2020届高三数学一轮复习 第十章《统计与概率》10-8精品练习
2020高考数学一轮复习 第10章 概率、统计和统计案例章末总结分层演练 文-精装版

教学资料范本2020高考数学一轮复习第10章概率、统计和统计案例章末总结分层演练文-精装版编辑:__________________时间:__________________【精选】20xx最新高考数学一轮复习第10章概率、统计和统计案例章末总结分层演练文章末总结知识点考纲展示随机事件的概率❶了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.❷了解两个互斥事件的概率加法公式.古典概型❶理解古典概型及其概率计算公式.❷会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.随机数与几何概型❶了解随机数的意义,能运用模拟方法估计概率.❷了解几何概型的意义.随机抽样❶理解随机抽样的必要性和重要性.❷会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样的方法.用样本估计总体❶了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.❷理解样本数据标准差的意义和作用,会计算数据标准差.❸能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.❹会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.❺会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.统计案例❶会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.❷了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.❸通过典型案例了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.❹通过典型案例了解独立性检验(只要求2×2列联表)的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.一、点在纲上,源在本里考点考题考源样本估计总体的数字特征(20xx·高考全国卷Ⅰ,T2,5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数 B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值 D.x1,x2,…,x n的中位数必修3 P79练习T1用样本估计总计(20xx·高考全国卷Ⅰ,T19,12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得x-=116∑i=116xi=9.97,s=116∑i=116(xi-x-)2=116⎝⎛⎭⎪⎫∑i=116x2i-16x-2≈0.212, ∑i=116x(xi-x-)(i-8.5)=-2.78,其中x i为抽取的第i个零件的尺寸,i=1,2,…,16.必修3 P79练习T2(1)求(x i ,i )(i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(x --3s ,x -+3s )之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x --3s ,x -+3s )之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(x i ,y i )(i =1,2,…,n )的相关系数r =.0.008≈0.09.变量间的相关关系 (20xx·高考全国卷Ⅲ,T 18,12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2008-20xx(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:i =17t i y i =40.17,必修3 P 90例题、P 95B 组T 1=0.55,7≈2.646.参考公式:相关系数r=,回归方程y^=a^+b^t中斜率和截距的最小二乘估计公式分别为:b^=,a^=y--b^t-.考点考题考源样本估计总体与独立性检验思想(20xx·高考全国卷Ⅱ,T19,12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:P(K2≥k)0.0500.0100.001选修12P15练习k 3.8416.63510.828K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).二、根置教材,考在变中一、选择题1.(必修3 P64A组T5改编)某校高一、高二、高三学生共有1 290人,其中高一480人,高二比高三多30人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为( )A.84 B.78C.81 D.96解析:选B.因为高一480人,高二比高三多30人,所以设高三有x人,则x+x+30+480=1 290,解得x=390,故高二420人,高三390人,若在抽取的样本中有高一学生96人,则该样本中的高三学生人数为×390=78(人).2.(选修12 P6例2改编)一只红铃虫的产卵y和温度x有关,根据收集的数据散点分布在曲线y=c1ec2x的周围,若用线性回归模型建立回归关系,则应作下列哪个变换( )A.t=ln x B.t=x2C.t=ln y D.t=ey解析:选C.由y=c1ec2x得c2x=ln=ln y-ln c1,令t=ln y,得t=c2x+ln c1,故选C.3.(必修3 P70内文改编)如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,8解析:选C .由于甲组数据的中位数为15=10+x , 所以x =5.又乙组数据的平均数为9+15+(10+y )+18+245=16.8,所以y =8.所以x ,y 的值分别为5,8.4.(必修3 P79练习T3改编)在一段时间内有2 000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如图所示.若该处高速公路规定正常行驶速度为90~120 km/h ,试估计这2 000辆车中,以正常速度通过该处的汽车有( )A .30辆B .300辆C .170辆D .1 700辆解析:选D .直方图中速度为90~120 km/h 的频率为0.03×10+0.035×10+0.02×10=0.85.用样本估计总体,可知2 000辆车中,以正常速度通过该处的汽车约有0.85×2 000=1 700(辆).故选D .二、填空题5.(必修3 P95B 组T1改编)某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得如下统计数据.单价x (元) 8 8.2 8.4 8.8 8.6 9 销量y (件)908483758068回归方程为=x +(其中已算出=-20);该产品的成本为4.5元/件,为使科研所获利最大,该产品的定价应为________元/件.解析:依题意:x -=(8+8.2+8.4+8.8+8.6+9)=8.5, y -=(90+84+83+75+80+68)=80.又=-20,所以=-=80+20×8.5=250, 所以回归直线方程为=-20x +250. 设科研所所得利润为W ,定价为x ,所以W =(x -4.5)(-20x +250)=-20x2+340x -1 125, 所以当x ==8.5时,Wmax =320.故当该产品定价为8.5元/件时,W 取得最大值. 答案:8.56.(选修12 P15练习改编)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好4020 60 不爱好 20 30 50 总计6050110则有________以上的把握认为“爱好该项运动与性别有关”. 附:K2=,P (K 2≥k 0)0.0500.0100.001k 03.8416.63510.828解析:K2=≈7.8>6.635.可知我们在犯错误的概率不超过0.01的前提下,即有99%以上的把握认为“爱好该项运动与性别有关”.答案:99%三、解答题7.(必修3 P94A组T3改编)经调查得出,某型号的轿车使用年限x和所支出的维修保养费y(万元)的统计资料如下表(注:第一年该型号的轿车的维修保养费由商家负责,消费者不承担).x(年)2345 6y(万元)2.23.85.56.57.(1)求y关于x的线性回归方程,并说明该型号轿车维修保养费的变化情况;(2)若每年维修保养费超过10万元,该型号轿车就作报废处理,问该型号轿车最多使用年限为多少年?附:解:(1)列表如下于是==1.23.a^=-=5-1.23×4=0.08.所以线性回归方程为=x+=1.23x+0.08.由回归直线方程=1.23x+0.08知,回归直线的斜率=1.23>0,所以x与y是正相关,即轿车使用年限越多,维修保养费越多.(2)若每年维修保养费超过10万元,该型号轿车就作报废处理,则该型号轿车最多使用年限x应满足1.23x+0.08≤10,解得x≤8.07,故该型号轿车最多使用8年就应作报废处理.8.(必修3 P39练习T3、选修12 P19B组T2改编)某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如下频率分布直方图:(1)求直方图中a的值;(2)设生产成本为y,质量指标值为x,生产成本与质量指标值之间满足函数关系y=,假设同组中的每个数据用该组区间的右端点值代替,试计算生产该食品的平均成本.解:(1)由已知,得(0.002+0.009+0.022+a+0.024+0.008+0.002)×10=1,解得a=0.033.(2)由题设条件及食品的质量指标值的频率分布直方图,得食品生产成本分组与频率分布表如下:组号1234567分组[66,70](70,74](74,78](78,82](82,92](92,100](100,108]频率0.020.090.220.330.240.080.02 根据题意,生产该食品的平均成本为70×0.02+74×0.09+78×0.22+82×0.33+92×0.24+100×0.08+108×0.02=84.52.11 / 11。
