41比例线段(1)
4.1比例线段(1)教学设计13

课题摘要
学科
数学
学段
初中
年级
九年级
单元
第四章
教材版本
浙教版
课程名称
4.1比例线段(1)
一、学习内容分析
1.教材分析
本节介绍比例的基本性质,利用比例的基本性质进行一些简单的变形.这里主要要求学生理解并初步掌握两种基本方法(或技能):一是利用比例的基本性质进行变形或求值;二是用“设比值”的方法进行变形或求值.课本安排两个例题的目的是让学生理解这两种方法(或技能).
二、新课
1、利用P116的做一做得出比例式的内项积等于外项积,得出比例性质: = <=>ad=bc(a、b、c、d都不为零)。
2、通过练习让学生体会用性质来列比例式。
3、已知ab=cd,请写出有关a,b,c,d成立的
比例式. (至少写4个)
4、讲解例1,例2。总结出比例式变形的常用方法:(1)利用等式性质(2)设比值K。
2.学情分析
本节内容主要是在学生小学已学过比例的有关内容的基础上,给出四个数成比Байду номын сангаас及内项,外项的概念,归纳比例的基本性质,利用比例性质进行比例式变形。
3.教学目标(含重难点)
教学目标:
1、理解比例的基本性质。
2、能根据比例的基本性质求比值。
3、能根据条件写出比例式或进行比例式的简单变形。
教学重点、难点:
教学重点:比例的基本性质
教学难点:例2根据条件判断一个比例式是否成立,不仅要运用比例的基本性质,还要运用等式的性质等方法是本节教学的难点。
二、教学环境选择
□简易多媒体教室
三、教学过程设计
教学环节
活动设计
初中数学北师大版九年级上册《41成比例线段(1)》教学设计

北师大版数学九年级上 4.1成比例线段(1)教学设计观察1:下面的每组图形,有什么特征?答案:形状和大小完全相同全等图形:能够完全重合的两个图形,叫做全等图形.观察2:下面的每组图形,又有什么特征呢?答案:形状相同找一找:你能在下面的图形中找出形状相同的图形吗?答案:追问:这些形状相同的图形有什么不同?答案:大小不同讲解1:对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.讲解2:如果选用同一个长度单位得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB:CD=m:n或AB mCD n=,其中线段AB,CD分别叫做这个线段比的前项和后项.如:如图,五边形ABCDE与五边形A′B′C′D′E′形状相同,AB=5cm,A′B′=3cm,AB:A′B′=5:3,53就是线段AB与A′B′的比,这个比值刻画了这两个五边形的大小关系.指出:如果把mn表示成比值k,那么ABkCD=,或AB=k·CD,E'D'C'B'A'ABC DE两条线段的比实际上就是两个数的比.引入比值k 的方法是解决比例问题的一种重要方法,以后经常会用到. 做一做:设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,AD ,EF ,EH 的长度分别是多少?分别计算,,,AB AD DC BCEF EH HG FG的值,你发现了什么?答案:82,4AB EF ==2102,10AD EH == 252,5DC HG ==2172,17BC FG == 即:AB AD DC BCEF EH HG FG===归纳1:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即,a cb d =那么这四条线段a ,b ,c ,d 叫作成比例线段,简称比例线段. 如:在AB ADEF EH=中, AB 、EF 、AD 、EH 是成比例线段或者AB 、AD 、EF 、EH 也是成比例线段追问:你还能说出一组成比例线段吗?议一议:如果a ,b ,c ,d 四个数成比例,即,a cb d=,那么ad =bc 吗?反过来,如果ad =bc ,那么a ,b ,c ,d 四个数成比例吗? 归纳2:比例线段的基本性质如果,a cb d=,那么ad =bc ;如果ad =bc (a ,b ,c ,d 都不等于0),那么,a cb d=.例:如图,一块矩形绸布的长AB =am ,宽AD =1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即那么a 的值应当是多少?解:根据题意可知,AB =am ,AE =am ,AD =1m .由,AE ADAD AB = 得113,1aa = 即2113a = ∴a 2=3.开平方,得a =3(a =-3舍去).。
浙教版数学九年级上册4.1《比例线段》教案1

浙教版数学九年级上册4.1《比例线段》教案1一. 教材分析《比例线段》是浙教版数学九年级上册第四章的第一节内容。
本节主要让学生了解比例线段的定义、性质和应用,培养学生运用比例线段解决实际问题的能力。
