4.1 成比例线段(2)

合集下载

4.1比例线段(2)

4.1比例线段(2)
C
A
B
D
做一做.
1.如图,已知AD,CE是△ABC中BC、AB 上的高线,求证:AD:CE=AB:BC
A E
B
Dபைடு நூலகம்
C
DE 2.如图在平行四边形ABCD中,
AB, DF BC
找出图中的一组比例线段(用小写字母表示)并说 明理由. D c A E a d B C
F b
拓展与提高:
1.如图:在菱形ABCD中,AE⊥BC,对角线BD 与AC交于点O。试判断线段AE,AO,BD,BC 是否成比例,并说明理由。 2.如图,已知
4.1.2比例线段
要点
线段比 比例线段 面积法
比例尺
1 1 B′
A′
AB=
2 AC= 5
A
2 5 两条线段的长度比 叫做这两条线段的比
AB AC =
B
C A B ∴
A′B′
A B
A′B′
1 2 = = 2 2 2 1 5 = = 2 2 5
C′
A C
A′C′
=
A C
A′C′
1 1 B′ A
A′
请再找出左图的2 组比例线段,并写 出比例式
A B
A′B′
=
A C
A′C′
B
C C′
一般地,如果四条线段a,b,c,d中,a与b的比等于c与d的
a c 比.即 那么这四条线段叫做成比例线段,简 b d
称比例线段.
例1 判断下列各组线段是否成比例,若成比例写出比 例式 (1)4cm、6cm、8cm、2cm;
(2)1.5cm、4.5cm、2.5cm、7.5cm;
(3)1.1cm、2.2cm、3.3cm、6.6cm;

4.1线段的比(2)

4.1线段的比(2)

a c ,那么 b d
反之,如果 ad=bc(a,
b,c,d 都不为0),那么
a c b d
知识拓展
思考:
由 ad=bc ,你还能 得到什么比例式?
例题
欣赏
ab cd 解 : (2). 成立.理由是 : b d a c 由 b d ab a b a 1 b b b b cd c d c 1 d d d d 因此 a c 1 1 b d ab cd 即 b d
q n p n C. B. m p m q
m p D. n q
选做题
小结
探究 & 学习

AB BE 已知 : 如图, , AD EF AB 10cm, AD 2cm, BC 7.2cm, E是BC 中点,
拓展知识 我能行
B F E
求 : EF , BF 的长 ? D 解 : E是BC 中点, C A 1 BE BC 3.6, BF BE EF 2 AB BE 3.6 0.72 2.88(cm). 又 , AD EF 10 3.6 即 , 你真棒 2 EF 3.6 2 EF 0.72;
合比性质(或合分比性质):
a c ab cd 如果 , 那么 . b d b d
当堂训练
主动学习 才是快乐的
1.已知a、b、c、d是成比例线段,且a=4cm,
6cm b=6cm,d=9cm,则c=____
x 2.如果2 x 5 y.那么 y
m p A. q n
3.把mn pq写成比例式.写错的是 D
线段的比(2)
回顾 &am呢?
a∶b = m∶n 或a
如果选用一个长度单位量得两条线段a ,b 的长度分别为 m ,n .那么两条线段的比