高考数学一轮复习练习第十章 统计、概率 第1讲 Word版含答案

.某中学进行了该学年度期末统一考试,该校为了了解高一年级名学生的考试成绩,从中随机抽取了名学生的成绩,就这个问题来说,给出以下命题:①名学生是总体;②每个学生是个体;③名学生的成绩是一个个体;④样本的容量是.以上命题错误的是(填序号).解析名学生的成绩是总体,其容量是,名学生的成绩组成样本,其容量是. 答案①②③.(·柳州、北海、钦州三市联考)某企业在甲、乙、丙、丁四个城市分别有个,个,个,个销售点.为了调查产品的质量,需从这个销售点中抽取一个容量为的样本,记这项调查为①;在丙城市有个特大型销售点,要从中抽取个调查,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次为.解析①四个城市销售点数量不同,个体存在差异比较明显,选用分层抽样;②丙城市特大销售点数量不多,使用简单随机抽样即可.答案分层抽样、简单随机抽样.某中学有高中生人,初中生人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取人,则为.解析样本抽取比例为)=,该校总人数为+=,则)=,故=.答案.在一个容量为的总体中抽取容量为的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为,,,则,,的大小关系是.解析由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等.答案==.(·武昌调研)已知某地区中小学生人数和近视情况如下表所示:行调查,则:()样本容量为;()抽取的高中生中,近视人数为.解析()由题意知,样本容量为( ++)×=.()抽取的高中生中,近视人数为××=.答案() ().(·湖南卷)在一次马拉松比赛中,名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为~号,再用系统抽样方法从中抽取人,则其中成绩在区间[,]上的运动员人数是.解析从人中用系统抽样方法抽取人,则可将这人分成组,每组人,从每一组中抽取人,而成绩在[,]上的有组,所以抽取人.答案.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为∶∶∶,则应从一年级本科生中抽取名学生.解析由题意知应抽取人数为×=.答案.(·青岛模拟)某班级有名学生,现要采取系统抽样的方法在这名学生中抽出名学生,将这名学生随机编号~号,并分组,第一组~号,第二组~号,…,第十组~号,若在第三组中抽得号码为的学生,则在第八组中抽得号码为的学生.。
高考数学一轮复习练习第十章 统计、概率 第3讲 Word版含答案

.在件产品中,有件一级品,件二级品,则下列事件:①在这件产品中任意选出件,全部是一级品;②在这件产品中任意选出件,全部是二级品;③在这件产品中任意选出件,不全是二级品.其中是必然事件;是不可能事件;是随机事件(填序号).答案③②①.把红、蓝、黑、白张纸牌随机分给甲、乙、丙、丁个人,每个人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是事件(填“对立”、“不可能”、“互斥但不对立”).解析由于每人分得一张牌,故“甲分得红牌”意味着“乙分得红牌”是不可能的,故是互斥事件,但不是对立事件.答案互斥但不对立.甲、乙两人下棋,两人和棋的概率是,乙获胜的概率是,则乙不输的概率是.解析乙不输包含两种情况:一是两人和棋,二是乙获胜,且两种情况互斥,故所求概率为+=.答案.设事件,,已知()=,()=,(∪)=,则,之间的关系一定为(填“互斥事件”或“对立事件”).解析因为()+()=+==(∪),所以,之间的关系一定为互斥事件.答案互斥事件.抛掷一枚均匀的正方体骰子(各面分别标有数字,,,,,),事件表示“朝上一面的数是奇数”,事件表示“朝上一面的数不超过”,则(+)=.解析将事件+分为:事件“朝上一面的数为,”与事件“朝上一面的数为,”.则,互斥,且()=,()=,∴(+)=(+)=()+()=.答案.(·南通调研)从装有个红球、个白球的袋中任取个球,则所取的个球中至少有个白球的概率是.解析记“从中取出个小球全是红球”为事件,则表示“所取的个球中至少有个白球”,从个红球,个白球的袋中任取个小球,共有种不同的试验结果.∴()=,从而()=-()=.答案.从装有个红球和个白球的口袋内任取个球,给出以下事件:①至少有一个红球与都是红球;②至少有一个红球与都是白球;③至少有一个红球与至少有一个白球;④恰有一个红球与恰有二个红球.那么互斥而不对立的事件是(填序号).解析对于①中的两个事件不互斥,对于②中两个事件互斥且对立,对于③中两个事件不互斥,对于④中的两个事件互斥而不对立.答案④.口袋内装有一些大小相同的红球、白球和黑球,从中摸出个球,摸出红球的概率为,摸出白球的概率为,若红球有个,则黑球有个.解析摸出黑球的概率为--=,口袋内球的个数为÷=,所以黑球的个数为×=.答案.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[,)上为一等品,在区间[,)和[,)上为二等品,在区间[,)和[,]上为三等品.用频率估计概率,现从该批产品中随机抽取件,则其为二等品的概率是.解析由频率分布直方图可知,一等品的频率为×=,三等品的频率为×+×=,所以二等品的频率为-(+)=.用频率估计概率可得其为二等品的概率为. 答案位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为.。
高考数学一轮复习《统计》练习题(含答案)

高考数学一轮复习《统计》练习题(含答案)一、单选题1.已知条件p :11x -<<,q :x >m ,若p 是q 的充分不必要条件,则实数m 的取值范围是( ) A .[)1,-+∞B .(),1-∞-C .()1,0-D .(],1-∞-2.下表为随机数表的一部分:08015 17727 45318 22374 21115 78253 77214 77402 43236 00210 45521 64237已知甲班有60位同学,编号为00~59号,规定:利用上面的随机数表,从第1行第4列的数开始,从左向右依次读取2个数,则抽到的第8位同学的编号是( ) A .11B .15C .25D .373.一组数据的方差为()20S S ≥,将该组数据都乘以2,所得到的一组新数据的标准差为( )A .22S B .SC .2SD .2S4.甲、乙两所学校的男女生比例如图所示,已知甲校学生总数为1500,乙校学生总数为1000,下列结论错误的是( )A .甲校女生比乙校女生多B .乙校男生比甲校男生少C .乙校女生比甲校男生少D .甲校女生比乙校男生少5.某校共有学生3000人,为了解学生的身高情况,用分层抽样的方法从三个年级中抽取容量为100的样本,其中高一抽取40人,高二抽取30人,则该校高三学生人数为( ) A .600B .800C .900D .12006.设某高中的男生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据()(12)i i x y i n =,,,,,用最小二乘法建立的回归方程为ˆ0.8580.71y x =-,则下列结论中不正确的是( ) A .y 与x 有正的线性相关关系B .回归直线过样本点的中心(),x yC .若该高中某男生身高增加1cm ,则其体重约增加0.85kgD .若该高中某男生身高为170cm ,则可断定其体重必为63.79kg 7.x 是12100,,,x x x 的平均值,5为4120,,,x x x 的平均值,10为4142100,,,x x x 的平均值,则x =( ) A .8B .9C .15D .1528.某学校有男生400人,女生600人.为调查该校全体学生每天睡眠时间,采用分层抽样的方法抽取样本,计算得男生每天睡眠时间均值为7.5小时,方差为1,女生每天睡眠时间为7小时,方差为0.5.若男、女样本量按比例分配,则可估计总体方差为( ). A .0.45B .0.62C .0.7D .0.769.某样本点)()(,1,2,,i i x y i n =⋅⋅⋅的经验回归方程为ˆ0.50.7yx =+,当8x =时,y 的实际值为4.5,则当8x =时,预测值与实际值的差值为( ). A .0.1B .0.2C .0.3D .0.410.若数据9,m ,6,n ,5的平均数为7,方差为2,则数据11,9,21m -,17,21n -的平均数和方差分别为( ) A .13,4B .14,4C .13,8D .14,811.2021年起,我市将试行“3+1+2”的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是( )A .甲的化学成绩领先年级平均分最多.B .甲有2个科目的成绩低于年级平均分.C .甲的成绩最好的前两个科目是化学和地理.D .对甲而言,物理、化学、地理是比较理想的一种选科结果.12.冬末春初,乍暖还寒,人们容易感冒发热,若发生群体性发热,则会影响到人们的身体健康,干扰正常工作生产,某大型公司规定:若任意连续7天,每天不超过5人体温高于37.3℃,则称没有发生群体性发热,下列连续7天体温高于37.3℃人数的统计特征数中,能判定该公司没有发生群体性发热的为( )(1)中位数为3,众数为2 (2)均值小于1,中位数为1(3)均值为3,众数为4 (4)均值为2 A .(1)(3)B .(3)(4)C .(2)(3)D .(2)(4)二、填空题13.某校高一、高二、高三年级的学生人数之比为5:5:4,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生人数为20,则抽取的样本容量为______.14.