教材通过引入实际问题,引导学生探索比例线段的性质,进而得出比例线段的定义,并通过例题和练习题使学生掌握比例线段的应用。
二. 学情分析九年级的学生已经具备了一定的几何知识,对线段、射线、直线等概念有了一定的了解。
但是,对于比例线段这一概念,学生可能较为陌生。
因此,在教学过程中,教师需要引导学生通过实际问题探索比例线段的性质,从而理解比例线段的定义。
三. 教学目标1.理解比例线段的定义及其性质。
2.学会运用比例线段解决实际问题。
3.培养学生的几何思维能力和解决实际问题的能力。
四. 教学重难点1.重点:比例线段的定义及其性质。
2.难点:运用比例线段解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生探索比例线段的性质。
2.启发式教学法:在教学过程中,教师引导学生思考、讨论,从而培养学生的问题解决能力。
3.实践性教学法:通过例题和练习题,使学生掌握比例线段的运用。
六. 教学准备1.教具:黑板、粉笔、投影仪、PPT等。
2.学具:学生每人一份比例线段的相关练习题。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如“在一条直线上,两点间的距离是否相等?”引发学生的思考,进而引导学生探索比例线段的性质。
2.呈现(10分钟)教师通过PPT展示比例线段的定义及其性质,让学生初步了解比例线段的概念。
3.操练(10分钟)教师提出一些有关比例线段的问题,让学生分组讨论、解答。
例如:“已知线段AB和线段BC的长度比为2:3,求线段AC的长度。
”通过解答这些问题,学生能够更好地理解比例线段的性质。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
练习题包括判断题、选择题和解答题,题型多样,难度适中。
九上数学 第13讲 4.1成比例线段

第13讲 《图形的相似》培优训练4.1成比例线段§4.1成比例线段学 习 目 标1.知道两条线段的比的概念并且会计算两条线段的比2.知道成比例线段的定义并会判断四条线段是否成比例3.熟记比例的基本性质并会应用.重点:1、会求两条线段的比 2、知道成比例线段的定义 3、会用比例的性质应用 难点:成比例线段及比例的基本性质的理解与运用。
导学过程:【自主学习,认真准备】小学里已经学过了比例的有关知识,请同学们口答下列问题: 1、若a 与b 的比值和c 与d 的比值相等,应记为: 2、地理中的比例尺是指什么? 【自主探究、合作交流】任务一:自学课本76页——77页内容,思考并完成下列练习:1、一张桌面的长a=1.25m ,宽b=0.75m ,那么长与宽的比是2、已知线段AB=1.5m ,线段CD=250cm ,那么线段AB 与CD 的比是3、已知A 、B 两地的实际距离是60km,画在地图上其距离A ’B ’是6cm,求这幅地图的比例尺归纳定义:两条线段的比:____________________任务二:完成课本77页“做一做”: 1、计算:=EFAB =EH AD =AD AB =EH EF2、发现: 归纳定义:成比例线段:任务三:完成课本78页“议一议”内容1、结论:归纳:比例的基本性质:如果dcb a ,那么 ;如果ad =bc (a ,b ,c ,d 都不等于0),那么 .还可以写成 形式。
【展示交流】1 、如图,一块矩形绸布的长AB=am,AD=1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即 AD AE = ABAD,那么a 的值应当是多少?,2、已知a=3,b=6,c=9(1)若a,b,c,x 是成比例线段,求x.(2)若a,x,b,c 是成比例线段,求x【当堂练习】1、已知:线段a=5cm ,b=2cm ,则ab= 2、已知a ,b ,m ,n 是成比例线段,其中a=2cm ,b=3cm ,n=9cm ,则m= . 若a=2,b=18,且a :x=x :b ,则x=3、把mn=pq (m,n,p,q 都不等于0)写成比例式,写错的是( ) A .m q p n = B .p nm q= C .q n m p = D .m p n q =4、如图,△ABC 中,AG DEAH BC=,且DE=12,BC=15,AG=4,求AH .5、在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离为 7.5cm ,那么福州与上海之间的实际距离是多少?归纳:比例的基本性质如果b a =dc,那么__________。
九年级数学上册4.1.1成比例线段教案