九年级数学 第四章 图形的相似 1成比例线段第2课时 等比性质作业

九年级数学 第四章 图形的相似 1成比例线段第2课时 等比性质作业
第八页,共十五页。
8.(2018·宁夏)已知ba=23,则aa-+22bb的值是_-__12__. 9.已知 x∶y∶z=4∶5∶7,则23xx+-32yy-+2zz=__1_. 10.已知35xx-+2yy=12,则xx+ -yy=_-__13_1_.
第九页,共十五页。
11.(教材 P80 例 2 变式)如图,AADB=AACE=BDCE=65,
第十四页,共十五页。
内容(nèiróng)总结
No 第四章 图形(túxíng)的相似。则a+2=3m,b=4m,c+5=6m,。∴a=3m-2,b=4m,c=6m-
5.。∴2(3m-2)-4m+3(6m-5)=21,。即20m=40,解得m=2,。等边
Image
12/7/2021
第十五页,共十五页。
解:令a+3 2=b4=c+6 5=m,
则a+2=3m,b=4m,c+5=6m, ∴a=3m-2,b=4m,c=6m-5. ∵2a-b+3c=21, ∴2(3m-2)-4m+3(6m-5)=21, 即20m=40,解得m=2, ∴a=3m-2=4,b=4m=8,c=6m-5=7. ∴a∶b∶c=4∶8∶7
第十三页,共十五页。
解:(1)设a+3 4=b+2 3=c+4 8=k, 得 a=3k-4,b=2k-3,c=4k-8. ∵a+b+c=12,∴3k-4+2k-3+4k-8=12, 解得 k=3,∴a=5,b=3,c=4 (2)∵32+42=52,即 b2+c2=a2, ∴△ABC 是直角三角形, ∴S△ABC=12×3×4=6
且△ABC 与△ADE 周长差为 4,求△ABC 与△ADE 的周长.
解:∵AADB=AACE=BDCE=65,BDCE=65. 又 C△ABC-C△ADE=4, ∴C△ABC=24,C△ADE=20