已知具有线性相关的变量x 、y ,设其样本点为()(1,2,,,8)i i i A x y i =,回归直线方程为1ˆ2yx b =+,若128(6,2)OA OA OA +++=(O 为原点),则b =_______.15.已知一组数据按顺序排列为:12,16,20,n ,46,51,58,60.若这组数据的第30百分位数的两倍与这组数据的第50百分位数相等,则n 的值为___________.16.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中的数据得线性回归方程为y bx a =+,其中20b =-,预测当产品价格定为9.5(元)时,销量约为__________件.三、解答题17.某区政府组织了以“不忘初心,牢记使命”为主题的教育活动,为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n 名,获得了他们一周参与主题教育活动时间(单位:h )的频率分布直方图如图所示,已知参与主题教育活动时间在(]12,16内的人数为92.(1)求n 的值;(2)以每组数据所在区间的中点值作为本组的代表,估算这些党员干部参与主题教育活动时间的中位数(中位数精确到0.01).(3)如果计划对参与主题教育活动时间在(]16,24内的党员干部给予奖励,且在(]16,20,(]20,24内的分别评为二等奖和一等奖,那么按照分层抽样的方法从获得一、二等奖的党员干部中选取5人参加社区义务宣讲活动,再从这5人中随机抽取2人作为主宣讲人,求这2人均是二等奖的概率.18.由于疫情影响,今年我们学校开展线上教学,高一年级某班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20,0.05,则根据直方图所提供的信息:(1)这一天上网学习时间在100~119分钟之间的学生有多少人?(2)估计这40位同学的线上平均学习时间(同一组中的数据用该组区间的中点值为代表)以及中位数分别是多少?(精确到0.1)(3)如果只用这40名学生这一天上网学习时间作为样本去推断该校高一年级全体学生该天的上网学习时间,这样推断是否合理?为什么?19.省政府坚持以习近平新时代中国特色社会主义思想为指导,落实全国、全省教育大会部署,坚持社会主义办学方向,落实立德树人根本任务,发展素质教育,推进育人方式变革,引导全社会树立科学的教育质量观和人才培养观,切实减轻有损中小学生身心健康的过重学业负担,遵循教育教学规律,促进中小学生健康成长,培养德智体美劳全面发展的社会主义建设者和接班人.从某市抽取1000名一年级小学生进行调查,统计他们每周做作业的时长(单位:小时),根据结果绘制的频率分布直方图如下:(1)根据频率分布直方图,求所有被抽查小学生每周做作业的平均时长和中位数;(同一组中的数据用该组区间的中点值作代表)(2)①为了进一步了解,现采用分层抽样的方法从[8,10]和[10,12]组中抽取50名学生,则两组各抽取多少人?②再利用分层抽样从抽取的50人中选5人参加一个座谈会.现从参加座谈会的5名学生中随机抽取两人发言,求[8,10]小组中恰有2人发言的概率?20.为了调查某地区高中女生的日均消费情况,研究人员随机抽取了该地区5000名高中女生作出调查,所得数据统计如下图所示.(1)求a 的值以及这5000名高中女生的日均消费的平均数(同一组数据用该组区间的中间值代替);(2)在样本中,现按照分层抽样的方法从该地区消费在[)15,20与[)20,25的高中女生中随机抽取9人,若再从9人中随机抽取3人,记这3人中消费在[)15,20的人数为X ,求X 的分布列以及数学期望.21.道德与法律的联系:法律、道德都是行为规范,都是为规范人们的行为而规定的行动准则.1.法律需要道德的奠基和撑持;2.道德的实施需要法律的强制保障.某校进行了一次道德与法律的相关测试(满分:100分),并随机抽取了50个统计其分数,得到的结果如下表所示: 成绩/分 [)0,20[)20,40[)40,60[)60,80[)80,100人数/个 44102210(1)若同一组数据用该区间中点值作代表,试估计这次测试的平均分和中位数(所得结果四舍五入保留整数);(2)假设处于[)20,40的4个人的成绩分别为20,26,35,38,求表中成绩的10%分位数; (3)以频率估计概率,若在这个学校中,随机挑选3人,记3人的成绩在[)80,100间的数量为随机变量X ,求X 的分布列和数学期望()E X .22.某校从高三年级学生中随机抽取100名学生的某次数学考试成绩,将其成绩分成[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的5组,制成如图所示的频率分布直方图.(1)求图中x 的值;(2)估计这组数据的平均数;(3)若成绩在[)50,60内的学生中男生占40%.现从成绩在[)50,60内的学生中随机抽取2人进行分析,求2人中恰有1名女生的概率.23.某校从高三学生中选取了50名学生参加数学质量检测,成绩(单位:分)分组及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出频率分布表;(2)画出频率直方图及频率折线图.24.某农业科学研究所为检验某农作物种子的培育有效率,进行了如下试验:一是对该农作物的10000粒种子进行培育,发现有20粒种子未发芽;二是将未进行培育的该农作物的2500粒种子种植在5块试验田中,各试验田种植的种子数及未发芽数如下表:(1)求y 关于x 的回归直线方程; (2)在上述试验下,若以1nN-表示该农作物种子的培育有效率,其中n 为进行培育的10000粒种子的未发芽数,N 为依据上述回归方程估算的未进行培育的10000粒种子的未发芽数,请估计该农作物种子的培育有效率(结果保留3位有效数字).参考公式;在回归方程ˆˆˆy bx a =+中,1221ˆni ii nii x y nx ybxnx==-⋅=-∑∑,ˆˆa y bx=-参考答案1.D2.A3.D4.D5.C6.D7.A8.D9.B10.C11.A12.D 13.7014.18-##-0.12515.34 16.6017.(1)由已知可得,0.25(0.02500.04750.05000.0125)0.1150a =-+++=. 则0.1150492n ⨯⨯=,得922000.11504n ==⨯.(2)设中位数为x ,则0.050040.01254(16)0.11500.5x ⨯+⨯+-⨯=,得13.83x ≈.(3)按照分层抽样的方法从(16,20]内选取的人数为0.050540.05000.0125⨯=+,从(20,24]内选取的人数为0.0125510.05000.0125⨯=+.记二等奖的4人分别为a ,b ,c ,d ,一等奖的1人为A ,事件E 为“从这5人中抽取2人作为主宣讲人,且这2人均是二等奖”.从这5人中随机抽取2人的基本事件为(,)a b ,(,)a c ,(,)a d ,(,)a A ,(,)b c ,(,)b d ,(,)b A ,(,)c d ,(,)c A ,(,)d A ,共10种,其中2人均是二等奖的情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,(,)c d ,共6种, 由古典概型的概率计算公式得()63105P E ==. 18.(1)因为频数=样本容量⨯频率,一天上网学习时间在100119分钟之间的学生所占频率为0.35,所以一天上网学习时间在100~119分钟之间的学生人数为400.3514⨯=(人) (2)40位同学的线上学习时间估计值为:0.1569.90.2589.90.35109.90.20129.90.05149.9104.9⨯+⨯+⨯+⨯+⨯=分钟在中位数左边和右边的小长方形的面积和是相等的,设在99.9~119.9靠近左侧长度为x ,则0.15+0.25+0.350.5x =解得0.27x ≈; 所以中位数估计值是99.9+0.27=100.17100.2≈(3)因为该样本的选取只在高一某班,不具有代表性,所以这样推断不合理. 19.(1)设抽查学生做作业的平均时长为x ,中位数为y ,0.0510.130.2550.370.1590.1110.0513 6.8x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 0.050.10.250.15(6)0.5y y =+++⨯-=,解得203y =即抽查学生做作业的平均时长为6.8,中位数为203. (2)①[8,10]组的人数为10000.15150⨯=人,设抽取的人数为a ,[]10,12组的人数为10000.1100⨯=人, 设抽取的人数为b ,则50150100250a b ==,解得30a =,20b = 所以在[8,10]和[]10,12两组中分别抽取30人和20人,②再抽取5人,其中[8,10]和[]10,12两组中分别抽取3人和2人,将[8,10]组中被抽取的工作人员标记为1A ,2A ,3A ,将[]10,12中的标记为1B ,2B . 设事件C 表示从[8,10]小组中恰好抽取2人,则抽取的情况如下:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B 共10种情况;其中在[8,10]中恰好抽取2人有3种,则3()10P C =. 20.(1)由题意得,()20.040.080.0651a +++⨯=,解得0.01a =,故所求平均数为17.50.427.50.332.50.0537.50.0524.25⨯0.2+22.5⨯+⨯+⨯++=(元); (2)由题意得,消费在[)15,20,[)20,25的高中女生分别有3人和6人,故X 的可能取值为0,1,2,3,∴()6033395021C C P X C ===,()21633915128C C P X C ===,()1263393214C C P X C ===,()0363391384C C P X C ===, 故X 的分布列为:∴()515310123121281484E X =⨯+⨯+⨯+⨯=; 故答案为:1. 21.(1)估计这次测试的平均分为1043045010702290106250x ⨯+⨯+⨯+⨯+⨯==(分);设这次测试的中位数为0x ,显然()060,80x ∈,则060441022200.550x -+++⋅=,解得066x ≈(分). 