2021届新高三数学精品专项测试题 19 条件概率与全概率公式 学生版

2021届新高三数学精品专项测试题   19 条件概率与全概率公式  学生版
2021届新高三数学精品专项测试题   19 条件概率与全概率公式  学生版

【新高考】2021届高三特前班精准提升数学专项测试题

19 条件概率与全概率公式

例1:一个袋中装有大小相同的个白球和个黑球,若不放回地依次取两个球,设事件

“第一次取出白球”,事件

为“第二次取出黑球”,则概率

( )

A .

B .

C .

D .

例2:有台车床加工同一型号的零件,第1台加工的次品率为

,第,台加工的次品

率为

,加工出来的零件混放在一起.已知1,2,3台车床加工的零件数分别占总数的

(1)任取一个零件,计算它是次品的概率;

(2)如果取到的零件是次品,计算它是第台车床加工的概率.

一、选择题

1.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又

下雨的概率为

.则在下雨条件下吹东风的概率为( )

A .

B .

C .

D .

2.根据以往数据统计,某酒店一商务房间1天有客人入住的概率为,连续天有客人入

住的概率为

,在该房间第一天有客人入住的条件下,第二天也有客人入住的概率为( )

A .

B .

C .

D .

3.已知正方形

,其内切圆与各边分别切于点

,连接

,,

.现向正方形

内随机抛掷一枚豆子,记事件

:豆子落在圆内,事件

:豆

子落在四边形

外,则

( )

A .

B .

C .

D .

4.把一枚硬币连续抛两次,记“第一次出现正面”为事件

,“第二次出现正面”为事件

( )

A .

B .

C .

D .

5.已知

等于( )

A .

B .

C .

D .

6.从,,,,,,,,中不放回地依次取个数,事件

为“第一次取到的是

此卷

只装

封 班级 姓名 准考证号 考场号 座位号

奇数”,为“第二次取到的是的整数倍”,则()

A.B.C.D.

二、填空题

7.一个口袋中装有个小球,其中红球个,白球个.如果不放回地依次摸出个小球,则在第次摸出红球的条件下,第次摸出红球的概率为________.

8.某校组织甲、乙、丙、丁、戊、己等名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为_______.

9.甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球.先从甲罐中随机取出一球放入乙罐,分别以,和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________.

①;②;③事件与事件相互独立;④,,是两两互斥的事件.

10.某气象台统计,该地区下雨的概率为,刮四级以上风的概率为,既刮四级以上的

风又下雨的概率为,设为下雨,为刮四级以上的风,则_______,

__________.

三、解答题

11.某次社会实践活动中,甲、乙两个班的同学共同在一社区进行民意调查.参加活动的甲、乙两班的人数之比为,其中甲班中女生占,乙班中女生占.求该社区居民遇到一位进行民意调查的同学恰好是女生的概率.

12.已知口袋中有个白球和个红球,现从中随机抽取两次,每次抽取个.

(1)若采取放回的方法连续抽取两次,求两次都取得白球的概率;

(2)若采取不放回的方法连续抽取两次,求在第一次取出红球的条件下,第二次取出的是红球的概率.

13.某学校有,两家餐厅,王同学第天午餐时随机地选择一家餐厅用餐.如果第天去餐厅,那么第天去餐厅的概率为;如果第天去餐厅,那么第天去餐厅的概率为.计算王同学第天去餐厅用餐的概率.

14.张奖券中有张有奖,甲,乙两人不放回的各从中抽张,甲先抽,乙后抽.求:(1)甲中奖的概率;

(2)乙中奖的概率;

(3)在甲未中奖的情况下,乙中奖的概率.

例1:【答案】B

【解析】设事件为“第一次取出白球”,事件为“第二次取出黑球”,

,,

第一次取出白球的前提下,第二次取出黑球的概率为.

例2:【答案】(1);(2).

【解析】设“任取一个零件为次品”,“零件为第台车床加工”,

则,且,,两两互斥.根据题意得,,,,.

(1)由全概率公式,

(2)“如果取到的零件是次品,计算它是第台车床加工的概率”,

就是计算在发生的条件下,事件发生的概率,

类似地,可得,.

一、选择题

1.【答案】C

【解析】在下雨条件下吹东风的概率为,故选C.

2.【答案】D

【解析】设第二天也有客人入住的概率为,根据题意有,解得,故选D.3.【答案】B

【解析】由题意,设正方形的边长为,则圆的半径为,面积为;

正方形的边长为,面积为,

所求的概率为,故选B.

