的最小值为22.(13分)(2012•山东)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g (x)<1+e﹣2.,(=(,((<>(精品文档考试教学资料施工组织设计方案。
2012高考数学分类汇编-数列及答案解析

则其中是“保等比数列函数”的 f ( x) 的序号为 A.① ② B.③ ④ C.① ③ D.② ④
2 2 2 2 解析:等比数列性质, an an 2 an 1 ,① f an f an 2 an an 2 an 1
2
f 2 an 1 ;
2
a1 4d 5 a1 1 1 1 1 1 an n 5 4 an an1 n(n 1 ) n n 1 d 15 d 1 5a1 2 1 1 1 1 1 1 100 S100 (1 ) ( ) ( ) 1 2 2 3 100 101 101 101 26 设函数 f ( x) 2 x cos x , 则 [ f(a] {an } 是公差为 的等差数列,f (a1 ) f (a2 ) f (a5 ) 5 , )3 8
xn [ xn 1 [
a ] xn
2 ①当 a 5 时,数列 {xn } 的前 3 项依次为 5,3,2;
②对数列 {xn } 都存在正整数 k ,当 n k 时总有 xn xk ; ③当 n 1 时, xn a 1 ; ④对某个正整数 k ,若 xk 1 xk ,则 xn [ a ] 。
对于②③④可以采用特殊值列举法: 当 a=1 时,x1=1, x2=1, x3=1, ……xn=1, …… 此时②③④均对. 当 a=2 时,x1=2, x2=1, x3=1, ……xn=1, …… 此时②③④均对 当 a=3 时,x1=3, x2=2, x3=1, x4=2……xn=1, ……此时③④均对 综上,真命题有 ①③④ .
1 3 1 a1 2
当 n 2 时, ( ) ( ) 2 3 2 2 an 2
2012年全国高考理科数学试题及答案-全国卷(含答案)

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101 (C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α= (A) (B) (C(D(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= (A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年全国高考理科数学试题及答案

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)注意事项:1.2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给同的四个选项中,只有一项是符合题目要求的。
1、复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -2、已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或33、椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += 4、已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )15、已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100 6、ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b - 7、已知α为第二象限角,sin cos 3αα+=,则cos2α= (A)- (B)- (C(D8、已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )459、已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<10、已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或111、将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种12、正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年高考真题理科数学解析汇编:数列

.(2012年高考(四川理))已知数列 的前 项和为 ,且 对一切正整数 都成立.
(Ⅰ)求 , 的值;
(Ⅱ)设 ,数列 的前 项和为 ,当 为何值时, 最大?并求出 的最大值.
.(2012年高考(上海理))对于数集 ,其中 , ,定义向量集
.若对于任意 ,存在 ,使得 ,则称X
函数 .定义数列 如下: 是过两点 的直线 与 轴交点的横坐标.
(1)证明: ;
(2)求数列 的通项公式.
.(2012年高考(北京理))设A是由 个实数组成的 行 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记 为所有这样的数表构成的集合.
对于 ,记 为A的第 行各数之和 , 为A的第 列各数之和 ;
.(2012年高考(上海春))已知等差数列 的首项及公差均为正数,令 当 是数列 的最大项时, ____.
.(2012年高考(辽宁理))已知等比数列 为递增数列,且 ,则数列的通项公式 ______________.
.(2012年高考(江西理))设数列 都是等差数列,若 ,则 __________。
3.考点分析:本题考察等比数列性质及函数计算.
解析:等比数列性质, ,① ;② ;③ ;④ .选C
3.【答案】B
【解析】 ,而 ,解得 .
【考点定位】该题主要考查等差数列的通项公式,考查计算求解能力.
3.答案A
【命题意图】本试题主要考查等差数列的通项公式和前 项和的公式的运用,以及裂项求和的综合运用,通过已知中两项,得到公差与首项,得到数列的通项公式,并进一步裂项求和.
3.【解析】选
二、填空题
3.【解析】 的前 项和为
可证明:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 C.