即估计这次测试的中位数为66.(2)由于5010%5⨯=,所以表中成绩的10%分位数为2026232+=. (3)X 所有可能取值为0,1,2,3.由表中数据可知,任意挑选一人,成绩在[)80,100间的概率为101505=. 所以()346405125P X ⎛⎫=== ⎪⎝⎭,()21341481C 55125P X ⎛⎫=== ⎪⎝⎭, ()122341122C 55125P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()31135125P X ⎛⎫=== ⎪⎝⎭, 故X 的分布列为故X 的数学期望()6448121301231251251251255E X =⨯+⨯+⨯+⨯=. 22.(1)由频率分布直方图得()0.0050.0350.0300.010101x ++++⨯=,解得0.020x =, 所以图中x 的值是0.020.(2)由频率分布直方图得这组数据的平均数: (550.005650.020750.03585x =⨯+⨯+⨯+⨯)0.030950.0101077+⨯⨯=, 所以这组数据的平均数为77.(3)数学成绩在[)50,60内的人数为0. 005101005⨯⨯=(人),其中男生人数为540%2⨯=(人),则女生人数为3人,记2名男生分别为1A ,2A ,3名女生分别为1B ,2B ,3B ,从数学成绩在[)50,60内的5人中随机抽取2人进行分析的基本事件为:121112132122A A A B A B A B A B A B ,,,,,,23121323A B B B B B B B ,,,,共10个不同结果,它们等可能, 其中2人中恰有1名女生的基本事件为111213212223,,,,,A B A B A B A B A B A B ,共6种结果, 所以2人中恰有1名女生的概率为为63105=. 23.(1)解:频率分布表如下:(2) 频率直方图及频率折线图如图所示.24. (1)依题意,3004005006007005005x ++++==,2466755y ++++==, 513002400450066006700713700ii i x y ==⋅+⋅+⋅+⋅+⋅=∑, 52222221(34567)100001350000i i x==++++⋅=∑, 于是得512252113700550051200ˆ0.01213500005500100000i ii i i x y nx y b x nx==-⋅-⋅⋅====-⋅-∑∑,ˆˆ50.0125001ay bx =-=-⨯=-, 所以y 关于x 的回归直线方程为ˆ0.0121yx =-; (2)由(1)知,估计未进行培育的10000粒种子的未发芽数N 约为:ˆ0.012100001119y =⨯-=,而已培育的10000粒种子有20粒种子未发芽,即20n =, 所以该农作物种子的培育有效率为209910832119119-=≈。
高三数学一轮复习 第十章《统计与概率》105精品练习

高三数学一轮复习 第十章《统计与概率》105精品练习一、选择题1.一个口袋中有12个红球,x 个白球,每次任取一球(不放回),若第10次取到红球的概率为1219,则x 等于( )A .8B .7C .6D .5[答案] B[解析] 由概率的意义知,每次取到红球的概率都等于1212+x ,∴1212+x =1219,∴x =7.2.(2010·银川模拟)将一颗骰子抛掷两次,所得向上的点数分别为m 和n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是( )A.12 B.56 C.34D.23[答案] B[解析] 由题可知,函数y =23mx 3-nx +1在[1,+∞)上单调递增,所以y ′=2mx 2-n ≥0在[1,+∞)上恒成立,所以2m ≥n ,则不满足条件的(m ,n )有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情况,所以满足条件的共有30种情况,则函数y =23mx 3-nx +1在[1,+∞)上单调递增的概率为P =3036=56,故选B. 3.(2010·大连一中)分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为( )A.710B.310C.35D.25[答案] A[解析] 建立平面直角坐标系(如图所示),则由图可知满足m >n 的点应在梯形OABD 内,所以所求事件的概率为P =S 梯形OABD S 矩形OABC =710.4.(2010·瑞安中学)国庆阅兵中,某兵种A 、B 、C 三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B 先于A 、C 通过的概率为( )A.16 B.13 C.12D.23[答案] B[解析] 用(A ,B ,C )表示A 第一,B 第二,C 第三的次序,则所有可能的次序有(A ,B ,C ),(A ,C ,B ),(B ,A ,C ),(B ,C ,A ),(C ,A ,B ),(C ,B ,A )共6种,其中B 先于A 、C通过的有(B ,C ,A )和(B ,A ,C )两种,故所求概率为P =26=13.5.(文)(2010·陕西宝鸡)点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA |<1的概率为( )A.14 B.12 C.π4D .π[答案] C[解析] 由题意可知,当动点P 位于扇形ABD 内时,动点P 到定点A 的距离|PA |<1,根据几何概型可知,动点P 到定点A 的距离|PA |<1的概率为S 扇形ABD S 正方形ABCD =π4,故选C.(理)(2010·广州市)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6D .1-π6[答案] B[解析] 到点O 的距离小于等于1的点,组成一个以O 为球心,1为半径的半球, ∵V 正方体=23=8,V 半球=12×43π×13=2π3.故所求概率为P =8-2π38=1-π12.6.(2010·广东广州六中)在区间[-π2,π2]上随机取一个数x ,则使cos x 的值介于0到12之间的概率为( ) A.13 B.2πC.12D.23[答案] A[解析] ∵x ∈[-π2,π2],∴要使0≤cos x ≤12,应有-π2≤x ≤-π3或π3≤x ≤π2,由几何概型知,所求概率P =⎝ ⎛⎭⎪⎫π2-π3+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-π3-⎝ ⎛⎭⎪⎫-π2π2-⎝ ⎛⎭⎪⎫-π2=13.7.m ∈{-2,-1,0,1,2,3},n ∈{-3,-2,-1,0,1,2},且方程x 2m +y 2n =1有意义,则方程x 2m +y 2n=1可表示不同的双曲线的概率为( )A.3625 B .1 C.925D.1325[答案] D[解析] 由题设知⎩⎪⎨⎪⎧ m >0n <0或⎩⎪⎨⎪⎧m <0n >0,1°⎩⎪⎨⎪⎧m >0n <0时有不同取法3×3=9种.2°⎩⎪⎨⎪⎧m <0n >0时有不同取法2×2=4种,∴所求概率P =9+45×5=1325.8.(文)(2010·山东肥城联考)若a 是从区间[0,3]内任取的一个数,b 是从区间内[0,2]任取的一个数,则关于x 的一元二次方程x 2+2ax +b 2=0有实根的概率是( )A.34 B.23 C.49D.12[答案] B[解析] 试验的全部结果所构成的区域为{(a ,b )|0≤a ≤30,0≤b ≤2},由Δ=4a 2-4b 2≥0及a >0,b >0知,构成事件“关于x 的一元二次方程x 2+2ax +b 2=0有实根”的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为P =3×2-12×223×2=23.(理)(2010·胶州三中)已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4,记函数f (x )满足条件⎩⎪⎨⎪⎧f2≤12f -2≤4的事件为A ,则事件A 发生的概率为( )A.14 B.58 C.12D.38[答案] C[解析] 由⎩⎪⎨⎪⎧f2≤12f -2≤4得,⎩⎪⎨⎪⎧2b +c ≤8-2b +c ≤0,画出0≤b ≤4,0≤c ≤4表示的平面区域和事件A 所表示的平面区域,由几何概型易知,所求概率P =12.9.(2010·广东罗湖区调研)已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω内随机投一点P ,则点P 落在区域A 内的概率为( )A.13 B.23 C.19D.29[答案] D[解析] 由⎩⎪⎨⎪⎧x -2y =0x +y =6得D (4,2),区域Ω为△OAB ,区域A 为△OCD ,所求概率P =S △OCD S△OAB =12×4×212×6×6=29.10.(2009·福建)已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .0.35 B .0.25 C .0.20D .0.15[答案] B[解析] 该运动员三次投篮恰有两次命中即在每组的三个随机数中,恰有两个数在集合{1,2,3,4}中,题中20组随机数中,满足条件的有5组:191,271,932,812,393,∴概率P =520=14. 二、填空题11.现有三种股票和两种基金,欲购买其中任意两种,有且只有一种基金的概率为________.[答案] 35[解析] 记股票为a 、b 、c ,基金为d ,e ,从中购买两种,所有构买方法为(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),其中有且仅有一种基金的购买方法有:(a ,d ),(a ,e ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),∴所求概率为P =610=35.12.(文)(2010·湖北黄冈)在闭区间[-1,1]上任取两个实数,则它们的和不大于1的概率是________.