课题:4.1.1成比例线段教学目标:1.结合现实情境,感受学习线段的比的必要性,了解线段的比和成比例线段.2.借助几何直观,掌握比例的性质及其简单应用.3.通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系.教学重、难点:重点:了解线段的比和成比例线段的概念,了解比例的基本性质及其应用.难点:了解线段的比和成比例线段的概念.课前准备:制作多媒体课件.教学过程:一、美图欣赏,情境导入导语:同学们,色彩斑谰的世界中有许多美丽的图形,它们有的形状、大小都相同,这就是我们前面学过和全等形(多媒体出示图1);有的只有形状相同,这就是相似图形(多媒体出示图2).你知如何刻画图形的相似吗?你知道如何判定两个三角形相似吗?你知道如何将一个图形放大或缩小吗?从今天开始,我们学习第四章,本章将研究图形的相似,探索三角形相似的条件,了解相似三角形的性质,并利用图形的相似解决一些简单的实际问题.本节课就让我们一起从“成比例线段”开始学习本章.【板书课题:4.1成比例线段(1)】图1 图2处理方式:学生观看生活中的存在的全等形及相似形,体会数学来源于生活,在全等形的基础上感知相似图形.设计意图:通过用幻灯片展示生活的的图片,引入本章的学习内容—相似图形.初步感知相似图形,引发学生思考相似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.二、探究学习,获取新知活动1:两条线段的比1.考考你的眼力(多媒体出示)你能在下面的这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)图中形状相同的图形,大小有什么不同?(2)形状相同的图形其中的一个如何由另一个得到?(多媒体动画演示图形的放大与缩小)(3)形状相同的图形对应的线段如何变化的?(4)形状相同而大小不同的两个图形,你认为如何来描述它们的大小关系?设计意图:通过以上引导性问题引导学生共同总结出:对于形状相同而大小不同的两个图形,可以用相应线段长度的比来描述它们的大小关系.适时引出两条线段的比的概念.2.引入线段的比(多媒体出示)如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比(ratio)就是它们的长度比,即AB∶CD=m∶n,或写成AB mCD n=.其中,线段AB,CD分别叫做这个线段比的前项和后项.如果把mn表示成比值k,那么ABkCD=,或AB=k·CD.两条线段的比实际上就是两个数的比.处理方式:教师利用多媒体出示两条线段的比的定义.强调相关要点,明确两条线段的比实际上就是两个数的比.接着出示下面实例进一步加深学生对两条线段的比的认识.(多媒体出示)五边形 ABCDE与五边形A′B′C′D′E′形状相同,AB=5cm,A′B′=3cm.AB∶A′B′=5 : 3,就是线段AB与线段A′B′的比.这个比值刻画了这两个五边形的大小关系.设计意图:通过两个五边形对应边的比,具体说明线段的比的意义,进一步巩固对概念的理解.3.想一想(1)在计算两条线段的比时我们要注意什么?(2)两条线段长度的比与所采用的长度单位有没有关系?(3)两条线段的比结果有单位吗?处理方式:学生思考并在小组内交流以上问题,举例说明自己的理由.教师适时点拨引导,共同归纳出:在计算两条线段的比时我们要统一长度单位;两条线段长度的比与所采用的长度单位无关;两条线段的比结果没有单位,是一个数.设计意图:通过想一想使学生进一步加深对两条线段的比的认识.体会:两条线段长度的比与所采用的长度单位无关.但要采用同一个长度单位.活动2:成比例线段(多媒体出示)如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,CD ,EF ,EH 的长度分别是多少?分别计算,,,AB AD AB EFEF EH AD EH的值,你发现了什么?处理方式:引导学生结合图形分析题意,明确图中两四边形的四条边的长度可以通过观察或勾股定理得出.给学生充足的时间计算,,,AB AD AB EF EF EH AD EH 的值,在计算的过程中体会AB ADEF EH=,AB EFAD EH=.教师借助多媒体展示解题思路及解题过程,规范学生的解题步骤的书写.完成后追问:你发现了什么?从而引出成比例线段的概念.强调:上图中AB ,EF ,AD ,EH 是成比例线段,AB ,AD ,EF ,EH 也是成比例线段.四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a /b =c /d ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.(多媒体出示)设计意图:通过方格纸上两个四边形对应边的比值的计算,引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.跟踪练习:判断下列四条线段是否成比例.(1)2,(2)3,2,(3)4,6,5,10;(4)12,8,15,10.a b c d a b c d a b c d a b c d ===============处理方式:学生先自主判断,然后再在全班展示交流.