4.【答案】A

【解析】“第一次出现正面”:,“两次出现正面”:,

则,故选A.

5.【答案】C

【解析】根据条件概率的定义和计算公式:当时,把公式进行变形,

就得到当时,,故选C.

6.【答案】B

【解析】由题意,事件为“第一次取到的是奇数且第二次取到的是的整数倍”,

若第一次取到的为或,第二次有种情况;

若第一次取到的为,,,第二次有种情况,

故共有个事件,

由条件概率的定义,故选B.

二、填空题

7.【答案】

【解析】,故答案为.

8.【答案】

【解析】设事件:“学生甲和乙都不是第一个出场,且甲不是最后一个出场”;

事件:“学生丙第一个出场”,对事件,甲和乙都不是第一个出场,

第一类:乙在最后,则优先从中间个位置中选一个给甲,再将余下的个人全排列有

种;

第二类:乙没有在最后,则优先从中间个位置中选两个给甲乙,再将余下的个人全排列有种,故总的有.

对事件,此时丙第一个出场,优先从除了甲以外的4人中选一人安排在最后,

再将余下的人全排列有种,

故,故答案为.

9.【答案】②④

【解析】因为每次取一球,所以,,是两两互斥的事件,故④正确;

因为,,,所以,故②正确;

同理,,

所以,故①③错误,

故答案为②④.

10.【答案】,

【解析】由已知,,,

∴,,故答案为,.

三、解答题

11.【答案】.

【解析】如果用与分别表示居民所遇到的一位同学是甲班的与乙班,表示是女生.

则根据已知,有,,

而且,,

题目所要求的是,

由全概率公式可知.

12.【答案】(1);(2).

【解析】(1)两次都取得白球的概率.

(2)记事件:第一次取出的是红球;事件:第二次取出的是红球,

则,,

利用条件概率的计算公式,可得.

13.【答案】.

【解析】设“第1天去A餐厅用餐”,“第1天去B餐厅用餐”,“第2天去A 餐厅用餐”,

则,且与互斥.

根据题意得,,,

由全概率公式,得,

因此,王同学第天去餐厅用餐的概率为.

14.【答案】(1);(2);(3).

【解析】(1)设“甲中奖”为事件,则.

(2)设“乙中奖”为事件,则,又,,

所以.

(3)因为,,所以.

全国各地高考数学统计与概率大题专题汇编.doc

1.【2015·新课标II】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); 价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率. 2.【2015·福建】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

3.【2015·山东】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10 分;若能被10整除,得1分. 整除,得1 (I)写出所有个位数字是5的“三位递增数” ; (II)若甲参加活动,求甲得分X的分布列和数学期望EX. 4.【2015·安徽】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

概率统计公式大全(复习重点)

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

高三年级数学概率训练题(含答案)

高三年级数学概率训练题(含答案) 数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。小编准备了高三年级数学概率训练题,希望你喜欢。 一、选择题:本大题共12小题,每小题5分,共60分. 1.从装有5只红球,5只白球的袋中任意取出3只球,有事件: ①取出2只红球和1只白球与取出1只红球和2只白球 ②取出2只红球和1只白球与取出3只红球 ③取出3只红球与取出3只球中至少有1只白球 ④取出3只红球与取出3只白球. 其中是对立事件的有() A.①② B.②③ C.③④ D.③ D解析:从袋中任取3只球,可能取到的情况有:3只红球,2只红球1只白球,1只红球,2只白球,3只白球,由此可知①、②、④中的两个事件都不是对立事件.对于③,取出3只球中至少有一只白球包含2只红球1只白球,1只红球2只白球,3只白球三种情况,与取出3只红球是对立事件. 2.取一根长度为4 m的绳子,拉直后在任意位置剪断,那么剪得的两段都不少于1 m的概率是() A.14 B.13

C.12 D.23 C解析:把绳子4等分,当剪断点位于中间两部分时,两段绳子都不少于1 m,故所求概率为P=24=12. 3.甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙两人下一盘棋,你认为最为可能出现的情况是() A.甲获胜 B.乙获胜 C.甲、乙下成和棋 D.无法得出 C解析:两人下成和棋的概率为50%,乙胜的概率为20%,故甲、乙两人下一盘棋,最有可能出现的情况是下成和棋. 4.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为a2的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是() A.1- B.4 C.1- D.与a的取值有关 A 解析:几何概型,P=a2-a22a2=1-4,故选A. 5.从1,2,3,4这四个数中,不重复地任意取两个种,两个数一奇一偶的概率是() A.16 B.25 C.13 D.23 D 解析:基本事件总数为6,两个数一奇一偶的情况有4种,