[答案] 78[解析] 设x ,y 是[-1,1]上的任意两个实数,则⎩⎪⎨⎪⎧-1≤x ≤1-1≤y ≤1,则点(x ,y )构成区域为正方形ABCD ,它们的和x +y ≤1为图中阴影部分,则由几何概型知,所求概率P =78.(理)(2010·辽宁省实验中学等三校)若不等式组⎩⎪⎨⎪⎧y ≤x y ≥-x2x -y -4≤0表示的平面区域为M ,x 2+y 2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.[答案]3π64[解析] 可行域M 为△ABO ,易求A ⎝ ⎛⎭⎪⎫43,-43,B (4,4),C (2,0),∴S △ABO =12|OC |×⎝ ⎛⎭⎪⎫4+43=163,区域N 为扇形OMN , ∵S 扇形OMN =14×π×12=π4,∴所求概率P =π4163=3π64.13.(2010·海南五校联考)设0<a <2,0<b <1,则双曲线x 2a 2-y 2b2=1的离心率e >5的概率是________.[答案] 18[解析] 由e >5得c 2a 2>5,即a 2+b 2a2>5,∴b >2a ,在直角坐标系aOb内作出符合题意的区域如图中阴影部分所示,则阴影部分的面积为12×⎝ ⎛⎭⎪⎫1×12=14,图中矩形的面积为2,∴由几何概型概率公式计算得所求的概率为18.14.(文)(2010·江苏金陵中学)先后两次抛掷同一枚骰子,将得到的点数分别记为a ,b .将a ,b,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.[答案]718[分析] 本题有两点要点:一是构成三角形,须满足较小的两个数的和大于第三个数;二是构成等腰三角形,须有两个数相等.[解析] 基本事件的总数为6×6=36. ∵三角形的一边长为5,∴当a =1时,b =5符合题意,有1种情况; 当a =2时,b =5符合题意,有1种情况; 当a =3时,b =3或5符合题意,即有2种情况; 当a =4时,b =4或5符合题意,有2种情况;当a =5时,b ∈{1,2,3,4,5,6}符合题意,即有6种情况; 当a =6时,b =5或6符合题意,即有2种情况. 故满足条件的不同情况共有14种,所求概率为P =1436=718.(理)(2010·新课标全国文)设函数y =f (x )在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得S 的近似值为________.[答案]N 1N[解析] 这是随机模拟的方法,是在[0,1]内生成了N 个点,而满足几条曲线围成的区域内的点是N 1个,所以根据比例关系SS 矩形=N 1N,而矩形的面积为1,所以依据随机模拟方法估计面积S 的近似值为N 1N.三、解答题15.(文)汶川地震发生后,某市根据上级要求,要从本市人民医院报名参加救援的护理专家、外科专家、心理治疗专家8名志愿者中,各抽调1名专家组成一个医疗小组与省专家组一起赴汶川进行医疗救助,其中A 1,A 2,A 3是护理专家,B 1,B 2,B 3是外科专家,C 1,C 2是心理治疗专家.(1)求A 1恰被选中的概率; (2)求B 1和C 1不全被选中的概率.[解析] (1)从8名志愿者中选出护理专家、外科专家、心理治疗专家各1名,其一切可能的结果为:(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),((A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2).共18个基本事件.用M 表示“A 1恰被选中”这一事件,则M 包括(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2).共有6个基本事件.所以P (M )=618=13.(2)用N 表示“B 1和C 1不全被选中”这一事件,则其对立事件N -表示“B 1和C 1全被选中”这一事件,由于N -包括(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1),共有3个基本事件, 所以P (N -)=318=16,由对立事件的概率公式得P (N )=1-P (N -)=1-16=56.(理)班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;(2)为了选出表演独唱和朗诵节目的同学,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求独唱和朗诵由同一个人表演的概率.[解析] (1)用(i,j)表示编号为i、j的两人来跳双人舞,则所有可能结果为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共十种,其中两人全是男生的有:(1,2),(1,3),(2,3),故由对立事件概率公式知所有概率P=1-310=710.(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其它卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出.人演出的有5种,∴所求概率P=525=15.16.(文)(2010·天津文,18)有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(2)从一等品零件中,随机抽取2个.①用零件的编号列出所有可能的抽取结果;②求这2个零件直径相等的概率.[解析] (1)由题意可知,一等品零件共有6个,设“从10个零件中,随机抽取一个为一等品”为事件A ,则P (A )=610=35.(2)①一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6,从这6个一等品零件中随机抽取2个,所有可能的结果有:{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共有15种,②记事件B 为“从一等品零件中,随机抽取的2个零件直径相等”,其所有可能的结果有:{A 1,A 4},{A 1,A 6},{A 4,A 6},{A 2,A 3},{A 2,A 5},{A 3,A 5},共有6种.∴P (B )=615=25.(理)(2010·福建文,18)设平面向量a m =(m,1),b n =(2,n ),其中m ,n ∈{1,2,3,4}. (1)请列出有序数组(m ,n )的所有可能结果;(2)记“使得a m ⊥(a m -b n )成立的(m ,n )”为事件A ,求事件A 发生的概率. [解析] (1)有序数组(m ,n )的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个.(2)由a m ⊥(a m -b n )得,a m ·(a m -b n )=m (m -2)+1·(1-n )=m 2-2m +1-n =0,即n =(m -1)2由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1),(3,4),共2个.又基本事件的总数为16,故所求的概率为P (A )=216=18.17.(2010·厦门市质检)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取两个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①设事件A 表示“a +b =2”,求事件A 的概率;②在区间[0,2]内任取两个实数x ,y ,求事件“x 2+y 2>(a -b )2恒成立”的概率.[解析] (1)由题意可知:n 1+1+n =12,解得n =2.(2)将标号为2的小球记作a 1,a 2①两次不放回抽取小球的所有基本事件为:(0,1),(0,a 1),(0,a 2),(1,0),(1,a 1),(1,a 2),(a 1,0),(a 1,1),(a 1,a 2),(a 2,0),(a 2,1),(a 2,a 1),共12个,事件A包含的基本事件为:(0,a1),(0,a2),(a1,0),(a2,0),共4个.∴P(A)=412=1 3.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,x,y∈Ω},∴P(B)=S BSΩ=2×2-π2×2=1-π4.用心爱心专心- 11 -。
2020年高考数学(文)一轮复习精品特训专题十:概率与统计

1
1
1
2
A.
B.
C.
D.
10
4
3
3
4、袋中装有大小相同的四个球,四个球上分別标有数字“
2”“ 0”“ 1”“ 8”,现从中随
机选取三个球,则所选的三个球上的数字能构成等差数列的概率是
()
A. 2
B. 1
C. 1
D. 1
3
2
3
4
5、一次数学考试中, 4 位同学各自在第 22 题和第 23 题中任选—题作答, 则第 22 题和第 23
2020 年高考数学(文)一轮复习精品特训
专题十:概率与统计
概率与统计( 1)事件与概率
1、齐王与田忌赛马 , 田忌的上等马优于齐王的中等马 , 劣于齐王的上等马 , 田忌的中等马优于
齐王的下等马 , 劣于齐王的中等马 , 田忌的下等马劣于齐王的下等马 , 现从双方的马匹中随机
选一匹进行一场比赛 , 则田忌马获胜的概率为 ( )
2020 年高考数学(文)一轮复习精品特训
概率与统计( 2)古典概型
1、某商场举行有奖促销活动 , 抽奖规则如下 : 箱子中有编号为 1,2,3,4,5 的五个形状、大小
完全相同的小球 , 从中任取两球 , 若摸出的两球号码的乘积为奇数则中奖 ; 否则不中奖则中奖
的概率为 (
)
A. 1 B. 1 C. 3 D. 2
A. 1
B. 1
C. 1
D. 1
3
4
5
6
2、若 A, B 是互斥事件 , 则(
)
A. P A B <1
B. P A B 1
C. P A B >1
D. P A B 1
高三数学一轮复习 第十章《统计与概率》104精品练习

