角的慨念的推广
角的概念的推广概念

角的概念的推广概念角是数学中非常重要的概念,它是指由一个初始点出发,以一定的角度旋转后所形成的图形。
它可以帮助我们理解和描述事物之间的关系以及解决各种实际问题。
然而,角的概念可以进一步推广到更复杂的形式,从而应用于更广泛的领域。
首先,角可以分为几何角和平面角。
几何角是指由两条射线构成的图形,其中初始射线称为边,旋转的射线称为腿。
平面角则是指在一个平面上的角。
几何角和平面角可以相互转换,并且可以按照大小进行比较。
角的概念可以推广到三维空间中。
在三维空间中,角可以由两个非共线的向量构成,并且可以通过点乘和向量的模运算来计算角度。
三维空间中的角可以用来描述物体之间的关系,例如两个平面的夹角或者两个直线的夹角。
角的概念也可以推广到曲线上。
在曲线上,可以定义曲率角,它是指曲线在某一点上的切线与某一特定方向的夹角。
曲率角可以用来描述曲线的弯曲程度,例如在数学和物理学中常用来描述曲线运动的轨迹。
此外,角的概念还可以应用于三角函数中。
三角函数是以角作为自变量的函数,它们描述了角和直角三角形之间的关系。
三角函数包括正弦函数、余弦函数和正切函数等,它们在数学和物理学中有广泛的应用,例如在解决三角形的边长和角度问题中。
在物理学中,角的概念也有广泛的应用。
例如,角动量是物体旋转运动的重要物理量,在刚体力学和量子力学中都有非常关键的作用。
角速度也是用来描述物体旋转运动的重要概念,它是物体单位时间内旋转的角度。
在计算机图形学和计算机游戏中,角的概念也有重要的应用。
例如,计算机游戏中的角色会随着玩家操作而改变角度,而计算机图形学中的三维模型也是由许多角所构成的。
因此,理解和运用角的概念对于计算机图形学和游戏开发非常关键。
总之,角是数学中的重要概念,它可以被推广到几何角、平面角、三维空间角、曲线上的角、三角函数中的角,甚至在物理学和计算机科学中有广泛的应用。
理解和掌握角的概念,可以帮助我们更好地理解和解决各种实际问题。
角的概念的推广

第三象限角的集合:
第三象限角的集合:
{x | k 360 180 x k 360 270, k Z}
第三象限角的集合:
{x | k 360 180 x k 360 270, k Z}
第四象限角的集合:
第三象限角的集合:
{x | k 360 180 x k 360 270, k Z}
例1. 在 - 720到720之间,写 出与60角终边相同的角的集合M.
例1. 在 - 720到720之间,写 出与60角终边相同的角的集合M. 例2. 求终边为直线y x的角的集合.
例3. 已知 是第二象限角,
问:12 是第几象限角? 2 是第几象限角?
2
3 是第几象限角?
3
课堂练习
1. A {小于90的角},B {第一象限
的角},则A B ( )
A.{锐角}
B.{小于90的角}
C.{第一象限的角} D.以上都不对
2. 若90 135, 则 的范围是______, 的范围是_______ .
3. 与- 457角终边相同的角的集合是:
A.{ | k 360 457, k Z} B.{ | k 360 97, k Z} C.{ | k 360 263, k Z} D.{ | k 360 263, k Z}
角的概念的推广
一、复习
1.初中是如何定义角的?
二、角的概念的推广:
二、角的概念的推广: 1.“旋转”形成角.
二、角的概念的推广: 1.“旋转”形成角.
B
O
A
二、角的概念的推广: 1.“旋转”形成角.
B
O
A
二、角的概念的推广: 1.“旋转”形成角.