浙教版九年级上数学4.1比例线段(2)含答案

浙教版九年级上数学4.1比例线段(2)含答案

浙教版九年级上数学4.1比例线段(2)含答案求线段的比要注意统一长度单位,特别在地图问题中单位的转换是易错点.1.C 是线段AB 上的一点,且AC ∶CB=2∶3,那么AB ∶BC 等于(B).A.2∶3B.5∶3C.3∶2D.3∶52.在比例尺为1∶10000000的地图上,量得甲、乙两地的距离是30cm ,则两地的实际距离是(C).A.30kmB.300kmC.3000kmD.30000km3.以下列长度(同一单位)为长的四条线段中,不成比例的是(C).A.2,5,10,25B.4,7,4,7C.2, 21,21,4 D. 2,5,25,52 4.给出下列各组线段,其中成比例线段是(D).A.a=2cm ,b=4cm ,c=6cm ,d=8cmB.a=21cm ,b=41cm ,c=61cm ,d=81cm C.a=2cm ,b=3cm ,c=10cm ,d=25cmD.a=2cm ,b=5cm ,c=23cm ,d=15cm5.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105km ,在一张比例尺为1∶2000000的交通旅游图上,它们之间的距离大约相当于(A).A.一根火柴的长度B.一支钢笔的长度C.一支铅笔的长度D.一根筷子的长度6.已知线段a=2cm ,b=(2-1)cm ,c=(2-2)cm ,则线段a ,b ,c 的第四比例项是2423 cm .7.C 是线段AB 上一点,BC=2AC ,M ,N 分别是线段AC ,BC 的中点,那么MN ∶BC= 43 . (第8题)8.在某地图册上,连结甲、乙、丙三地构成一个三角形,用刻度尺测得它们之间的距离如图所示.如果飞机从丙直飞甲的距离约为1290km ,那么飞机从丙绕道乙再到甲的空中飞行距离约是 3870 km .9.如图所示,在ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F.找出图中的一组比例线段,并说明理由.(第9题)【答案】∵S ABCD =BC ·AE=CD ·AF ,∴CD BC =AEAF . (第10题)10.如图所示,在△ABC 中,∠B=30°,∠C=45°.(1)求ACAB 的值. (2)求AB ∶AC ∶BC.(第10题答图)【答案】(1)如答图所示,作AD ⊥BC 于点D.在Rt △ABD 中,∵∠B=30°,∴AD=21AB,BD=3AD.在Rt △ADC 中,∵∠C=45°,∴AD=22AC,CD=AD.∴21AB=22AC.∴AC AB =2. (2)∵AB=2AD ,AC=2AD ,BD=3AD ,CD=AD ,∴BC=BD+CD=(3+1)AD.∴AB ∶AC ∶BC=2∶2∶(3+1).11.已知甲、乙两幅地图的比例尺分别为1∶5000和1∶20000,如果甲图上A ,B 两地的距离与乙图上C ,D 两地的距离恰好相等,那么A ,B 两地的实际距离与C ,D 两地的实际距离之比为(C).A.5∶2B.2∶5C.1∶4D.4∶112.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是(C).(第12题)A.19.4B.19.5C.19.6D.19.713.如图所示,一张矩形纸片ABCD 的长AB=a ,宽BC=b ,E ,F 分别为AB ,CD 的中点,这张纸片沿直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则a ∶b 等于(A).(第13题) A. 2∶1 B.1∶2 C. 3∶1 D.1∶314.已知AB 是⊙O 的直径,C 是半圆的三等分点,则BC AC = 3或33 . 15.李老师从拉面的制作受到启发,设计了一个数学问题:如图所示,在数轴上截取从原点到1的对应线段AB ,对折后(点A 与B 重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作,在第一次操作后,原线段AB 上的41,43均变成21,21变成1.那么在线段AB 上的点中(点A ,B 除外),在第二次操作后,恰好被拉到与1重合的点所对应的数之和是 1 .(第15题)16.如图所示,C 是线段AB 上的点,D 是AB 延长线上的点,且AD ∶BD=3∶2,AB ∶AC=5∶3,AC=3.6,求AD 的长.(第16题)【答案】∵AB ∶AC=5∶3,AC=3.6,∴AB=6.∵AD ∶BD=3∶2,∴AB ∶AD=1∶3.∴AD=18.17.如图所示,四边形ABCD 与四边形ABFE 都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:BC CD ,CF EF ,ABBF . (2)指出AB ,BC ,CF ,CD ,EF ,BF 这六条线段中的成比例线段(写一组即可).(第17题)【答案】(1)∵四边形ABCD 与四边形ABFE 都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC-BF=4.5.∴BC CD =5.63=136,CF EF =5.43=32,AB BF =32. (2)成比例线段有CF EF =ABBF (答案不唯一).18.【娄底】若在比例尺为1∶6700000的地图上量得我国南北的图上距离是82.09cm ,则我国南北的实际距离大约是 5500 km (结果精确到1km ).19.已知点P 在线段AB 上,且AP ∶BP=2∶3,则AB ∶PB= 5∶3 .20.在线段AB 上存在一点C ,满足AC ∶CB=CB ∶AB=k .(1)求k 的值.(2)如果三条线段a ,b ,c 满足a ∶b=b ∶c=k ,这三条线段能否构成三角形?如果能,请指出三角形的形状;如果不能,请说明理由.(第20题)【答案】(1)设AB=x,则CB=kx,AC=k 2x.∵AC+BC=AB ,∴k 2x+kx=x.∴k=251±-. ∵k >0,∴k=215-.(2)不能.理由如下:∵a ∶b=b ∶c=k ,∴b=kc=215-c,a=kb=⎪⎪⎭⎫ ⎝⎛-2152c=253- c.∴a+b=c.∴线段a ,b ,c 不能构成三角形.。

