2.4含绝对值的不等式(2)

合集下载

高教版中职教材—数学(基础模块)(上册)电子教(学)案

高教版中职教材—数学(基础模块)(上册)电子教(学)案

【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】},99,正偶数集可以表示为}2,4,6,.0的解集;)所有奇数组成的集合;)由第一象限所有的点组成的集合.用描述法表示集合关键是找出元素的特征性质.0得12x-,1 2⎫-⎬⎭;)奇数集合}∈Z;)第一象限所有的点组成的集合为(){,x y x>的解集.强化思想本次课学了哪些内容?重点和难点各是什么?【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】}6x<.是用来表示集合与集合之间关系的符号;”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.的元素,因此}6x<的元素,}6x<.}2的子集,并且集合叫做集合AB(或B A),读作“.空集是任何非空集合的真子集.对于集合A、B、C,如果C A {1,3,5}*巩固知识典型例题例5 用适当的符号填空:⑴{1,3,5} {1,2,3,4,5,6};⑵2x x={3,-3};{|9}⑶{2} { x| |x|=2 };⑷2 N;⑸a{ a };⑹{0} ;⑺{1,1}-2x x+=.{|10}解⑴{1,3,5}{1,2,3,4,5,6};⑵{x|x2=9}={3,-3};⑶ 因为{|2}{2,2}x x ==-,所以{2}{2}x x =; ⑷ 2∈N ; ⑸ a ∈{a }; ⑹ {0};⑺ 因为2{|10}x x +==,所以{1,1}-2{|10}x x +=.【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念; (2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过程行为行为意图间B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系?问题3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B 的交集.引导分析归纳总结自我分析了解式启发学生思考集合元素之间的关系5*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即{}A B x x A x B=∈∈且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题过 程行为 行为 意图 间例1 已知集合A ,B ,求A ∩B . (1) A ={1,2},B ={2,3}; (2) A ={a ,b },B ={c ,d , e , f }; (3) A ={1,3,5},B = ∅; (4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅; (3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求AB .分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2AB =-.例3 设{}|12A x x =-<,{}|03B x x =<,求AB .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x x x x =-<<{}|02x x =<.说明 强调 引领 讲解说明 引领 强调含义观察 思考 主动 求解 观察 思考 求解 领会通过 例题 进一 步领 会交 集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合B.}y=,求B.23巡视}4x,求A B.指导11名,那么该班有多少名介绍={该班团员};={该班非团B.}2,}4B x,求A B.整体建构思考并回答下面的问题:.集合的并集和交集有什么区别?(含义和符号).在进行集合的并运算和交运算时各自的特点是什么?过 程行为 行为 意图 间B 的所有元素组成的集合叫做集合A 与集合B 的并集{}B x A x x B A ∈∈=或 ;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理.归纳强调 回答 理解 强化 的形 式强 调重 点突 破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A . 解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1AB x x =<≤2},{0AB x x =<≤3}.引领 分析 讲解 说明 领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .2.{}{}22,04A x xB x x=-<=,求B A ,B A .引导 提问 巡视 指导 回忆 反思 动手 求解 培养 学生 总结 反思 学习 过程 的能 力 85 *继续探索 活动探究(1)读书部分: 教材章节1.3;【课题】1.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B,A B.}2,}4明确=,求A B,A B.B x下面我们将学习另外一种集合的运算.介绍兴趣导入过 程行为 行为 意图 间结论可以看到,P 、Q 都是U 的子集,并且集合Q 是由属于集合U 但不属于集合P 的元素所组成的集合.总结 归纳领会素的 关系15*动脑思考 探索新知 概念如果一个集合含有我们所研究的各个集合的全部元素,在研究过程中,可以将这个集合叫做全集,一般用U 来表示,所研究的各个集合都是这个集合的子集.在研究数集时,常把实数集R 作为全集.如果集合A 是全集U 的子集,那么,由U 中不属于A 的所有元素组成的集合叫做A 在全集U 中的补集. 表示集合A 在全集U 中的补集记作UA ,读作“A 在U 中的补集”.即{}|U A x x U x A =∈∉且.如果从上下文看全集U 是明确的,特别是当全集U 为实数集R 时,可以省略补集符号中的U ,将UA 简记为A ,读作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:求集合A 在全集U 中的补集的运算叫做补运算.仔细 分析 讲解强调 引导说明思考 理解 记忆 观察 领会特别 注意 讲解 关键 词的 含义 强调 表示 方法 的书 写规 范性 充分 利用 图形 的直 观性20*巩固知识 典型例题通过过 程行为 行为 意图 间例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U及B U .分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U .例2 设U =R ,{}|12A x x =-<,求A .分析 作出集合A 在数轴上的表示,观察图形可以得到A .解 {}|12A x xx =->或.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ;因为端点2属于集合A ,所以2不属于其补集A .