B
三角函数基础知识

三角函数基础知识整理一.角的概念:1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB叫做角α的终边,射线的端点O叫做角α的顶点.⑵.“正角”与“负角”“0角”⑶意义:用“旋转”定义角之后,角的范围大大地扩大了,角的概念推广以后,它包括任意大小的正角、负角和零角.2.“象限角”角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)3.终边相同的角结论:所有与终边相同的角连同在内可以构成一个集合:{}Z k k S ∈⋅+==,360|οαββ即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和.注意: (1)Z k ∈ (2)是任意角; (3)0360⋅k 与之间是“+”号,如:0360⋅k -30°,应看成0360⋅k +(-30°);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.二. 弧度制:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αradr rr1rad2rr2rad3rr 3radlrα rad2.弧长公式:α⋅=r l由公式:⇒=r l α α⋅=r l 比公式180r n l π=简单 即弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 3.扇形面积公式 lR S 21=其中l 是扇形弧长,R 是圆的半径oR Sl三. 三角函数的定义:1. 设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离02222>+=+=y x yx r2. 比值ry叫做α的正弦 记作: r y =αsin比值r x叫做α的余弦 记作: rx =αcos比值xy叫做α的正切 记作: x y =αtan比值yx叫做α的余切 记作: y x =αcot比值x r叫做α的正割 记作: xr =αsec比值yr叫做α的余割 记作: y r =αcsc以上六种函数,统称为三角函数. 3. 突出探究的几个问题:①角是“任意角”,当=2k +(k Z)时,与的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等②实际上,如果终边在坐标轴上,上述定义同样适用③三角函数是以“比值”为函数值的函数④0>r 而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定. ⑤定义域:r y=αsin 的定义域: R r x=αcos 的定义域:Rx y =αtan 的定义域:⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合. (2)比值只与角的大小有关.ry)(x,αP4. 三角函数在各象限内的符号规律:正弦在第一、二象限为正;余弦在第一、四象限为正; 正切在第一、三象限为正.四. 诱导公式:1.必须熟记的两组诱导公式:诱导公式一(其中Z ∈k ): 用弧度制可写成ααsin )360sin(=︒⋅+k απαsin )2sin(=+k ααcos )360cos(=︒⋅+k απαcos )2cos(=+k ααtan )360tan(=︒⋅+k απαtan )2tan(=+k诱导公式二:αα-sin sin(=-) ααcos cos(=-) ααtan tan(-=-)2. 诱导公式的变形规则:奇变偶不变,符号看象限.诱导公式三: 用弧度制可表示如下:ααsin 180sin(=-︒) ααπsin sin(=-) αα-cos 180cos(=-︒) ααπ-cos cos(=-) ααtan 180tan(-=-︒) ααπtan tan(-=-)诱导公式四: 用弧度制可表示如下:αα-sin 180sin(=+︒) ααπ-sin sin(=+) αα-cos 180cos(=+︒) ααπ-cos cos(=+) ααtan 180tan(=+︒) ααπtan tan(=+)诱导公式五: 用弧度制可表示如下:ααcos )90sin(=-︒ ααπcos )2sin(=-ααsin )90cos(=-︒ ααπsin )2cos(=-ααcot )90tan(=-︒ααπcot )2tan(=-诱导公式六: 用弧度制可表示如下:ααcos )90sin(-=+︒ ααπcos )2sin(-=+ααsin )90cos(-=+︒ ααπsin )2cos(-=+ααcot )90tan(=+︒ ααπcot )2tan(=+补充公式七: 用弧度制可表示如下:αα-sin 360sin(=-︒) ααπ-sin 2sin(=-) ααcos 360cos(=-︒) ααπcos 2cos(=-) ααtan 360tan(-=-︒) ααπtan 2tan(-=-)补充公式八: 用弧度制可表示如下:ααcos )270sin(-=-︒ ααπcos )23sin(-=- ααsin )270cos(-=-︒ ααπsin )23cos(-=-ααcot )270tan(=-︒ααπcot )23tan(=-补充公式九: 用弧度制可表示如下:ααcos )270sin(-=+︒ ααπcos )23sin(-=+ ααsin )270cos(=+︒ ααπsin )23cos(=+ααcot )270tan(-=+︒ ααπcot )23tan(-=+五.两角和与差的三角函数关系式:1.