高中数学《概率与统计》教学设计

高中数学《概率与统计》教学设计 课题:1.3抽样方法 教学目的:1理解什么是系统抽样 2.会用系统抽样从总体中抽取样 教学重点:系统抽样的概念及如何用系统抽样获取样本 教学难点:与简单随机抽样一样,系统抽样也属于等概率抽样,这是本节课的一个难点;当总体中的个体数不能被样本容量整除时,可先用简单随机抽样从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行,这时在整个抽样过程中每个个体被抽取的概率仍然是相等的.这是本节课的又一难点授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数. 2.简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样 3.⑴用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为 N 1;在整个抽样过程中各个个体被抽到的概率为N n;⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础. 4.抽签法:先将总体中的所有个体(共有N个编号(号码可从1到N,并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时

高三数学专题复习-条件概率问题

数学专题复习 一个很有趣的条件概率问题:三扇门问题 昨天看一片电影《玩转21点》,片中有一个很趣的概率问题。 片中涉及的那个车和羊的问题也被称作蒙提霍尔问题(Monty Hall Problem)或三门问题,是一个源自博弈论的数学游戏问题,大致出自美国的电视游戏节目 “Let's Make a Deal”。问题的名字来自该节目的主持人蒙提·霍尔(Monty Hall)。 这个游戏的玩法是:参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。 明确的限制条件如下: 参赛者在三扇门中挑选一扇。他并不知道内里有什么。 主持人知道每扇门后面有什么。 主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。 主持人永远都会挑一扇有山羊的门。 如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。 如果参赛者挑了一扇有汽车的门,主持人随机在另外两扇门中挑一扇有山羊的门。 参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。 请问如果是你,你会做哪种选择,哪个选择得到车的概率会更大呢? 讨论: ?当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。 解释如下: 有三种可能的情况,全部都有相等的可能性(1/3)︰ 参赛者挑山羊一号,主持人挑山羊二号。转换将赢得汽车。 参赛者挑山羊二号,主持人挑山羊一号。转换将赢得汽车。 参赛者挑汽车,主持人挑两头山羊的任何一头。转换将失败。 在头两种情况,参赛者可以通过转换选择而赢得汽车。第三种情况是唯一一种参赛者通过保持原来选择而赢的情况。因为三种情况中有两种是通过转换选择而赢的,所以通过转换选择而赢的概率是2/3。 ?历史上这个问题刚被提出的时候却引起了相当大的争议。这个问题源自美国电视娱乐节目Let’s Make a Deal,内容如前所述。作为吉尼斯世界纪录中智商最高的人,Savant在Parade Magazine对这一问题的解答是应该换,因为换了之后有2/3的概率赢得车,不换的话概率只有1/3。她的这一解答引来了大量读者信件,认为这个答案太荒唐了。因为直觉告诉人们:如果被打开的门后什么都没有,这个信息会改变剩余的两种选择的概率,哪一种都只能是1/2。持有这种观点的大约有十分之一是来自数学或科学研究机构,有的人甚至有博士学位。还有大批报纸专栏作家也加入了声讨

2020高考数学概率统计(大题)

全国一卷真题分析---概率统计 1.(2011年)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的 概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为 各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 3.(2013年)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中 优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下, 这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为1 2, 且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 1