由补集定义和上面的例题,可以得到: 对于非空集合A :A ∩(UA )=∅,A ∪(UA )=U ,U U=∅,U ∅=U ,U(UA )=A .说明讲解 引领引导 分析 讲解说明 理解观察 思考 主动 求解 观察 思考 理解 自我 总结例题 进一 步领 会补 集的 含义 及其 运算 特点 突出 数轴 的作 用 交给 学生 自我 发现 归纳35*运用知识 强化练习 教材 练习1.3.31.设{}U =小于10的正整数,{}147A =,,,求UA .2.设U R =,{}|24A x x=-,求A .提问巡视 指导互动 求解 交流反馈 学习 效果45*理论升华 整体建构以学A U,B U ,()()ABU U ,)()UU A B,()U A B ,()A B U.分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U ()(){}0,2,6,9UU A B =; ()(){}0,1,2,4,6,7,8,9UU A B=因为{}3,5AB =,所以 (){0,1,2,4,6,7,8,9U AB =因为{1,3,4,5,7,8AB =(){0,2,6,9UA B =U A ,U B ,A B ,A B .分析 在理解集合运算的含义基础上,充分运用数轴的表示来进行求解.解 因为全集U =R ,A ={x | x U A ={x | U B ={x | {B x =-A B =R .B ,B ,UA ,U B ,()()U U A B ,()()U U A B .设{}|0180U αα=<<,{}|090A αα=<<,{}|90180αα=<<,求UA ,U B,()()U U A B ,)()U U A B .提问巡视 指导归纳小结 强化思想【课题】1.4 充要条件【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“⇒”,“⇐”,“⇔”的正确使用.【教学难点】“充分条件”、“必要条件”、“充要条件”的判定.【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟) 【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】}4x引导讲解过 程行为 行为 意图 间只含左端点的区间叫做右半开区间,如集合{|24}x x <表示的区间是右半开区间,用记号[2,4)表示;只含右端点的区间叫做左半开区间,如集合{|24}x x <表示的区间是左半开区间,用记号(2,4]表示.引入问题中,新时速旅客列车的运行速度值(单位:公里/小时)区间为(200,350).强调 细节领会强调 各区 间的 规范 书写10*巩固知识 典型例题例1 已知集合()1,4A =-,集合[0,5]B =,求:AB ,A B .解 两个集合的数轴表示如下图所示,(1,5]A B =-, [0,4)A B =.质疑 分析 讲解 思考 理解 复习 相关 集合 运算 知识 15 *运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B ,A B .2.已知集合[3,4]A =-,集合[1,6]B =,求A B ,A B .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B ,A B .巡视辅导 思考 解题 交流 反馈 学习 效果20*动脑思考 明确新知 问题集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点, 质疑思考过 程行为 行为 意图 间为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x 表示的区间为右半开区间,用记号[2,)+∞表示;集合{|2}x x表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数.讲解 说明 强调 细节领会 记忆 理解 明确学习 各种 区间25*巩固知识 典型例题例2 已知集合(,2)A =-∞,集合(,4]B =-∞,求AB ,A B .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]AB B =-∞=;(2)(,2)A B A =-∞=.例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞, (1)求A ,B ;(2)求AB .解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞,(,2]B =-∞; (2) (0,2]AB =.质疑 说明 讲解 启发 强调观察 思考 领会 主动 求解通过 例题 巩固 区间 的概 念 注意 规范 书写30*理论升华 整体建构B,A B.(0,3),求A,B,B A.巡视指导*归纳小结强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了?引导【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题2.3 一元二次不等式*回顾思考复习导入问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决观察函数26y x=-的图像:介绍提出问题了解思考()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存过 程行为 行为 意图 间解法利用一元二次函数2y ax bx c=++()0a >的图像可以解不等式20ax bx c ++>或20ax bx c ++<.(1)当240b ac ∆=->时,方程20ax bx c ++=有两个不相等的实数解1x 和2x 12()x x <,一元二次函数2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞;(1) (2) (3) (2)当240b ac ∆=-=时,方程20ax bx c ++=有两个相等的实数解0x ,一元二次函数2y ax bx c =++的图像与x 轴只有一个交点0(,0)x (如图(2)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是00(,)(,)x x -∞+∞.(3)当240b ac ∆=-<时,方程20ax bx c ++=没有实数解,一元二次函数2y ax bx c =++的图像与x 轴没有交点(如图(3)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是R .归纳 总结讲解 分析 强调 讲解思考 观察 理解 领会 记忆引导 学生 经历 由特 殊到 一般 的提 炼过 程 强化 图像 作用 熟练 数形 结合 应用2(,)x +∞0(,)x +∞0([)2,x +∞R 0<12,)x∅]12,x }0x224b ac x =-.典型例题解下列各一元二次不等式:0.首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解集.26x --=0的解(3,)+∞.)29x <可化为290-=的解集为)253x x -两边同乘1-,得3。