两角和与差的三角函数关系式βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-2 推导公式:)cos sin (cos sin 222222ααααba b ba ab a b a ++++=+因为1)()(222222=+++ba b ba a .所以sin 2θ+cos 2θ=1(1)若令22ba a +=sin θ,则22ba b +=cos θ则asin α+bcos α=22b a +(sin θsin α+cos θcos α)=22b a +cos (θ-α) (或=22b a +cos (α-θ))(2)若令22ba a +=cos ϕ,则22ba b +=sin ϕ.则a sin α+b cos α=22b a +(sin αcos ϕ+cos αsin ϕ)=22b a +sin (α+ϕ)六.二倍角公式:1.二倍角公式:αααcos sin 22sin =;)(2αS ααα22sin cos 2cos -=;)(2αC ααα2tan 1tan 22tan -=;)(2αT1cos 22cos 2-=αααα2sin 212cos -=)(2αC ' 注意:(1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三角函数之间的互化问题.(2)二倍角公式为仅限于α2是α的二倍的形式,尤其是“倍角”的意义是相对的(3)二倍角公式是从两角和的三角函数公式中,取两角相等时推导出,记忆时可联想相应角的公式.(4) 公式)(2αS ,)(2αC ,)(2αC ',)(2αT 成立的条件是: 公式)(2αT 成立的条件是Z k k k R ∈+≠+≠∈,4,2,ππαππαα.其他R ∈α(5) 熟悉“倍角”与“二次”的关系(升角—降次,降角—升次)(6) 特别注意公式的三角表达形式,且要善于变形:22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用七.万能公式:1.万能公式2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222ααααααααα-=+-=+=证明:12tan 12tan22cos 2sin 2cos 2sin 21sin sin 222α+α=α+ααα=α=α22tan 12tan 12cos 2sin 2sin 2cos 1cos cos 222222α+α-=α+αα-α=α=α32tan 12tan22sin 2cos 2cos 2sin2cos sin tan 222α-α=α-ααα=αα=α八. 三角函数的图象与性质:1.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 注:有向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.2.用单位圆中的正弦线、余弦线作正弦函数y=sinx ,x ∈[0,2π]、余弦函数y=cosx ,x ∈[0,2π]的图象(几何法):把y=sinx ,x ∈[0,2π]和y=cosx ,x ∈[0,2π]的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = sin x ()-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = cos x ()3.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (,0) (23π,-1) (2,0)(1)y=cosx, x R 与函数y=sin(x+2π) x R 的图象相同(2)将y=sinx 的图象向左平移2π即得y=cosx 的图象 (3)也同样可用五点法作图:y=cosx x[0,2]的五个点关键是(0,1) (2π,0) (,-1) (23π,0) (2,1)4.定义域:正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作: y =sin x ,x ∈R y =cos x ,x ∈R 5.值域正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-16.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期注意:1 周期函数x 定义域M ,则必有x+T M, 且若T>0则定义域无上界;T<0则定义域无下界;2 “每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)f (x 0))3 T 往往是多值的(如y=sinx 2,4,…,-2,-4,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π 7.奇偶性y =sinx 为奇函数,y =cosx 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称8.单调性正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1九. 函数()()0,0sin >>+=ωψωA x A y 的图象与性质:1.振幅变换:y=Asinx ,x R(A>0且A 1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的它的值域[-A, A] 最大值是A, 最小值是-A .若A<0 可先作y=-Asinx 的图象 ,再以x 轴为对称轴翻折A 称为振幅 2.周期变换:函数y=sin ωx, x R (ω>0且ω1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变).