《比例线段(2)》精品教案

《比例线段(2)》精品教案

4.1比例线段(二)1.了解两条线段的比和比例线段的概念.2.能根据条件写出比例线段;会运用比例线段解决简单的实际问题.3.通过实际问题的解决,培养学生运用数学的意识.重点:比例线段的概念及比例性质的运用.难点:课本例3要求根据具体问题发现等量关系,找出比例式,有一定的隐蔽性,是本节教学的难点.一、新课导入复习引入1.比例的基本性质是__ab=cd⇔ad=bc__.2.由ad=bc可推出哪些比例式__ab=cd,ac=bd,ba=dc,bd=ac,____ca=db,cd=ab,db=ca,dc=ba.__3.操场上有一群学生在玩游戏,其中男生与女生的人数比例是3∶2,后来又有6名女学生加入进来,此时女生与男生的人数比为5∶3,求原来各有多少男生和女生【解】设原来有男生3x人,女生2x人,则(2x+6)∶3x=5∶315x=6x+18解得x=2所以3x=6,2x=4∴原来有6名男同学和4名女同学.说明:引入一个实际问题,引起学生们的关注,让学生去解决感兴趣的问题,为下一个枯燥的几何问题做好铺垫.二、新知学习(一)比一比两条线段的长度的比,叫做这两条线段的比.如图所示,设线段OC=2,OC′=4,则线段OC与OC′的比就是2∶4=12,记为OCOC′=12.由图,从△ABC到△A′B′C′是一个相似变换,可得ABA′B′=12,BCB′C′=12,所以ABA′B′=BCB′C′.注意:(1)两线段是几何图形,可用它的长度比来确定;(2)度量线段的长度单位有多种,但求比值必须在同一长度单位下,比值一定是正数,比值与采用的长度单位无关.(3)表示方式与用数字的比表示类同,但它也可以表示为AB∶CD.(二)议一议什么是比例线段一般地,四条线段a,b,c,d中,如果a与b的比等于c与d的比,即ab=cd,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.例如,上图中,AB,A′B′,BC,B′C是比例线段.(三)做一做1.如图所示,BCAB=,BC AC =. 2.已知线段a ,b ,c ,若a 2=b 3=c5,且3a -2b +5c =25,求a ,b ,c 的值.【解】设a 2=b 3=c5=k(k≠0).则a =2k ,b =3k ,c =5k ,∵3a -2b +5c =25, ∴6k -6k +25k =25. 解得k =1.∴a =2,b =3,c =5.说明:通过比一比、议一议、做一做,加深对比例及比例线段的理解,从而提高学生的认知水平.三、新知应用【例1】已知线段a =30 mm ,b =2 cm ,c =45 cm ,d =12 mm ,试判断a ,b ,c ,d 是否成比例线段.【分析】判断四条线段是否成比例线段,先要把四条线段的长度单位化为同一单位,然后按从小到大(或从大到小)的顺序排列,再分别计算第一和第二与第三和第四线段的数量比,如果比相等,那么这四条线段成比例,否则不成比例.【解】取mm 作单位,则b =20mm ,c =8mm ,按从小到大的顺序为c ,d ,b ,a. ∵c ∶d =8∶12=2∶3, b ∶a =20∶30=2∶3, ∴c ∶d =b∶a.即四条线段a ,b ,c ,d 成比例线段.说明:判断四条线段(或数)是否成比例,在同一单位下,除了直接计算a∶b 和c∶d 进行判断外,还可以计算ad 和bc ,利用ad =bc ⇔a b =cd进行判断.【例2】如图,在△ABC 中,AD ,CE 是△ABC 上的高线,找出图中的一组比例线段,并说明理由.【分析】(1)根据比例的基本性质,要判断四条线段是否成比例,只要采取什么方法(看其中两条线段的乘积是否等于另外两条线段的乘积)(2)已知条件中有三角形的高,我们通常可以把高与什么知道联系起来 (3)根据三角形的面积公式,你能得到一个怎样的等式 根据所得的等式可以写出怎样的比例式 【解】AD AB =CEBC .理由如下:∵S △ABC =12AB·CE=12BC·AD,∴AB·CE=BC·AD,∴AD AB =CEBC. 说明:利用面积是比例线段中得到等积式的常用方法之一. 四、巩固新知 尝试完成下面各题.1.下列各组线段,能成比例线段的是( B ) A .1 cm ,2 cm ,3 cm ,4 cm B .3 cm ,6 cm ,4 dm ,8 mm C .3 cm ,9 cm , dm ,6 cm D .2 cm ,5 cm , dm ,8 cm2.已知a ,b ,c ,d 是成比例线段,其中a =3 cm ,b =2 cm ,c =6 cm ,求线段d 的长度.解:设d=x cm,则有ab=cd,即32=6x.∴3x=12.解得x=4.∴d=4 cm.3.如图,在平行四边形ABCD中AE⊥BC,AF⊥CD,找出图中一组比例线段,并说明理由.解:∵BC·AE=S▱ABCD =CD·AF,∴BCCD=AFAE.4.有两组线段,每组分别有4条,长度如下:(1)a=8 cm,b=cm,c=dm,d=10 cm.(2)a=16 mm,b=8 mm,c=5 mm,d=10 mm.请判断它们是否成比例线段,试说明理由.解:(1)b= cm,c= dm=6 cm,a=8 cm,d=10 cm. ∵bd=,ca=48,bd≠ca,∴这四条线段不成比例.(2)c=5 mm,b=8 mm,d=10 mm,a=16 mm.∵ac=80,bd=80,∴ac=bd,即ab=dc,∴这四条线段成比例.五、课堂小结1.两条线段的比及比例线段的概念.2.方程思想的体现.3.比例线段的实际问题中的应用.六、课后作业请完成本资料对应的课后作业部分内容.。