1 8
13 2 16
7.(2012 湖北理 7)定义在 (,0) (0, ) 上的函数 f ( x) ,如果对于任意给定的等比数列
{an } , { f (an )} 仍是等比数列,则称 f ( x) 为“保等比数列函数”. 现有定义在 (, 0) (0, )
2 数列 {xn } 满足: x1 0, xn1 xn xn c(n N * )
(I)证明:数列 {xn } 是单调递减数列的充分必要条件是 c 0 ; (II)求 c 的取值范围,使数列 {xn } 是单调递增数列. 27(2012 天津理 18) 已知 {an } 是等差数列, 其前 n 项和为 Sn , a1 b1 2, a4 b4 27 , {bn } 是等比数列,
S4 3a4 2 ,则 q ______________.
12. (2012 四川理 16) 记 [ x ] 为不超过实数 x 的最大整数, 例如, [2] 2 , [1.5] 1 , [0.3] 1.
a xn xn (n N ) ,现有下列命题: 设 a 为正整数,数列 {xn } 满足 x1 a , xn 1 2
﹡
列.
3
(1) 求 a1 的值; (2) 求数列 {an } 的通项公式. (3) 证明:对一切正整数 n,有
1 1 1 3 . a1 a2 an 2
24.(2012 陕西理 17)设 an 的公比不为 1 的等比数列,其前 n 项和为 Sn ,且 a5 , a3 , a4 成 等差数列. (1)求数列 an 的公比; (2)证明:对任意 k N , Sk 2 ,
n an n c o s 1 前 n 项和为 Sn ,则 2
S2012 =___________.
三、解答题
21(2012 江苏 20)已知各项均为正数的两个数列 {an } 和 {bn } 满足: a n 1
a n bn a n bn
2 2
,
n N *,
(1)设 bn 1
a4 4,a7 2 或 a4 2,a7 4 . 若 a4 4,a7 2 , 解 得 a1 8,a10 1 , a1 a10 7 ;若 a4 2,a7 4 ,解得 a10 8,a1 1 ,仍有 a1 a10 7 ,综上
选 D. 4.(2012 上海理 18) (答案) D 5.(2012 辽宁理 6) (答案) B 【解析】在等差数列中, a1 a11 a4 a8 16, s11 6.(2012 四川理 12) (答案) D 【解析】 f (a1 ) f (a2 ) f (a5 ) (2a1 cos a1 ) (2a2 cos a2 ) (2a5 cos a5 ) 5 ,即
2 14.(2012 辽宁理 14)已知等比数列 {a n } 为递增数列,且 a5 a10 , 2(an an2 ) 5an1 ,则
2
数列{ an }的通项公式 an =______________.
15.(2012 江西理 12)设数列 {a n } , {b n } 都是等差数列,若 a1 b1 7 , a3 b3 21,则
)
4.(2012 上海理 18)设 a n 数的个数是( A.25 )
1 n sin , S n a1 a2 an ,在 S1 , S 2 ,, S100 中,正 n 25
C.75 D.100 )
B.50
5. (2012 辽宁理 6) 在等差数列 {an } 中, 已知 a8 a4 16 , 则该数列前 11 项和 S11 ( A.58 B.88 C.143 D.176
An , Bn , C n 组成公比为 q 的等比数列.
29.(2012 山东理 20) 在等差数列 an 中, a3 a4 a5 84, a9 73 . (Ⅰ)求数列 an 的通项公式; (Ⅱ)对任意 m N * ,将数列 an 中落入区间 (9m , 92 m ) 内的项的个数记为 bm ,求数列
上的如下函数: ① f ( x) x 2 ; ② f ( x) 2 x ; ③ f ( x) | x | ; ④ f ( x) ln | x | .
则其中是“保等比数列函数”的 f ( x) 的序号为 A.① ② B.③ ④ C.① ③ D.② ④
1
8.(2012 福建理 2)等差数列 an 中, a1 a5 10 , a4 7 ,则数列 an 的公差为 A.1 B.2 C.3 D.4
6. ( 2012 四 川 理 ) 设 函 数 f ( x) 2 x cos x , {an } 是 公 差 为
2 f (a1 ) f (a2 ) f (a5 ) 5 ,则 [ f (a3 )] a1a5 (
的等差数列, 8
) D.
A. 0
B.