若 ω<0则可用诱导公式将符号“提出”再作图ω决定了函数的周期3 相位变换: 函数y =sin(x +ϕ),x ∈R (其中ϕ≠0)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时=平行移动|ϕ|个单位长度而得到(用平移法注意讲清方向:“加左”“减右”)十. 正切函数的图象与性质:1. 正切线:正切函数R x xy ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”余切函数y =cotx ,x ∈(k π,k π+π),k ∈Z 的图象(余切曲线)正切函数的性质:1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ, 2.值域:R 3.当z k k k x ∈⎪⎭⎫⎝⎛+∈2,πππ时0>y , 当z k k k x ∈⎪⎭⎫⎝⎛-∈πππ,2时0<y 4.周期性:π=T5.奇偶性:()x x tan tan -=-奇函数6.单调性:在开区间z k k k ∈⎪⎭⎫⎝⎛++-ππππ2,2内,函数单调递增十一. 正、余弦定理:1 正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径) 2 正弦定理的应用 从理论上正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a, b 和A, 用正弦定理求B 时的各种情况:①若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA asin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA②若A 为直角或钝角时:⎩⎨⎧>≤)(b a 锐角一解无解b a3. 余弦定理:A bc c b a cos 2222-+=⇔bca cb A 2cos 222-+=B ca a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=4.余弦定理可以解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角5.三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力,要求大家掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力。
角的概念的推广

角的概念的推广引言角是几何学中重要的概念之一,它在实际生活和学术领域中有着广泛的应用。
本文将介绍角的定义、性质以及与其他几何概念的关系,从而推广角的概念。
角的定义在几何学中,角是由两条射线公共端点所围成的部分。
我们可以把射线看成是一根直线,并延长它们,当两条射线共线时,所围成的角度为零。
根据角的凸度,角可以分为锐角、直角和钝角。
•锐角:角度小于90度的角称为锐角;•直角:角度等于90度的角称为直角;•钝角:角度大于90度但小于180度的角称为钝角。
角的性质除了不同凸度的分类,角还有一些重要的性质,下面将介绍几个常见的性质。
直角的性质直角是一种特殊的角,它有一些独特的性质。
•直角可以被等分成两个相等的角,每个角的度数为45度。
•直角的两条边相互垂直。
锐角和钝角的性质锐角和钝角也有一些特殊的性质。
•锐角的度数总是小于90度,而钝角的度数总是大于90度。
•锐角和钝角的正弦、余弦和正切值的大小具有不同的关系。
角与其他几何概念的关系角与其他几何概念之间存在着紧密的联系,下面将介绍角与直线、多边形以及圆的关系。
角与直线的关系直线可以被看成无数个角的集合,两条直线之间的夹角就是这两条直线所围成的角。
夹角可以分为对顶角、同位角和内错角等。
•对顶角:两条相交的直线所围成的角,称为对顶角,对顶角的度数相等。
•同位角:两条平行直线被一条交错直线切割形成的相对应的内错角。
•内错角:平行直线被一条截线分成两段,则截线处的内错角相等。
角与多边形的关系多边形是有多个边和角组成的图形,角是多边形内角和外角的基本单位。
•多边形内角和为180度,每个内角的大小取决于多边形的边数。
•多边形外角和为360度,每个外角的大小与多边形内角之和相等。
•多边形的对角线可以划分内部成多个角。
角与圆的关系角与圆的关系是通过圆周角来描述的。
•圆周角:圆周角是以圆心为顶点的任意两条射线所围成的角,圆周角的度数等于对应的圆心角的度数。
•圆心角:圆心角是以圆心为顶点的两条射线所围成的角,圆心角的度数是对应的圆周角的一半。
角的概念的推广

角的概念的推广角是几何学中的重要概念,它在日常生活中的应用广泛且重要。
角的概念使我们能够更好地理解和描述物体之间的关系,从而更好地解决实际问题。
本文将探讨角的概念以及它在不同领域的推广应用。
一、角的定义和性质角是由两条射线共同起源的部分平面,常用三个字母表示。
根据角的大小,可以将角分为锐角、直角和钝角。
锐角指小于90度的角,直角指等于90度的角,钝角指大于90度但小于180度的角。
角的大小可以通过角度来测量,角度是角所对应的弧长在单位圆上的长度比值。
除了大小外,角还具有其他一些重要性质。
首先,两个角互为补角当且仅当它们的和为90度。
其次,两个角互为余角当且仅当它们的和为180度。
此外,角的顶点、起始射线和终止射线确定一个平面。
这些性质为我们研究角的性质和应用提供了基础。
二、角的推广应用1. 几何学中的角在几何学中,角是研究平面和空间图形间相对位置关系的重要工具。
角的推广应用在多边形的研究中尤为重要。