2021届新高三数学精品专项测试题 19 条件概率与全概率公式 学生版

【新高考】2021届高三特前班精准提升数学专项测试题 19 条件概率与全概率公式 例1:一个袋中装有大小相同的个白球和个黑球,若不放回地依次取两个球,设事件 为 “第一次取出白球”,事件 为“第二次取出黑球”,则概率 ( ) A . B . C . D . 例2:有台车床加工同一型号的零件,第1台加工的次品率为 ,第,台加工的次品 率为 ,加工出来的零件混放在一起.已知1,2,3台车床加工的零件数分别占总数的 , , . (1)任取一个零件,计算它是次品的概率; (2)如果取到的零件是次品,计算它是第台车床加工的概率. 一、选择题 1.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又 下雨的概率为 .则在下雨条件下吹东风的概率为( ) A . B . C . D . 2.根据以往数据统计,某酒店一商务房间1天有客人入住的概率为,连续天有客人入 住的概率为 ,在该房间第一天有客人入住的条件下,第二天也有客人入住的概率为( ) A . B . C . D . 3.已知正方形 ,其内切圆与各边分别切于点 , , 、 ,连接 , ,, .现向正方形 内随机抛掷一枚豆子,记事件 :豆子落在圆内,事件 :豆 子落在四边形 外,则 ( ) A . B . C . D . 4.把一枚硬币连续抛两次,记“第一次出现正面”为事件 ,“第二次出现正面”为事件 , 则 ( ) A . B . C . D . 5.已知 , , 等于( ) A . B . C . D . 6.从,,,,,,,,中不放回地依次取个数,事件 为“第一次取到的是 此卷 只装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

条件概率例题

. 条件概率例题 山东省莱芜市第一中学 刘志 例1 一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个小孩是男孩的概率为(假定一个小孩是男孩还是女孩是等可能的)( ) 一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}. 记事件A 为“其中一个是女孩”,事件B 为“另一个是男孩”,则A={(男,女),(女,男),(女,女)},B={(男,女),(女,男),(男,男)},AB={(男,女),(女,男)}. 解法1:可知P(A)= 43 ,P(AB)=4 2 或P(AB)= 21212112=??C 于是P (B|A )=324321 ) ()(==A P AB P 解法2:事件A 包括{(男,女),(女,男),(女,女)},即n(A)=3 事件AB 包括{(男,女),(女,男)}.即n(AB)=2 所以P (B|A )=3 2)()(=A n AB n 例2 一个家庭中有两个小孩,已知其中有一个是男孩,则这时另一个小孩是男孩的概率为(假定一个小孩是男孩还是女孩是等可能的)( ) 一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}. 记事件A 为“其中一个是男孩”,事件B 为“另一个也是男孩”,则A={(男,女),(女,男),(男,男)},B={(男,女),(女,男),(男,男)},AB={(男,男)}. 解法1:可知P(A)= 43,P(AB)= 4 1,或P(AB)=412121=?

. P (B|A )= 314 341 ) ()(==A P AB P 解法2:事件A 包括{(男,男),(男,女),(女,男)},即n(A)=3 事件AB 包括{(男,男)}.即n(AB)=1 所以P (B|A )=3 1)()(=A n AB n 例3 2011?福建模拟)某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格. 问:从两班10名同学中各抽取一人,已知有人及格,求乙班同学不及格的概率; 甲班有4人及格,乙班有5人及格.事件“从两班10名同学中各抽取一人,已知有人及格”记作A , 事件“从两班10名同学中各抽取一人,乙班同学不及格”记作B ,利用条件概率计算公式即可求得结论; 解法1:10 7103121531)1051)(1041(1)(1)(=-=?-=-- -=-=A P A P P AB P =)((有人及格乙班不及格) =P (甲班及格乙班不及格)=5 110020105104==? 则P (B |A )=7 210751 )()(==A P AB P 解法2:甲班=[4人及格,6人不及格] 乙班=[5人及格,5人不及格] =)(AB n n(有人及格乙班不及格)=n(甲班及格乙班不及格)=201514 =C C n A n =)((甲班及格乙班不及格+甲班不及格乙班及格+甲班及格乙班及格)=151415161514 C C C C C C ++ =20+30+20=70 所以)()()|(A n AB n A B P =7020=7 2=

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

高三数学一轮复习统计与概率练习题

第10章 第3节 一、选择题 1.(文)(2010·重庆文,5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( ) A .7 B .15 C .25 D .35 [答案] B [解析] 抽取比例为 = ,因为青年职工抽取7人,所以中年职工抽取 5人,老年职工抽取3人,所以样本容量为7+5+3=15人,故选B. (理)设某项试验的成功率是失败率的2倍,用随机变量ξ去描述1次试验的成功次数,则P(ξ=0)和D(ξ)的值依次为( ) A .1,6 B.12,12 C.13,29 D.14,516 [答案] C [解析] 由题意,设ξ的分布列为 即“ξ=0”表示试验失败,“ξ=1”表示试验成功, 由p +2p =1,得p =1 3, ∴P(ξ=0)=1 3, 又E(ξ)=0×13+1×23=2 3, ∴D(ξ)=????0-232×13+??? ?1-232×23=2 9, 故选C. 2.(2010·安徽江南十校联考)最小二乘法的原理是( ) A .使得∑i =1 n [yi -(a +bxi)]最小