4.1 成比例线段 (二)

4.1 成比例线段 (二)
第四章 图形的相似
第1节 成比例线段(二)
温故知新
1、线段的比及比例尺
2、成比例线段
3、比例的性质
例1:
如图,一块矩形绸布的长AB=am,AD=1m,按 照图中所示的方式将它裁成相同的三面矩形彩 旗,且使裁出的每面彩旗的长与宽的比与原绸
AE AD 布的长与宽的比相同,即 ,那么a AD AB
练习:如图,已知每个小方格的边长均为1, 求AB,DE,BC,DC,AC,EC的长,并计算△ABC 与△EDC的周长比。
1、你有什么感想、收获…? 2、你有什么发现、探索…?
的值应当是多少?
问题解决 如图,将一张矩形纸片沿它 的长边对折(EF为折痕),得到 两个全等的小矩形。如果小矩形 长边与短边的比等于原来矩形长
边与短边的比,那么原来矩形的
长边与短边的比是多少?
例2:
aBC CA 3 (2)、在ABC 与DEF中,若 , DE EF FD 4 且ABC 的周长为18cm,求DEF的周长。

北师大数学九上课件4.1成比例线段(2)

北师大数学九上课件4.1成比例线段(2)

b

c
d
d
,
你认为这个结论正确吗?为什么?
由 a c k 得 a kb, c kd bd

ab b

kb b b

(k
1)b b

k
1
cd d

k
d
d

(k
1)d d
k 1

a
b
b

c
d
d
你能证明吗a ?b b

c
d
d
a
b
b

c
d

e f

a b
a b

c d

e f
设 a c e k 得 a kb, c kd, e kf bd f
a c e kb kd kf k(b d f ) k
bd f bd f
bd f
ace a bd f b

e f

m n
(b

d
n 0)
。a b
c d
m n

a b
2、合比性质:
如果,那么a 。 c bd
ab cd bd
合作交流
ⅰ、已知:如图,在矩形ABCD和矩形HEFG中,
A
D
H
G
B
C
E
F
AB HE

BC EF

CD FG

AD HG

2,
你能求出
AB BC CD AD HE EF FG HG
的值吗?由此你能得出什么结论?

4.1 成比例线段 第二课时 导学案

4.1 成比例线段  第二课时 导学案

丹东市第二十四中学 4.1 成比例线段 第二课时主备:李春贺 副备:曹玉辉 孙芬 审核: 2014年9月2日 一、 学习准备:1.已知a:b=3:2,且a-b=10,则a+b = . 2.若=y x 3,则=x y ; =y x 2 ;=-y yx 23.已知345c b a ==,则=+--+cb ac b a 32 . 二、学习目标:1.、知道比例的基本性质,能进行证明和运用. 2、知道合分比性质,能进行证明。