例如,我们可以通过计算多边形的内角和来判断它们的类型,进而帮助解决诸如平行四边形的判定、多边形的内切圆问题等。
2. 物理学中的角角的概念在物理学中也有着广泛的应用。
例如,角度被广泛用于描述力的作用方向和大小。
在机械学中,角度还用于描述转动运动和力矩的计算。
此外,角速度和角加速度也是物理学中经常使用的概念,通过这些概念可以描述物体的旋转状态以及旋转的快慢程度。
3. 工程学中的角在工程学中,角的概念被广泛应用于测量和布局。
例如,利用角度可以确定建筑物的方向,帮助制定建筑物的布局方案。
此外,在电气工程中,角度也用于描述交流电的相位差,从而确定电路中电压和电流的相对位置。
4. 地理学中的角在地理学中,角被广泛应用于测量和描述地球表面上的地理位置和方向。
例如,利用经纬度可以确定地理位置的坐标,并且通过计算角度可以确定两个地点之间的方位角和航向角。
这些信息对于导航和地图制作非常关键。
5. 计算机图形学中的角在计算机图形学中,角的概念被广泛用于描述和渲染三维图形。
角的概念的推广

角的概念的推广§2角的概念的推广一、教学目标1、知识与技能:(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与角终边相同的角(包括角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间运算。
2、过程与方法:类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系,引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。
3、情感态度与价值观:通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。
二、教学重、难点重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示法及判断。
难点:把终边相同的角用集合和符号语言正确地表示出来。
三、学法与教法在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示,另外还有相同终边角的集合的表示等。
教法:类比探究交流法。
四、教学过程(一)、创设情境,揭示课题同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。
但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。
角的概念的推广,弧度制,任意角的三角函数

角的概念的推广,弧度制,任意角的三角函数[本周教学重点]理解角的定义,掌握正角、负角、零角以及象限角、终边相同角的概念,会写出各个象限角及终边相同角的集合的表达式。
理解弧度制的定义,正确进行角度制与弧度制之间的换算,清楚用弧度制度量角,使角的集合与实数集之间建立了一一对应的关系。
熟记任意角的六个三角函数值的定义,会确定三角函数的定义域,掌握各象限角的三角函数值的符号结论,能正确作出已知角的正弦线,余弦线,正切线。
1. 角的概念的推广①角的定义:一条射线绕其端点从一个位置旋转到另一个位置形成的图形叫做角。
射线的端点叫角的顶点,旋转开始时的射线叫角的始边,旋转结束时的射线叫角的终边。
②正角,负角,零角正角:射线按逆时针方向旋转所成的角叫正角。
负角:射线按顺时针方向旋转所成的角叫负角。
零角:射线不作任何方向的旋转,称它形成一个零角。
③象限角:让角的顶点与原点重合,角的始边与x轴的正半轴重合,则角的终边在第几象限,就称这个角是第几象限的角。
第一象限角的集合第二象限角的集合第三象限角的集合第四象限角的集合轴上角:角的顶点与原点重合,角的始边与x轴正半轴重合,终边在坐标轴上的角叫轴上角。
轴上角的集合象限角与轴上角是对角的集合的一种划分{角}={象限角}∪{轴上角}④终边相同的角的集合2. 弧度制①定义:弧长等于半径长时弧所对的圆心角叫做1弧度的角。
②弧度与角度的互化360°=2弧度,180°=弧度,③弧度制下弧长公式与扇形面积公式设圆半径长为r,弧所对圆心角(或扇形)弧度数为,弧长为,扇形面积为S,则3. 任意角三角函数①定义:设是一个任意角,P是终边上除顶点外任意一点,其坐标为(x,y),它与原点间距离为比值比值比值比值比值比值②三角函数定义域正弦函数定义域为R余弦函数定义域为R正切函数③三角函数值的符号④单位圆中三角函数线角终边依次在四个象限内时有向线段MP,OM,AT依次叫角的正弦线,余弦线,正切线即[本周教学例题]例1.判断下列各命题的真假(1)第一象限角是锐角,第二象限角是钝角;(2)小于90°的角是锐角,大于90°的角是钝角;(3)第二象限的角大于第一象限的角;(4)大于0°且小于180°的角是第一象限或第二象限的角。
角的概念推广

角的概念的推广教材分析这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.教学目标1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.任务分析这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.教学设计一.问题情境[演示]1. 观览车的运动.2.体操运动员、跳台跳板运动员的前、后转体动作.3. 钟表秒针的转动.4. 自行车轮子的滚动[问题]1.如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角?3. 钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角?4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.