共同总结出:四条线段成比例与这四条线段的顺序有关.设计意图:通过练习巩固学生对概念的理解.活动3:比例的基本性质议一议如果a,b,c,d四个数成比例,即a/b=c/d,那么ad=bc吗?反过来如果ad=bc,那么a,b,c,d四个数成比例吗?与同伴交流.处理方式:第一个问题可引导学生从两方面加以说明,一方面根据等式的基本性质,在ab=cd两边同时乘bd,得到ad=bc;另一方面可以介绍引入比值k的方法:设ab=cd=k,那么a=bk,c=d k,因此ad= bk·d=b·kd=bc.第二个问题,要注意条件.通过学生的展示,共同总结出比例的基本性质:如果ab=cd,那么ad=bc.如果ad=bc(a,b,c,d都不等于零),那么ab=cd.设计意图:通过对两个问题的讨论引出比例的基本性质.三、例题解析,应用新知例1如图,一块矩形绸布的长AB=a m,AD=1m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AE ADAD AB=,那么a的值应当是多少?处理方式:引导学生阅读、理解题意,自己尝试解答,教师利用实物投影展示学生的做题情况,借助多媒体展示解题过程,规范学生的书写,强调知识的应用.解:根据题意可知,AB=a m,AE=13a m,AD=1m.由AE ADAD AB=,得1131aa=,即2113a=.∴a2=3.开平方,得aa).设计意图:通过例题提供应用比例基本性质的一个具体情境,加深学生对比例基本性质的理解.让学生利用所学的知识来解决实际生活中的问题.想一想:生活中还有哪些利用线段比的事例?你能举例吗?学生举例:房屋装修平面图,手机模型,汽车模型,深圳世界之窗,建筑物的效果图等等.设计意图:进一步让学生体会线段的比在生活中的应用.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调:1)线段的比的概念、表示方法;前项、后项及比值k;2)两条线段的比是有序的;与采用的单位无关,但要选用同一长度单位;3)两条线段的比在实际生活中的应用.4)比例的基本性质:如果ab=cd,那么ad=bc.如果ad=bc(a,b,c,d都不等于零),那么ab=cd.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.一条线段的长度是另一条线段长度的5倍,则这两条线段之比是_ _____.2.一条线段的长度是另一条线段长度的35,则这两条线段之比是___ ___ .3.已知a、b、c、d是成比线段,a=4cm,b=6cm,d=9cm,则c=_ _ __.4.如果2x=5y,那么xy=__ __.5.把mn=pq写成比例式,写错的是()A. m pq n=; B.p nm q=; C.q nm p=; D.m pn q=.6.已知a∶b∶c=2∶3∶4,且a+b+c=15,则a=___,b=___,c=___.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业,课堂延伸必做题:课本 79页习题4.1 第1题、第2题.选做题:课本 79页习题4.1 第3题.板书设计:。
北师大版九年级数学上册4.1.1成比例线段课件

探究学习,获取新知
3.比例的基本性质
问题:如果a、b、c、d 四个数成比例,即
a b
c d
,
那么ad=bc 吗?反过来,如果ad=bc,那么a、b、
c、d 四个数成比例吗?
归纳新知
比例的基本性质
如果
a b
c d
,那么ad=bc.
如果ad=bc(a,b,c,d都不等于零),那么
a b
c d
.
即时练习
4.(教材随堂练习第 3题变式题)若线段 a,b,c,d成比例,其中 a=3 cm,b =6 cm,c=2 cm,则 d=____4_c_m____.
达标检测
第1课时 成比例线段
知识点 3 比例的基本性质
5. 已知x2=y3,那么下列式子中一定成立的是( B ) A. 2x=3y B. 3x=2y C. x=2y D. xy=6
想一想
在计算两条线段的比时我们要注意什么? (1)必须选用同一个长度单位 (2)两条线段长度的比与所采用的长度单位没有关 系 (3)两条线段的比结果没有单位,它的结果是一个 正实数 (4) 两条线段的比具有顺序性 (5) 两条线段的比实际就是两个数之比
做一做
如图,设小方格的边长为1,四边形ABCD与四
AB AD AB EF EF EH AD EH
上图中AB,EF,AD,EH是成比例线段, AB,AD,EF,EH也是成比例线段。
成比例线段与排列的顺序(叙述的顺序)有关
探究学习,获取新知
ac(或a:bc:d) bd
a,b,c,d叫作组成比例的项, d是a,b,c的第四比例项, a, d是比例的外项,b,c是比例的内项
温馨提示
上课前,请同学们准备好纸和笔!