数学(第一册)不等式42.4 含绝对值的不等式

数学(第一册)不等式42.4 含绝对值的不等式

§2.4 含绝对值的不等式【教学目的】理解绝对值的几何意义,掌握简单的含绝对值不等式的解法.【教学重点】含绝对值的不等式的解法.【教学难点】去绝对值后的不等式与原不等式的等价性.【教学过程】引入:在许多商品的外包装都标明其质量,如商店出售的表明500g 的袋装食盐,其实际数可能有误差,商品质量规定误差不能超过5g ,设实际数是x g ,那么x 应满足⎩⎨⎧≤-≤-55005500x x 用绝对值表示就是5500≤-x .新课:一、绝对值不等式一般地,含有绝对值记号的不等式叫做含绝对值的不等式.我们知道,在实数集R 中:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩当时,当时,当时.根据实数的绝对值的定义,有ab a b =,(0)a a b b b=≠. 怎样解绝对值不等式呢?先看含绝对值的方程3=x ,方程的解是13x =-,23x =.在数轴上表示如下: x 3再看绝对值不等式3<x ,由绝对值意义,结合数轴表示如下:绝对值不等式3<x 的解集是{}33<<-x x .类似地,绝对值不等式3>x 表示数轴上到原点的距离大于3的点的集合. 在数轴上表示为:-3 绝对值不等式3>x 的解集是{}33>-<x x x 或. 一般地,若0a >,则 22x a x a a x a <⇔<⇔-<<,22,x a x a x a x a >⇔>⇔<->或.即0a >时,绝对值不等式x a <的解集是{}x a x a -<<,( 注意:不是x a <±!) 绝对值不等式x a >的解集是{}a x a x x -<>或,( 注意:不是x a >±!) 绝对值不等式x a ≤的解集是{}x a x a -≤≤, 绝对值不等式x a ≥的解集是{}a x a x x -≤≥或.绝对值不等式ax b k +<(0)k >去掉绝对值转化为一般不等式 k b ax k <+<-绝对值不等式ax b k +>(0)k >转化为一般不等式ax b k ax b k +>+<-或.上述公式简言之:“绝对值不等式小于在中间、大于在两头”的规律去掉绝对值,把绝对值不等式化为一般不等式,再得到解集.这与一元二次不等式解集有类似之处.二、含绝对值不等式的解法举例例1解 据算术根的定义,1a a -+=21,1;1,01;12,0.a a a a a -≥⎧⎪≤<⎨⎪-<⎩例2 解不等式235x -<.解 原不等式等价于5235x -<-<. 解之得解集为{}14x x -<<.用区间表示,则为(1,4)x ∈-.例3 解不等式256x x ->.解 原不等式等价于 256x x -<-, (1)或256x x ->. (2)解不等式(1),得 26x <<;解不等式(2),得 1x <- 或 6x >.∴ 原不等式的解集是{}|1,23,6x x x x <-<<>或或.用区间表示,则为(,1)(2,3)(6,)x ∈-∞-+∞.练习1:见书P44. 三、综合练习练习3:1. 求下列不等式的解集:(1) 214602x x -+>; (2) 28160x x -+<; (3) 1383<-x ; (4)1243≥-x . 2. 思考: 绝对值不等式ax b k +<, ax b k +>, 当0k ≤时, 绝对值不等式的解分别如何?【小结与作业】课堂小结:本次课主要学习了含绝对值不等式的解法,学会把绝对值不等式转化为不含绝对值的不等式,从而解绝对值不等式.本课作业:习题2.4.。