第10章 第4节一、选择题1.对某电视机厂生产的电视机进行抽样检测,数据如下:A .0.92B .0.94C .0.95D .0.96[答案] C[解析] 由频率与概率关系知答案为C.2.(文)羊村村长慢羊羊决定从喜羊羊、美羊羊、懒羊羊、暖羊羊、沸羊羊中选派两只羊去割草,则喜羊羊和美羊羊恰好只有一只被选中的概率为( )A.310B.67C.35D.45[答案] C[解析] 将喜羊羊、美羊羊、懒羊羊、暖羊羊、沸羊羊依次编号为1、2、3、4、5,从中任取两个的所有可能取法为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中喜羊羊与美羊羊恰好只有一只被选中的有:(1,3),(1,4),(1,5),(2,3),(2,4),(2,5).∴所求概率P =610=35.(理)(2010·陕西检测)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A.13 B.12 C.23D.34[答案] C[解析] 取出两张卡片的基本事件构成集合Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}共6个基本事件.其中数字之和为奇数包含(1,2),(1,4),(2,3),(3,4)共4个基本事件,∴所求概率为P =46=23.3.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( )A .0.45B .0.67C .0.64D .0.32[答案] D[解析] 摸出红球的概率为45100=0.45,因为摸出红球、白球和黑球是互斥事件,因此摸出黑球的概率为1-0.45-0.23=0.32.4.(文)(2010·山东潍坊、烟台)一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A.18 B.116C.127D.38[答案] C[解析] 一个棱长为3的正方体由27个单位正方体组成,由题意知,蜜蜂“安全飞行”的区域即为27个单位正方体中最中心的1个单位正方体区域,则所求概率P =127,应选C. (理)(2010·安徽文,10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A.318 B.418 C.518D.618[答案] C[解析] 解法1:设正方形的4个顶点为A 、B 、C 、D ,从中任选两个顶点连成直线,有AB 、AC 、AD 、BC 、BD 、CD 共6种不同选法,故甲、乙各从正方形四个顶点中任选两个顶点连成直线,共有基本事件6×6=36个.设甲、乙两人各取两个顶点连成直线,所得两条直线互相垂直的事件为M ,则M 所包含的基本事件如表:∴P (M )=1036=518,故选C.解法2:由条件知所有的基本事件共有C 42·C 42=36个,设甲、乙两人各取两个顶点连成直线,所得两直线垂直为事件M ,则M 含有基本事件4×2+2=10个,∴P (M )=1036=518.5.(文)(2010·北京文,3)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45 B.35 C.25D.15[答案] D[解析] 该试验所有基本事件(a ,b )可在平面直角坐标系中表示出来如下图.易知所有基本事件有5×3=15个,记“b >a ”为事件A ,则事件A 所含基本事件有3个. ∴P (A )=315=15,故选D.(理)(2010·黄冈检测)设集合P ={b,1},Q ={c,1,2},P Q ,若b ,c ∈{2,3,4,5,6,7,8,9},则b =c 的概率是( )A.18 B.14 C.12D.34[答案] C[解析] 依题意得,当b =2时,c 可从3,4,5,6,7,8,9中选取,此时b ≠c ;当b 从3,4,5,6,7,8,9中选取时,有b =c .因此,b =c 的概率为77+7=12,选C. 6.(文)(09·湖北)投掷两颗骰子,其向上的点数分别为m 和n ,则复数(m +ni )(n -mi )为实数的概率为( )A.13 B.14 C.16D.112[答案] C[解析] 投掷两颗骰子,其向上的点数m ,n ,用(m ,n )记录基本事件,则基本事件构成集合Ω={(m ,n )|1≤m ≤6,1≤n ≤6,m ,n ∈N },∵(m +n i)(n -m i)=2mn +(n 2-m 2)i ,它为实数的等价条件是m 2=n 2,又m 、n 均为正整数,∴m =n .故所求事件所含基本事件有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)共6个,Ω中共有36个基本事件,∴P =636=16.故选C.(理)(2010·广东省江门市模考)从一个三棱柱ABC -A 1B 1C 1的六个顶点中任取四点,这四点不共面的概率是( )A.15 B.25 C.35D.45[答案] D[解析] 从6个顶点中选4个,共有C 64=15种选法,其中共面的情况有三个侧面,∴概率P =15-315=45.7.(文)(2010·浙江金华十校联考)在一个袋子中装有分别标注1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同,现从中随机取出2个小球,则取出小球标注的数字之差的绝对值为2或4的概率是( )A.110B.310C.25D.14[答案] C[解析] 取两个小球的不同取法有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共十种,其中标注的数字绝对值之差为2或4的有(1,3),(2,4),(3,5),(1,5),共四种,故所求的概率为410=25.(理)(2010·浙江绍兴调研)在一个盒子中有5个球,其中2个球的标号是不同的偶数,3个球的标号是不同的奇数.现从盒子中一次取出3个球,则这3个球的标号之和是偶数的概率为( )A.110B.310C.25D.35[答案] D[解析] 从5个球中任取3个,有不同取法C 53=10种,其中3个球标号之和为偶数,只能是两奇一偶,有不同取法C 32×C 21=6种,∴所求概率为P =610=35.8.(2010·广西柳州市模考)在一次教师联欢会上,到会的女教师比男教师多12人,从到会教师中随机挑选一人表演节目.如果每位教师被选到的概率相等,而且选到男教师的概率为920,那么参加这次联欢会的教师共有( )A .360人B .240人C .144人D .120人[答案] D[解析] 设与会男教师x 人,则女教师为x +12人,由条件知,x x + x +12 =920,∴x=54,∴2x +12=120,故选D.9.(文)(2010·湖南考试院调研)设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于34的概率为( )A.9π64 B.964 C.9π16D.916[答案] A[解析] 设两直角边长分别为a 、b ,则0<a <1,0<b <1,由条件a 2+b 2<916,如图可知,所求概率P =14π×⎝ ⎛⎭⎪⎫3421×1=9π64.(理)(2010·山东滨州模拟)在区域⎩⎨⎧x +y -2≤0x -y +2≥0y ≥0内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( )A.π2 B.π3 C.π6D.π4[答案] D[解析] 根据题意可画如图所示的图形,所求概率为半圆与三角形面积的比,∴p =π×12222×2×12=π4,故点P 在单位圆内的概率为π4,故选D.10.(文)(2010·广东玉湖中学月考、辽宁锦州模拟)一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,一学生到达该路口时,恰为红灯的概率是( )A.25 B.58 C.115D.35[答案] A[解析] 因为红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间40秒,故整个区域的时间长度为75秒,∴P =3075=25.(理)(2010·济南市模拟)已知a 、b 、c 为集合A ={1,2,3,4,5,6}中三个不同的数,如下框图给出的一个算法运行后输出一个整数a ,则输出的数a =5的概率是()A.130 B.15 C.310D.12[答案] C[解析] 由程序框图知,输入a 、b 、c 三数,输出其中的最大数,由于输出的数为5,故问题为从集合A 中任取三个数,求最大数为5的概率,∴P =C 42C 63=620=310.二、填空题11.(2010·江苏盐城调研)某人有甲、乙两只密码箱,现存放两份不同的文件,则此人使用同一密码箱存放这两份文件的概率是________.[答案] 12[解析] 将两份文件编号为1,2,则所有可能存放文件的方式如表共有4种不同情形,其中此人使用同一密码箱存放这两份文件的情况有2种,∴P =12.12.(2010·南京市调研)某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为________.[答案] 14[解析] 每人用餐有两种情况,故共有23=8种情况.他们在同一食堂用餐有2种情况,故他们在同一食堂用餐的概率为28=14.13.(2010·浙江开化模拟)已知中心在原点,焦点在x 轴上的双曲线的一条渐近线方程为mx -y =0,若m 在集合{1,2,3,4,5,6,7,8,9}中任取一个数,则双曲线的离心率大于3的概率是________.[答案] 79[解析] e >3,即c a >3,∴a 2+b 2a2>9,∴b a>22,即m >22,∴m 可取值3,4,5,6,7,8,9,∴p =79.14.高三·一班班委有5名成员,其中有3名男生,要从中选派2人去参加某项活动,事件A =“选出的2人不全是男生”,事件B =“选出的2人至少有一名男生”,则事件A ∩B 的含义是________.[答案] 选出的2人一男一女[解析] 事件A 包含:一男一女和两女,事件B 包含:一男一女和两男,则事件A ∩B 为:一男一女.三、解答题15.一个口袋内装有5个白球和3个黑球,从中任意取出一只球. (1)“取出的球是红球”是什么事件,它的概率是多少? (2)“取出的球是黑球”是什么事件,它的概率是多少? (3)“取出的球是白球或是黑球”是什么事件,它的概率是多少?[分析] 本题考查必然事件、不可能事件、随机事件的概念及随机事件的概率公式和分析判断能力.