B .使得∑i =1n [yi -(a +bxi)2]最小 C .使得∑i =1n [yi2-(a +bxi)2]最小 D .使得∑i =1n [yi -(a +bxi)]2最小 [答案] D [解析] 根据回归方程表示到各点距离最小的直线方程,即总体偏差最小,亦即∑i =1n [yi -(a + bxi)]2最小. 3.(2010·银川模拟)下列四个命题正确的是( ) ①线性相关系数r 越大,两个变量的线性相关性越强,反之,线性相关性越弱; ②残差平方和越小的模型,拟合的效果越好; ③用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好; ④随机误差e 是衡量预报精确度的一个量,它满足E(e)=0. A .①③ B .②④ C .①④ D .②③ [答案] B [解析] 线性相关系数r 满足|r|≤1,并且|r|越接近1,线性相关程度越强;|r|越接近0,线性相关程度越弱,故①错误;相关指数是度量模型拟合效果的一种指标.相关指数R2越接近于1,模型的拟合效果越好,R2越大,残差平方和就越小,故残差平方和越小的模型,拟合效果越好,故②对③错.故选B. 4.若两个分类变量x 、y 的列联表为 则变量y 与x 有关系的可能性为( ) A .99%以上 B .95%以上 C .99.5%以上 D .95%以下

高考数学第88炼 含有条件概率的随机变量问题

第88炼 含有条件概率的随机变量问题 一、基础知识: 1、条件概率:事件B 在事件A 已经发生的情况下,发生的概率称为B 在A 条件下的条件概率,记为|B A 2、条件概率的计算方法: (1)按照条件概率的计算公式:()()() |P AB P B A P A = (2)考虑事件A 发生后,题目产生了如何的变化,并写出事件B 在这种情况下的概率 例如:5张奖券中有一张有奖,甲,乙,丙三人先后抽取,且抽完后不放回,已知甲没有中奖,则乙中奖的概率: 按照(1)的方法:设事件A 为“甲没中奖”,事件B 为“乙中奖”,则所求事件为|B A ,按照公式,分别计算()(),P AB P A ,利用古典概型可得:()2 541 5 P AB A = =,()45P A =,所以()() ()1 |4 P AB P B A P A = = 按照(2)的方法:考虑甲已经抽完了,且没有中奖,此时还有4张奖券,1张有奖。那么轮到乙抽时,乙抽中的概率即为 1 4 3、含条件概率的乘法公式:设事件,A B ,则,A B 同时发生的概率()()()|P AB P A P B A =? ,此时()|P B A 通常用方案(2)进行计算 4、处理此类问题要注意以下几点: (1)要分析好几个事件间的先后顺序,以及先发生的事件对后面事件的概率产生如何的影响(即后面的事件算的是条件概率) (2)根据随机变量的不同取值,事件发生的过程会有所不同,要注意区别 (3)若随机变量取到某个值时,情况较为复杂,不利于正面分析,则可以考虑先求出其它取值时的概率,然后用间接法解决。 二、典型例题: 例1:袋中有大小相同的三个球,编号分别为1,2,3,从袋中每次取出一个球,若取到的球

高三数学单元练习题概率与统计(Ⅲ)