二、建立模型1. 正角、负角、零角的概念在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.2. 象限角当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.3. 终边相同的角在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即390°=30°+360°,(k=1);-330°=30°-360°,(k=-1).设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k =0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.三、解释应用[例题]1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-150°.(2)650°.(3)-950°5′.2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.(1)60°.(2)-21°.(3)363°14′.3. 写出终边在y轴上的角的集合.解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为S2={β|β=270°+k·360°,k∈Z}={β|β=90°+(2k+1)·180°,k∈Z}.于是,终边在y轴上的角的集合为S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.注:会正确使用集合的表示方法和符号语言.[练习]1.写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(1)45°.(2)-30°.(3)420°.(4)-225°.2.辨析概念.(分别用集合表示出来)(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角.3.一角为30°,其终边按逆时针方向旋转三周后的角度数为.4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.四、拓展延伸五、1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.2.如果α在第二象限时,那么2α,是第几象限角?注:(1)不能忽略2α的终边可能在坐标轴上的情况.(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)点评这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《角的概念的推广》说课稿
各位专家、同仁:您们好!今天我说课的课题是高一下册第四章第1节《角的概念的推广》,现我就教材、教法、学法、教学程序、板书五个方面进行说明。
恳请在座的各位专家、同仁批评指正。
一、说教材
1.本节课的主要内容是角的概念的推广,主要是运用运动观点来定义角,即用角的始边和终边及旋转方向来定义任意角。
从而来完善初中角的定义。
2.地位和作用:本节内容是高中数学三角函数这一大章的第一节,是在学了集合和函数之后的又一重要章节,是对初中锐角三角函数的一个延伸和推广,主要是推广到任意角三角函数。
也是对集合与函数的知识的又一渗透。
所以本节课《角的概念的推广》就起到了一个铺垫和承上启下的作用。
为今后学习任意角的三角函数提供了有力的依据。
3.教学目标:
(1)知识目标:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义,会表示终边相同的角的集合,会判断是哪个象限角还是终边在坐标轴上的角
(2)能力目标:培养学生观察、分析、归纳、抽象、概括等逻辑思维能力,培养学生善于寻找数学规律的能力。
(3)德育目标:培养学生认真参与、积极交流的主体意识,培养学生学习数学的兴趣和勇于创新的精神。
4.重点与难点:
重点:角的概念的推广,会用始边和终边来描述正角、负角、,象限角、终边在坐标轴上的角,会表示终边相同的角的集合。
难点:角的有关概念的辨析,特别是象限角和终边在坐标轴上的角的集合表示。
二、说教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。
根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)引导发现法。
通过已学过角的定义来发现角的概念是可以推广的。
(2)讲、读、议、练。
通过讲解、归纳、概括来介绍角的有关要概念,通过
讨论老师提出的问题来辨析角的有关概念,通过练习来达到巩固知识、
突出重点、解决难点。
三、说学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)分类法:了解数学知识是有规律可循的,要弄清角的分类及分类的方法。
(2)观察分析:让学生要学会观察问题,分析问题和解决问题新。
(3)练习巩固:让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距。
四、说教学程序:
1.导出课题:回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。
相对于现在,我们将要继续研究的三角函数是“任意角的
三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。
首先我们先来学习《角的概念的推广》
2.导入新授:
师:初中学过的角是怎样定义的?