[解析] (1)由于口袋内只装有黑、白两种颜色的球,故“取出的球是红球”不可能发生,因此,它是不可能事件,其概率为0.(2)由已知,从口袋内取出一个球,可能是白球也可能是黑球,故“取出的球是黑球”是随机事件,它的概率为38.(3)由于口袋内装的是黑、白两种颜色的球,故取出一个球不是黑球,就是白球.因此,“取出的球是白球或是黑球”是必然事件,它的概率是1.16.(文)(2010·福州市模拟)某研究性学习小组对昼夜温差与某种子发芽数的关系进行研究.他们分别记录了四天中每天昼夜温差与每天100粒种子浸泡后的发芽数,得到如下资料:(1)(2)若研究的一个项目是在这四天中任选2天的种子发芽数来进行,记发芽的种子数分别为m ,n (m <n ),用(m ,n )的形式列出所有的基本事件,并求事件A :“m 、n 满足⎩⎪⎨⎪⎧m ≥30n ≥40”的概率.[解析] (1)这四天浸泡种子的发芽总数为:33+39+26+46=144, 故这四天的平均发芽率为1444×100×100%=36%.(2)因为m <n ,故所有的基本事件为:(26,33),(26,39),(26,46),(33,39),(33,46),(39,46),即基本事件总数为6.易知事件A 包含的基本事件为:(33,46),(39,46). 所以P (A )=26=13.(理)(2010·北京顺义一中月考)已知实数a ,b ∈{-2,-1,1,2}. (1)求直线y =ax +b 不经过第四象限的概率; (2)求直线y =ax +b 与圆x 2+y 2=1有公共点的概率. [解析] 由于实数对(a ,b )的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2)共16种(1)设“直线y =ax +b 不经过第四象限”为事件A若直线y =ax +b 不经过第四象限,则必须满足a ≥0,b ≥0,则事件A 包含4个基本事件, ∴P (A )=416=14,∴直线y =ax +b 不经过第四象限的概率为14.(2)设“直线y =ax +b 与圆x 2+y 2=1有公共点”为事件B ,则需满足|b |a 2+1≤1,即b 2≤a 2+1,∴事件B 包含12个基本事件,∴P (B )=1216=34,∴直线y =ax +b 与圆x 2+y 2=1有公共点的概率为34.17.(文)(2010·北京延庆县模考)口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,然后放回,乙再摸一个球,如果两个编号的和为偶数算甲赢,否则算乙赢.(1)甲、乙按以上规则各摸一个球,求事件“编号的和为6”发生的概率; (2)这种游戏规则公平吗?试说明理由.[解析] (1)设“两数字之和为6”为事件A ,事件A 包含的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1),共5个.又甲、乙二人取出的数字共有5×5=25(个)等可能的结果 ∴P (A )=525=15答:编号的和为6的概率为15.(2)这种游戏规则不公平.设“甲胜”为事件B ,“乙胜”为事件C ,则甲胜即两数字之和为偶数所包含的基本事件数为13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲胜的概率P (B )=1325,从而乙胜的概率P (C )=1-1325=1225,由于P (B )≠P (C ),所以这种游戏规则不公平.(理)(2010·陕西宝鸡市质检)我市积极响应《全民健身条例》,大力开展学生体育活动,如图是委托调查机构在分属两类不同性质的A 校和B 校中分别随机抽取的10名高三年级学生周体育锻炼时间的茎叶图(单位:10分钟).(1)根据茎叶图计算哪个学校学生总体活动时间多;(2)如果从A 校这10名学生中随机抽取体育锻炼时间不超过120分钟的2名同学,求至少抽到1名活动时间不足1小时的同学的概率是多少.[解析] (1)计算可得,A 校的学生平均活动时间为110×(21+11+12+13+15+17+17+18+35)×10=132分钟,B 校学生平均活动时间为110×(36+18+13+13+11+5+4+4+3+3)×10=110分钟,故A 校学生平均活动时间较多.(2)由茎叶图知,A 校中活动时间不超过120分钟的同学共有4名,而不足1小时的有2名,将这4名同学编号为1,2,3,4,其中不足1小时的为1,2,从中任意抽取两名同学的抽法用心 爱心 专心 - 11 - 有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),其中至少含有1,2中的一个的概率为P =56. [点评] 注意细节,茎叶图中数据的单位是10分钟.。
高考数学一轮复习概率与统计大题必刷题

②从样本中随机抽取2个零件,计算其中次品个数Z的分布列和均值E(Z).
由题意可知,Z的分布列为
Z
0
1
2
P
C294 C2100
C16C194 C2100
C26 C2100
所以 E(Z)=0×CC2129040+1×CC16C2100194+2×CC212600=235.
123456
5.(2022·唐山模拟)两会期间,国家对学生学业与未来发展以及身体素质 重要性的阐述引起了全社会的共鸣.某中学体育组对高三的800名男生做 了单次引体向上的测试,得到了如图所示的频率分布直方图(引体向上个 数只记整数).体育组为进一步了解情况,组织了两个研究小组.
300
500
合计
600 200 800
根据小概率值α=0.005的独立性检验,分析体育锻炼是否与学业成绩有关?
123456
nad-bc2 参考公式:独立性检验统计量 χ2=a+bc+da+cb+d,其中 n=a +b+c+d. 临界值表:
α 0.1 0.05 0.01 0.005 0.001 xα 2.706 3.841 6.635 7.879 10.828
123456
P(Y=4)=2×18010×11090=130007080,
P(Y=6)=110902=10360100,
则Y的分布列为
Y
2
4
6
P
6 561 3 078 361 10 000 10 000 10 000
123456
方案三的均值 E(Y)=2×160506010+4×130007080+6×10360100=2.76, ∵E(X)<E(Y)<4, ∴方案一、二、三中,方案二最“优”.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 第8节一、选择题1.(2020·厦门质检)设随机变量ξ的分布列为P (ξ=k )=m ⎝ ⎛⎭⎪⎫23k(k =1,2,3),则m 的值为( )A.1738 B.2738 C.1719 D.2719[答案] B[解析] m ⎝ ⎛⎭⎪⎫231+m ⎝ ⎛⎭⎪⎫232+m ⎝ ⎛⎭⎪⎫233=1,∴m =2738.故选B.2.(2020·辽宁理)两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.512C.14D.16 [答案] B[解析] 恰有一个一等品即一个是一等品,另一个不是,则情形为两种,即甲为一等品,乙不是或乙为一等品甲不是,∴P =23×⎝ ⎛⎭⎪⎫1-34+⎝⎛⎭⎪⎫1-23×34=512,故选B.3.从甲袋中摸出一个红球的概率为13,从乙袋中摸出一个红球的概率是12,从两袋中各摸出一个球,则概率等于23的是( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰好有1个红球的概率 [答案] C[解析] 两袋中各摸出一个球: ①甲红,乙红,P 1=13×12=16;②甲红,乙不是红,P 2=13×⎝ ⎛⎭⎪⎫1-12=16;③甲不是红,乙红,P 3=⎝ ⎛⎭⎪⎫1-13×12=13;④甲、乙都非红,P 4=⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-12=13.因此A 的概率为56,B 的概率为16,C 的概率为23,D 的概率为12,故选C.4.(2020·山东省实验中学)种植两株不同的花卉,它们的存活率分别为p 和q ,则恰有一株存活的概率为( )A .p +q -2pqB .p +q -pqC .p +qD .pq [答案] A[解析] 恰有一株存活的概率为p (1-q )+q (1-p )=p +q -2pq . 5.设随机变量ξ的分布列为P (ξ=k )=ck +1,k =0,1,2,3,则E (ξ)=( )A.1225 B.2325 C.1350 D.4625[答案] B[解析] 由条件知c +c 2+c 3+c 4=1,∴c =1225,故分布列为故E (ξ)=0×1225+1×25+2×25+3×25=25,∴选B.6.(2020·江西文,9)有n 位同学参加某项选拔测试,每位同学能通过测试的概率是p (0<p <1).假设每位同学能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n[答案] D[解析] 采用正难则反的方法,都通不过测试的概率为(1-P )n,则至少有一个通过测试的概率为1-(1-P )n.选D.7.在一次抽奖中,一个箱子里有编号为1至10的十个号码球(球的大小、质地完全相同,但编号不同),里面有n 个号码为中奖号码,若从中任意取出4个小球,其中恰有1个中奖号码的概率为821,则这10个小球中,中奖号码小球的个数为( )A .2B .3C .4D .5 [答案] C[解析] 设有x 个小球的号码为中奖号码,则 P (X =1)=C x 1·C 10-x 3C 104=821, ∴x (10-x )(9-x )(8-x )=480,将选项中的值代入检验知,选C.8.在四次独立重复试验中,事件A 在每次试验中出现的概率相同,若事件A 至少发生一次的概率为6581,则事件A 恰好发生一次的概率为( )A.13B.23C.3281D.881[答案] C[解析] 设事件A 在每次试验中发生的概率为p ,则事件A 在4次独立重复试验中,恰好发生k 次的概率为P k =C 4k p k(1-p )4-k(k =0,1,2,3,4),∴p 0=C 40p 0(1-p )4=(1-p )4,由条件知1-p 0=6581,∴(1-p )4=1681,∴1-p =23,∴p =13,∴p 1=C 41p ·(1-p )3=4×13×⎝ ⎛⎭⎪⎫233=3281,故选C.9.