高三数学单元练习题:概率与统计(Ⅲ) 一、 选择题(本题共12小题,每小题5分,共60分) 1设M 和N 是两个随机事件,表示事件M 和事件N 都不发生的是 ( ) A .M N + B .M N ? C . M N M N ?+? D .M N ? 2. 某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采取分层抽样法抽取容量为45的样本,那么高一,高二,高三各年级抽取的人数分别为 ( ) A..15,10,20 ,15,15 C.10,5,30 D15,5,25 3.设一随机试验的结果只有A 和B ,且P(A)=m,令随机变量ξ=1 ?????A发生 B 发生,则ξ的方差为( ) B.2m(1-m) (m-1) (1-m) 4. 设ξ是离散型随机变量,η=2ξ+3,则有 ( ) A .E η=2E ξ,D η=4D ξ B .E η=2E ξ+3,D η=4D ξ C .E η=2E ξ+3,D η=2D ξ+3 D .E η=2E ξ,D η=4D ξ+3 5.观察2000名新生婴儿的体重,得到频率分布直方图如图,则其中 体 重 [2700,3000]的婴儿有( ) 名 名 名 名 6. 将一组数据x 1,x 2,…,x n 改变为x 1-c ,x 2-c ,…,x n -c (c ≠0),下面结论正 确的是 A.平均数和方差都不变 B.平均数不变,方差变了 C.平均数变了,方差不变 D.平均数和方差都变了 7. 船队若出海后天气好,可获利5000元,若出海后天气坏,将损失2000元;若不出海也要损失1000元,根据预测天气好的概率为,则出海效益的期望是( ) A 、2600 B 、2400 C 、 2200 D 、2000 8.设随机变量ξ服从正态分布N(0,1),记()()x P x ξΦ=<.给出下列结论:①1 (0)2 Φ= ;②()1()x x Φ=-Φ-;③(||)2()1P a a ξ=Φ-<;④(||)1()P a a ξ=-Φ>.其中正确命题的个数为( ) .2 C 9. 为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在到之间的学生数为b ,则a , b 的值分别为 ( ) A ., 78 B ., 83 C ., 78 D ., 83 10. 抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,则在10次试验中,成功次数ξ的期望是 ( ) A.3 10 B.9 55 C. 9 50 D. 9 80 11.如果随机变量ξ~N (1,0),标准正态分布表中相应0x 的值为)(0x Φ则 ( ) A.)()(00x x P Φ==ξ B.)()(00x x P Φ=>ξ C.)()|(|00x x P Φ=<ξ D. )()(00x x P Φ=<ξ 12.为了考察两个变量x 和y 之间的线性相关性,甲、乙两个同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为1l 和2l .已知两个人在试验中发现对变量x 的观测数据的平均数都为s ,对变量y 的观测数

条件概率及全概率公式练习题

二、计算题 1.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 解.设事件A表示“甲取到的数比乙大”, 设事件B表示“甲取到的数是5的倍数”. 则显然所要求的概率为P(A|B). 根据公式 而P(B)=3/15=1/5 , , ∴P(A|B)=9/14. 2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”, 设事件B表示“掷出的三个点数都不一样”. 则显然所要求的概率为P(A|B). 根据公式 , , ∴P(A|B)=1/2. 3.袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取1解.设事件A i表示“第i次取到白球”. (i=1,2,…,N) 则根据题意P(A1)=1/2 , P(A2|A1)=2/3,

到黑球的概率. 由乘法公式可知: P(A1A2)=P(A2|A1)P(A1)=1/3. 而P(A3|A1A2)=3/4 , P(A1A2A3)=P(A3|A1A2)P(A1A2)=1/ 4 . 由数学归纳法可以知道 P(A1A2… A N)=1/(N+1). 4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”, 事件B表示“最后取到的是白球”. 根据题意: P(B|A)=5/12 , , P(A)=1/2. ∴ . 5.有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率. 解.设事件A i表示“从甲袋取的2个球中有i 个白球”,其中i=0,1,2 . 事件B表示“从乙袋中取到的是白球”. 显然A0, A1, A2构成一完备事件组,且根据题意

【精品】2007——2017年高考数学全国卷概率统计大题(教师版)

【精品】2007——2017年高考数学全国卷概率统计大题 2007某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2 ()(10.6) 0.064 P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.30()0.60.216P B ==,12 13()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=. 2008 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解:记A 1、A 2分别表示依方案甲需化验1次、2次,B 表示依方案乙需化验3次,A 表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A 2与B 独立,且 B A A A 21+=, 5 1C 1)A (P 15 1= = ,5 1A A )A (P 25 142= = ,5 2) (1 3 3 51224= ??= C C C C B P 。 P(A )=P(A 1+A 2·B) =P(A 1)+P(A 2·B)=P(A 1)+P(A 2)·P(B) =5 25 15 1? += 25 7 所以 P(A)=1-P(A )= 25 18=0.72 2009 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;

2020年高考文科数学概率与统计题型归纳与训练

2020年高考文科数学《概率与统计》题型归纳与训练 【题型归纳】 题型一古典概型 例1 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(). A. 1 5B. 2 5 C. 8 25 D. 9 25 【答案】B 【解析】可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有: (甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为42 105 =.故选B. 例2 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】2 3 【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6 种,其中2本数学书相邻的有4种,则其概率为:42 63 p==. 【易错点】列举不全面或重复,就是不准确 【思维点拨】直接列举,找出符合要求的事件个数. 题型二几何概型 1 / 18