生:从一个点出发引出的两条射线构成的几何图形
师:这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”
师:再问初中讲的角还可以怎样定义?
生:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
师:这个定义与上述定比较下有何特点?
生:角的范围广了,不一定就是初中所讲的锐角、钝角和直角了。
师:对!这就是我们现在要通过这个定义来推广角的概念。
3.导学达标一:
(老师口述第一条:要求学生掌握用“旋转”来定义角的概念,并进而理解“正角”“负角”的含义)
(1)先介绍讲解:旋转所形成角中的“顶点”“始边”“终边”
(2)再介绍讲解:正角与负角——这是由旋转的方向所决定的。
记法:角α或α
∠可以简记成α
(3)练习表示角:
1︒角有正负之分如:α=210︒β=-150︒γ=-660︒
2︒角可以任意大
实例:体操动作:旋转2周(360︒×2=720︒)3周(360︒×3=1080︒)
3︒还有零角一条射线,没有旋转
(由于用“旋转”定义角之后,角的范围大大地扩大了,所以表示角的意义上有所不同,这就需要进行练习加深理解)
4.导学达标二
(老师口述第二条目标:理解象限角和终边在坐标轴上的角的概念及其终边相同角的集合表示)
师:为了研究方便,我们往往在平面直角坐标系中来讨论角,以角的顶点合于坐标原点,角的始边重合于x轴的非负半轴,这样一来,角的终边就落在第几象限,我们就说这个角是第几象限的角
强调:角的终边落在坐标轴上,则此角的终边不属于任何一个象限,这个角也就不叫第几象限角,为了今后研究的方便,我们也给它一个名称叫做坐标轴上的角。
举例如:30︒ , 390︒, -330︒,300︒ , -60︒, 580︒ , 1660︒,-2000︒分别是第几象限角?
师: 请同学们观察:30︒, 390︒,-330︒角,它们的终边有什么关系? 生:重合。
师:那这样终边重合的角有好多,它们这些角的大小之间有何关系?
生:相差360︒ 的整数倍。
师:对我们一起分析
这些角都可以表示成30︒的角与)(Z k k ∈个周角的和
390︒=30︒+360︒ )1(=k -330︒=30︒-360︒
)1(-=k
又如: 1470︒=30︒+4×360︒ )4(=k
-1770︒=30︒-5×360︒ )5(-=k
因此找出规律,所有与α角终边相同的角可以构成一个集合:
{}Z k k S ∈⋅+==,360| αββ
即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和
5.巩固目标:
举书中例1:(让学生思考后进行提问回答,巩固概念)
举书中例2:(和学生一起来用终边相同的角的集合的表示方法来解决此题,其中还包含分类讨论的数学思想,集合的运算)
举书中例3:(进一步巩固终边相同角的概念,进一步小结终边相同的角的规律)
6.学生练习达标:
P7。
练习的第1,2,3,4,5题
(让学生先做再进行提问回答)
7.课堂小结:
正确理解用“旋转”定义角后的有关概念, 真正懂得“正角”“负角”“象限角”“终边相同的角”的含义,会表示终边相同的角的集合,会判断任意角是哪个象限角还是终边在坐标轴上的角。
补充一点:如锐角是第一象限角,反之第一象限角是锐角吗?
那第一象限角是符合什么条件的角,它们组成一个集合可以写成怎样?
答:{
}Z k k k ∈⋅+<<⋅,36090360|000αα 8.布置课外作业: P7 :习题的 第1、2、3、4题。
五.说板书设计:
板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于记忆,有利于提高教学效果。