1 2 16
b b 1 n , n N * ,求证:数列 n an an
2
是等差数列;
(2)设 bn1
2
bn , n N * ,且 {an } 是等比数列,求 a1 和 b1 的值. an
22.(2012 湖北理 18) 已知等差数列 an 前三项的和为 3 ,前三项的积为 8 . (Ⅰ)求等差数列 {an } 的通项公式; (Ⅱ)若 a 2 , a3 , a1 成等比数列,求数列 {| an |} 的前 n 项和. 23.(2012 广东理 19) 设数列 {an } 的前 n 项和为 Sn ,满足 2Sn an 1 2n 1 1,n∈N ,且 a1 , a2 5 a3 成等差数
n
1 n 5n n
2
.
19.(2012 上海理 6)有一列正方体,棱长组成以 1 为首项、 别记为 V1,V2, ,Vn, ,则 lim(V1 V2 Vn )
n
1 为公比的等比数列,体积分 2
.
20. ( 2012 福建理 14 )数列 {an } 的通项公式,
Bn a2 an1 , Cn a3 a4 an2 ,……
4
(1) 若 a1 1 a2 5 ,且对任意 n∈N﹡,三个数 An , Bn , C n 组成等差数列,求 数列 {an } 的通项公式. (2) 证明:数列 {an } 是公比为 q 的等比数列的充分必要条件是:对任意 n N ,三个数
(Ⅰ)证明: 2 xn xn1 3 ; (Ⅱ)求数列 xn 的通项公式.
5
一、选择题 1.(2012 重庆理 1) (答案) B 【 解 析 】 因 为 a2 1 , a 4 5 , 所 以 和 所以数列的前 5 项 a1 a5 a2 a4 6 ,
S5
A.若 d 0 ,则数列 Sn 有最大项 B.若数列 Sn 有最大项,则 d 0 C.若数列 Sn 是递增数列,则对任意 n N ,均有 Sn 0
*
D. 若对任意 n N ,均有 Sn 0 ,则数列 Sn 是递增数列
*
3. (2012 新课标理 5) 已知 an 为等比数列,a4 a7 2 ,a5a6 8 , 则 a1 a ( 1 0 A. 7 B. 5 C. D.
Sk , Sk 1 成等差数列.
1 2 n kn , k N * ,且 Sn 的最大值 2
25.(2012 江西理 17)已知数列 an 的前 n 项和 S n 为8 . (1)确定常数 k ,求 an ; (2)求数列 {
9 2a n } 的前 n 项和 Tn . 2n
26.(2012 安徽理 21)
bm 的前 m 项和 Sm .
30.(2012 全国卷理 22)
2 函 数 f ( x) x , 定 义 数 列 xn 如 下 : x1 2 , xn 1 是 过 两 点 P 4,5 、 2 x 3
Qn xn , f ( xn ) 的直线 PQn 与 x 轴交点的横坐标.
①当 a 5 时,数列 {xn } 的前 3 项依次为 5,3,2; ②对数列 {xn } 都存在正整数 k ,当 n k 时总有 xn xk ; ③当 n 1 时, xn a 1 ; ④对某个正整数 k ,若 xk 1 xk ,则 xn [ a ] . 其中的真命题有____________.(写出所有真命题的编号) 13.(2012 新课标理 16)数列 {a n } 满足 an1 (1)n an 2n 1 ,则 {a n } 的前 60 项和为
S 4 b4 10 .
(Ⅰ)求数列 {an } 与 {bn } 的通项公式; ( Ⅱ ) 记 Tn an b1 an1b2 a1bn , n N , 证 明 Tn 12 2an 10bn
*
( n N ).
*
28. ( 2012 湖 南 理 19 ) 已 知 数 列 {an } 各 项 均 为 正 数 , 记 An a1 a2 an ,
a5 b5 __________.
16. (2012 北京理 10) 已知 {an } 等差数列 Sn 为其前 n 项和.若 a1
1 , 则 a2 =_______. S2 a3 , 2
2
17.(2012 广东理 11)已知递增的等差数列 {an } 满足 a1 1 , a3 a2 4 ,则 an =____. 18.(2012 重庆理 12) lim
2012 高考真题分类汇编:数列
一、选择题 1.(2012 重庆理 1)在等差数列 {an } 中, a2 1 , a 4 5 则 {an } 的前 5 项和 S5 =( A.7 B.15 C.20 D.25 )