《比例线段》PPT课件 (公开课获奖)2022年北京课改版 (5)

c d
,
则
ab cd bd
设参数法 acmk
bd
n
2、认真观察图形,特别注意图形中线段的和、 差,巧妙地与合比性质结合起来.
3、要运用方程的思想来认识比例式,设出未 知数,列出比例式,化为方程求解.
在相同时刻的物高与影长成比例. 如果一古塔 在地面上的影长为50 m ,同时,高为1.5 m 的 测竿的影长为2.5 m ,那么古塔的高是多少?
2、竖直上抛物体的高度h和时间t 符合
关系式
h
v0t
1 2
gt
2,其中重力加速度g
以10米/ 秒 2 计算.爆竹点燃后以初速度v0
=20米/秒上升,问经过多少时间爆竹离
地15米?
作业
课后习题
6、7
2、比例的根本性质:
在比例式中,两个外思项考的:积由等于ad两=个b内c项的积. 还可以得到哪些
如果 a c ,那么a比d 例= 式bc?.
bd 如果 ad = bc 且(bd≠0),那么 a c .
bd
3、判断四条线段成比例的方法:
〔1〕直接计算a:b 和 c:d 是否相等;
(2) ad = bc
绿苑小区住宅设计,准备在每两幢楼房之间,开辟 面积为900平方米的一块长方形绿地,并且长比宽多 10米,那么绿地的长和宽各为多少?
解:设宽为x米,那么长为〔 x +10〕
米
x(x+10)=900
依题整意理得得: x2+10x-900=0
解得: x1 55 37 x2 55 37
所求的 x 1 , x
内项
内项
a、b、c
外项 a :b = c :d. 的第四比
例项
外项
4.1比例线段(1)

2x 3y z 求 的值 x 3y z
探究活动
在平面直角坐标系中,过点(a,b)和 坐标原点的直线是一个怎样的正比例函 数的图像? 如果a,b,c,d四个数成比例,你认为点(a, b),点(c,d)和坐标原点在一条直线上吗? 请说明理由.
课堂小结: 比例有如下性质: a c ad bc (a,b,c,d均不为零) b d
,判断下列比例式是否
ab cd (1) b d a ac ( 2) b bd
设比值 k
比例式变形的常用方法: 利用等式性质
试一试:
已知
a 3 b 4
ab 求(1) b
(2)
ab b
(3) 2a b
a 2b
的值
x y z 且xyz≠0 想一想:已知 2 3 4
已知ab=cd,请写出有关a,b,c,d成立的
比例式. (至少写4个)
试一试:
1. 根据下列条件,求a:b的值.
a b (1) 2 a 3b ( 2) 5 4
2. 求下列比例式中的 x.
x x 1 (1) 4 : 3 5 : x ( 2) 3 2
3、已知
成立,并说明理由:
a c b d
13,9,2,6 2 12, 6 , 10, 33, 3, 2 ,2
5
你能换一个数使(3)成比例吗?
做一做
a c 利用等式性质,你能从 推导出 b d ad=bc 吗?
比例有如下性质: a c ad bc (a,b,c,d均不为零) b d
反过来呢?
试一试: 练习:
9︰12 = 6︰8 =
3 4 3 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、理解比例的基本性质. 2、能根据比例的基本性质求比值. 3、能根据条件写出比例式或进行比例式简单的变形.
数学语言表示: 两 内项 的乘积等于两外项 的乘积 注意:
1、
2、
3、
计时器(点我)
作业题 1、2、3、4
作业题 5、6
返回(点我)
1、理解比例的基本性质. Байду номын сангаас、能根据比例的基本性质求比值. 3、能根据条件写出比例式或进行比例式简单的变形.
计时器(点我)
结合思考题自学P(96)--(97)课内练习前内容,并完成: 做一做 1、2 课内练习 1、2、3
1、比例有如下性质:
用数学语言怎么表示?
2、检验比例式变形的最好方法是什么?
显示答案(点我)