. 3、知道等比性质,能进行证明。

4、能简单运用比例的三个性质解决问题。

三、自学提示: (一)合作探究:1.通过自主探究,归纳总结出比例的基本性质,完成目标一。

(1)思考 :1:若a,b,c,d 四个数满足d cb a =, 那么ad =bc 吗?与同伴交流.根据等式的基本性质,两边同时乘以( ),得ad=bc,(2)思考 2:若ad =bc (a,b,c,d 都不为0),那么d cb a =吗?根据等式的基本性质,两边同时除以( ),得dcb a =. 比例的基本性质:【练一练】1、若3a=5b,那么a ∶b=_________. 2、a ∶b=4:7,那么_________. 2、通过小组合作探究,归纳总结出合比性质,完成目标二。

(1)如图,已知d c b a ==3,则b b a +=ddc +吗?(2)如果dcb a ==k (k 为常数),那么d d c b b a +=+成立吗?为什么? (3)如果dc b a =,那么d dc b b a -=-成立吗?为什么?归纳:如果d cb a =,那么 . 这是比例的合分比性质 练习:已知b a =23,则=+b b a ,bba -= .3. 通过师生合作探究,归纳总结出等比性质,完成目标三。

(1)如果d c b a ==…=nm =k (b +d +…+n ≠0),那么b a n d b m c a =++++++ =k 成立吗?你能写出推理过程吗?因此, ,这是比例的等比性质 (2)练习:如果f ed c b a ===2,求fd be c a ++++的值 四、学习小结: 五、夯实基础: 1、填空 (1)若=y x 25 则=x y ;=-y y x ; =+y y x 2 ;(2)已知23=a b 则=+b a b ;=-ba b 2 . 2、已知:d c b a ==fe=5(b +d +f ≠0) (1)fd be c a +-+- (2)f b ea 55--3、如图,已知23===DE BC AE AC AD AB ,且△ABC 的周长为36cm ,求△ADE 的周长六、能力提升:已知a ,b ,c 都是不等于零的实数,且k cba b c a a c b =+=+=+,求k 的值布置作业: 【评价反思】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6/11
已知 a,b,c,d,e,f 六个数。
a c e (b d f 0) b d f ace a kb kd kf k ? b d f bb d f a c e a kb, c kd , e kf k b d f
7/11
6,
则a
_____ 15 9 , b _____ 12 ,c _____
a b c k 3 4 5
a 3k , b 4k , c 5k
3k 4k 5k 6 k 3
5/11
AB BC CD AD 2 k HE EF FG HG AB BC CD AD ? 2 k HE EF FG HG
,则
2 : 3 (5 x) : x
3 x ___________
2 5 x 3 x
2 x 3(5 x)
3/11
2 1 2、已知 a b
2a b ______ 5 ,则 a b
ቤተ መጻሕፍቲ ባይዱ
a 2b
4b b 2b b
4/11
3、若 a : 3 b : 4 c : 5 ,且 a b c
第四章 图形的相似
1、理解并掌握比例的性质及其简单应用。 2、通过问题情境,培养从数学的角度发现问题、 提出问题、解决问题的能力。
比例的性质及其简单应用。
2/11
1、若
x : 6 (5 x) : 2 ,则
15 2 x ___________
x 5 x 6 2

2 x 6(5 x)
a c ab cd 如果 ,则 。 b d b d
11/11
8/11
AB BC CA 3 , 在△ABC和△DEF中,已知 DE EF FD 4
且△ABC的周长为 18 cm,求△DEF的周长。 AB BC CA 3 解:∵ DE EF FD 4 AB BC CA AB 3 DE EF FD DE 4
答:△DEF的周长为24cm。
a c m (b d n 0) b d n a c m a kb kd kn ? k b d n b b d n a c e k b d f
a kb, c kd , , e kf
4( AB BC CA) 3( DE EF FD) 4 18 3( DE EF FD) DE EF FD 24
9/11
如图,已知每个小方格的边长均为1,求AB,
DE,BC,DC,AC,EC的长,并计算△ABC
与△EDC的周长比。
10/11
a c a b cd (1)如果 , 那么 和 b d b d a b c d 成立吗?为什么? b d
相关文档
最新文档