例 1 如图所示,正方形ABCD 内的图形来自中国古代的太极 图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ). A. 14 B. π8 C. 12 D. π 4 【答案】B 【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为 8 22122 ππ=??? ????a a .故选B. 例2 在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________. 【答案】3 2 【解析】方程2 2320x px p 有两个负根的充要条件是2121244(32)0 20320 p p x x p x x p ??=--≥? +=-? 即 2 1,3 p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p 有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503 -+-=-,故填:32. 【易错点】“有两个负根”这个条件不会转化. 【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数p 的范围.在利用几何概型的计算公式计算即可. D

条件概率练习题57021

条件概率 一、选择题 1.下列式子成立的是( ) A.P(A|B)=P(B|A) B.0

12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________. 三、解答题 13.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,求P(B|A). 14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率. 15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问: (1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少 (2)从2号箱取出红球的概率是多少 16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表. (1)求选到的是第一组的学生的概率; (2)已知选到的是共青团员,求他是第一组学生的概率.

高考数学《概率与统计》专项练习(解答题含答案)

《概率与统计》专项练习(解答题) 1.(2016全国Ⅰ卷,文19,12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机 器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损 零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若n =19,求y 与x 的函数解析式; (Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易 损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件? 解:(Ⅰ)当x ≤19时,y =3800 当x >19时,y =3800+500(x -19)=500x -5700 ∴y 与x 的函数解析式为y ={3800, x ≤19 500x ?5700,x >19 (x ∈N ) (Ⅱ)需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7 ∴n 的最小值为19 (Ⅲ)①若同时购买19个易损零件 则这100台机器中,有70台的费用为3800,20台的费用为4300,10台的费用为4800 ∴平均数为1 100(3800×70+4300×20+4800×10)=4000 ②若同时购买20个易损零件 则这100台机器中,有90台的费用为4000,10台的费用为4500 ∴平均数为1 100(4000×90+4500×100)=4050 ∵4000<4050 ∴同时应购买19个易损零件 2.(2016全国Ⅱ卷,文18,12分)某险种的基本保费为a (单位:元),继续购买该险种的投保 频数 10162024

2.2.1 条件概率练习题

2.2.1 条件概率练习题 1.已知P(B|A)=103,P(A)=5 1,则P(AB)=( ) A .21 B.23 C .32 D.50 3 2.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)=( ) A.21 B.31 C.41 D.8 1 3.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为15 2,既刮风又 下雨的概率为10 1,则在下雨天里,刮风的概率为( ) A.2258 B.21 C.83 D.4 3 4.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次 * 抽到白球的概率为( ) A.53 B.43 C.21 D. 10 3 5.6位同学参加百米短跑初赛,赛场有6条跑道,则已知甲同学排在第一跑道,乙同 学排在第二跑道的概率( ) A.52 B.51 C.92 D. 7 3 6.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 7 3 7.福娃是2008年北京第二十九届奥运会的吉祥物,每组福娃都由“贝贝”“晶晶” “欢欢”“迎迎”和“妮妮”这五个福娃组成,甲、乙两人随机地从一组五个福娃中选 ( 取一个留作纪念。按甲先选乙再选的顺序不放回的选择,则在他俩选择的福娃中“贝贝” 和“晶晶”一只也没有被选中的概率是( ) A.101 B.53 C.103 D.5 2 8.任意向(0,1)区间上投掷一个点,用x 表示该点的坐标,则 ={x|0

2020高考理科数学大题专项练习:统计与概率问题

大题专项:统计与概率问题 一、解答题 1.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率; (2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 解:(1)由已知,有P (A )= C 22C 32+C 32C 3 2C 8 4=6 35. 所以,事件A 发生的概率为6 35. (2)随机变量X 的所有可能取值为1,2,3,4. P (X=k )= C 5k C 3 4-k C 8 4(k=1,2,3,4). 所以,随机变量X 的分布列为 随机变量X 的数学期望E (X )=1×1 14+2×3 7+3×3 7+4×1 14=5 2. 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,用“ξk =0”表示第k 类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D (ξ1),D (ξ2),D (ξ3),D (ξ4),D (ξ5),D (ξ6)的大小关系. 解:(1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A , 第四类电影中获得好评的电影为200×0.25=50(部). P (A )=50 140+50+300+200+800+510=50 2 000=0.025.

相关文档
最新文档