(2020·衡阳模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取ξ次球,则P (ξ=12)等于( )A .C 1210·⎝ ⎛⎭⎪⎫3810·⎝ ⎛⎭⎪⎫582B .C 119·⎝ ⎛⎭⎪⎫389·⎝ ⎛⎭⎪⎫582·38C .C 119·⎝ ⎛⎭⎪⎫589·⎝ ⎛⎭⎪⎫382D .C 119·⎝ ⎛⎭⎪⎫389·⎝ ⎛⎭⎪⎫582[答案] B[解析] 从口袋中任取一球,取到红球的概率为38.重复进行了ξ次取球试验,其中红球恰好取到了10次,ξ=12即进行了12次试验,其中前11次试验中出现了9次红球,第12次试验结果为红球,∴P (ξ=12)=C 119·⎝ ⎛⎭⎪⎫389×⎝ ⎛⎭⎪⎫582×38.10.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎪⎨⎪⎧-1 第n 次摸取红球1 第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 75⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫235B .C 72⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135C .C 75⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫235D .C 73⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫235[答案] B[分析] 关键是弄清S 7=3的含义:S 7=a 1+a 2+…+a 7,而a i 的取值只有1和-1,故S 7=3表示在a i 的七个值中有5个1、2个-1,即七次取球中有5次取到白球、2次取到红球.[解析] S 7=a 1+a 2+…+a 7=3表示七次取球试验中,有2次取到红球,而一次取球中,取到红球的概率P 1=23,∴所求概率为P =C 72⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135.二、填空题11.(2020·山东枣庄模拟)设随机变量X ~B (n,0.5),且D (X )=2,则事件“X =1”的概率为________(用数字作答)[答案]132[解析] ∵X ~B (n,0.5),∴D (X )=n ×0.5×(1-0.5)=2,∴n =8.∴事件“X =1”的概率为P (X =1)=C 81×0.5×0.58-1=132. 12.为了了解学生的体能素质,随机抽取一小组进行体能检测,要求每位学生长跑、跳远至少通过一项才算合格,已知通过长跑测试的有2人,通过跳远测试的有5人,现从中选2人,设ξ为选出的人中既通过长跑测试又通过跳远测试的人数,且P (ξ>0)=710,则该小组有______人.[答案] 5[解析] 设该小组共有x 人,其中既通过长跑测试又通过跳远测试的有y 人,则 ⎩⎪⎨⎪⎧P ξ>0=C y 1C x -y 1+C y 2C x 2=7102-y +y +5-y =x解得x =5或x =11237(舍去).所以该小组一共有5人.13.在一次考试的5道题中,有3道理科题和2道文科题,如果不放回的依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为________.[答案] 12[解析] 设第一次抽到理科题为事件A ,第二次抽到理科题为事件B ,则两次都抽到理科题为事件A ∩B ,∴P (A )=35,P (A ∩B )=310,∴P (B |A )=P A ∩B P A =12.[点评] 由于是不放回抽样,故在第一次抽到理科题条件下,相当于有2道理科题和2道文科题,从中抽一道,抽到理科题的概率为多少,故为P =12.14.(2020·上海大同中学模考)一个箱子中装有大小相同的1个红球,2个白球,3个黑球,现从箱子中一次性摸出3个球,每个球是否被摸出是等可能的,用ξ表示摸出的黑球数,则ξ的数学期望E (ξ)=________.[答案] 32[解析] P (ξ=0)=C 33C 30C 63=120,P (ξ=1)=C 32C 31C 63=920,P (ξ=2)=C 31C 32C 63=920,P (ξ=3)=C 30C 33C 63=120,∴E (ξ)=0×120+1×920+2×920+3×120=32.三、解答题15.(2020·温州十校)一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分.(1)若从袋子里一次取出3个球,求得4分的概率;(2)若从袋子里每次摸出一个球,看清颜色后放回,连续摸2次,求所得分数ξ的分布列及数学期望.[解析] (1)从袋子里一次取出3个球,得4分的概率为P =C 32C 21C 53=35.(2)依题意,ξ的可能取值为2,3,4.P (ξ=2)=⎝ ⎛⎭⎪⎫352=925,P (ξ=3)=C 21×35×25=1225,P (ξ=4)=⎝ ⎛⎭⎪⎫252=425,故ξ的分布列为故ξ的数学期望E (ξ)=2×25+3×25+4×25=5.[点评] 取球问题是随机变量的常见题型,要注意球有无颜色限制,摸球的方法,终止摸球的条件,记分方法等等附加了哪些限制条件,请再练习下列两题:1°口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回地摸球,每次摸出一个,规则如下:①若一方摸出一个红球,则此人继续进行下一次摸球;若一方摸出一个白球,则换成对方进行下一次摸球;②每一次摸球彼此相互独立,并约定由甲开始进行第一次摸球.求在前三次的摸球中:(1)乙恰好摸到一次红球的概率; (2)甲至少摸到一次红球的概率;(3)甲摸到红球的次数ξ的分布列及数学期望.[解析] 记“甲摸球一次摸出红球”为事件A ,“乙摸球一次摸出红球”为事件B ,则P (A )=P (B )=44+8=13,P (A -)=P (B -)=23,且事件A ,B 相互独立. (1)在前三次摸球中,乙恰好摸到一次红球的概率为P ′=P (A A -B )+P (A -B B -)=13×23×13+23×13×23=29. (2)因为甲在前三次摸球中,没有摸到红球的概率为P 1=P (A -·B )+P (A -·B -·A -)=23×13+⎝ ⎛⎭⎪⎫233=1427, 所以甲至少摸到一次红球的概率为P 2=1-P 1=1-1427=1327.(3)根据题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=P (A -·B )=P (A -·B -·A -)=23×13+⎝ ⎛⎭⎪⎫233=1427, P (ξ=1)=P (A ·A -)=P (A -·B -·A )=13×23+⎝ ⎛⎭⎪⎫232×13=1027,P (ξ=2)=P (A ·A ·A -)=⎝ ⎛⎭⎪⎫132×23=227,P (ξ=3)=P (A ·A ·A )=⎝ ⎛⎭⎪⎫133=127.故ξ的分布列为数学期望E (ξ)=0×27+1×27+2×27+3×27=27.2°袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有m 个,3号球有n 个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是13.(1)求m ,n 的值;(2)从袋中任意摸出2个球,设得到小球的编号数之和为ξ,求随机变量ξ的分布列和数学期望E (ξ).[解析] (1)记“第一次摸出3号球”为事件A ,“第二次摸出2号球”为事件B ,则P (B |A )=m 9=13, ∴m =3,n =10-3-1=6. (2)ξ的可能的取值为3,4,5,6.P (ξ=3)=1·C 31C 102=115,P (ξ=4)=1·C 61+C 32C 102=15, P (ξ=5)=C 31C 61C 102=25,P (ξ=6)=C 62C 102=13.ξ的分布列为E (ξ)=3×115+4×15+5×5+6×3=5.16.(2020·广东理,17)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列.(3)从该流水线上任取5件产品、求恰有2件产品的重量超过505克的概率. [解析] (1)重量超过505克的产品数量是 40×(0.05×5+0.01×5)=40×0.3=12件. (2)Y 的分布列为Y 0 1 2 PC 282C 402 C 281C 121C 402 C 122C 402 (3)从流水线上取5 C 283C 122C 405=28×27×263×2×1×12×112×140×39×38×37×365×4×3×2×1=21×1137×19=231703. 17.一位学生每天骑自行车上学,从他家到学校有5个交通岗,假设他在交通岗遇到红灯是相互独立的,且首末两个岗遇到红灯的概率为p ,其余3个交通岗遇到红灯的概率均为12.(1)若p =23,求该学生在第三个交通岗第一次遇到红灯的概率;(2)若该学生至多遇到一次红灯的概率不超过518,求p 的取值范围.[解析] (1)记“该学生在第i 个交通岗遇到红灯”为事件A i (i =1,2,…,5), 则P (A -1A -2A 3)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12×12=112.即该学生在第三个交通岗第一次遇到红灯的概率为112.(2)“该学生至多遇到一次红灯”指“没有遇到红灯(记为A )或恰好遇到一次红灯(记为B )”,P (A )=(1-p )2·⎝⎛⎭⎪⎫1-123=18(1-p )2,P (B )=(1-p )2·C 31⎝⎛⎭⎪⎫1-122×12+C 21p (1-p )×⎝⎛⎭⎪⎫1-123=38(1-p )2+14p (1-p ).由18(1-p )2+38(1-p )2+14p (1-p )≤518得, 13≤p ≤83,又0≤p ≤1,且p =1时,首末两个交通岗都必遇到红灯,不合题意,所以p 的取值范围是⎣⎢⎡⎭⎪⎫13,1.。