2.4含绝对值的不等式第二课时

2.4含绝对值的不等式第二课时

归纳小结 强化思想
含绝对值的不等式
(1)本次课学了哪些内容? (2)通过本次课的学习,你会解决哪 些新问题了? (3)在学习方法上有哪些体会?
高一数学 第二章 不等式
高一数学 第二章 不等式
讨论 交流 总结
含绝对值的不等式
阅读教材本章阅读与欣赏《数学家华罗 庚》, 小组讨论交流: 1.我所知道的华罗庚; 2.我要向华罗庚学习.
高一数学 第二章 不等式
高一数学 第二章 不等式
复习回顾 导入新知
含绝对值的不等式
问题 上次课学习了两种简单的含绝对值的不等式,那可 不可以通过|x|<a(a>0)求解不等式|2x+1|<3?
高一数学 第二章 不等式
高一数学 第二章 不等式
复习回顾 导入新知
含绝对值的不等式
总结 可以通过 “变量替换”的方法求解不等式 |ax+b|<c或|ax+b|>c(c>0).
高一数学 第二章 不等式
高一数学 第二章 不等式
高一数学 第二章 不等式
巩固知识 典型例题
含绝对值的不等式
高一数学 第二章 不等式
高一数学 第二章 不等式
巩固知识 典型例题
含绝对值的不等式
高一数学 第二章 不等式
高一数学 第二章 不等式运用知 Nhomakorabea 强化练习
含绝对值的不等式
高一数学 第二章 不等式
高一数学 第二章 不等式
高一数学 第二章 不等式
本课安排
含绝对值的不等式
【学习目标】 (1) 理解含绝对值不等式|x|<a或|x|>a的解法(1/3课时); (2)了解|ax+b|<c或|ax+b|>c的解法(2/3课时). 【学习重点】 (1)不等式|x|<a或|x|>a的解法(1/3课时); (2)利用变量替换解不等式|ax+b|<c或|ax+b|>c(2/3课时). 【学习难点】 利用变量替换解不等式或. 【课时安排】 3课时.(120分钟)

含绝对值不等式优秀教案

含绝对值不等式优秀教案

【课题】2.4含绝对值的不等式【教学目标】知识目标:(1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法.能力目标:培养学生观察、分析、归纳、概括的能力,以及逻辑推理能力,考察学生思维的积极性和全面性,领悟分类讨论、化归和数形结合的数学思想方法,培养数学理解力,化归能力及运算能力,初步学会用数学思想指导数学思维。

情感目标:激发学生学习兴趣,鼓励学生大胆探索,向学生渗透“具体-抽象-具体”、“未知-已知-未知”的辩证唯物主义的认识论观点,使学生形成良好的个性品质和学习习惯。

【教学重点】(1)不等式x a <或x a >的解法 .(2)利用变量替换解不等式ax b c +<或ax b c +>.【教学难点】利用变量替换解不等式ax b c +<或ax b c +>.教学方法:主要采取启导式教学,通过对初中不等式知识及绝对值的含义和几何意义等相关知识的学习引入,在教师指导下由实例引出解绝对值不等式的实际意义,导出解决含绝对值不等式的解法这一研究主题。

【教学设计】(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.【教学备品】教学课件.【课时安排】1-2课时.(80分钟)【安全教育:清点人数】(2,)+∞(如图( 明确新知(),a +∞.a (0a >)的解集.(2)(1)1,3⎛⎫+∞ ⎪⎝⎭)由不等式26x ?,得()1,+∞教学反思:本节课内容可以分成两节课来进行,前一节课主要讲解x ()x (0)a a o a a >><>或型的不等式,后一节课主要讲解(0)(0)ax b c c ax b c c +>>+<>或者型的不等式。

2.4 含绝对值不等式的解法

2.4 含绝对值不等式的解法
2
(3)同理设B点右侧有一点B1到A,B两点的距离和为3,B1对 应数轴上的x, 所以x-1+x-(-1)=3. 所以x= 3 .
2
从数轴上可看到,点A1,B1之间的点到A,B的距离之和都小
于3;点A1的左边或点B1的右边的任何点到A,B的距离之和都
大于3,
3
3
2
2
所以原不等式的解集是(-∞,- ]∪[ ,+∞).
2
2
方法三:将原不等式转化为 |x+1|+|x-1|-3≥0. 构造函数y=|x+1|+|x-1|-3,即
1. x 2的解的几何意义是什么?
2 0 2
1. x 2的解的几何意义是什么?
2 0 2
2. 能否利用绝对值的几何意义求出
1) x 2
2) x 2的解集
1. x 2的解的几何意义是什么?
2 0 2
2. 能否利用绝对值的几何意义求出
1) x 2
2) x 2的解集
2 0 2
1. x 2的解的几何意义是什么?
结 论:
x a (a 0)的解集为____Φ_____; x a (a 0)的解集为____R_____; x a (a 0)的解集为_____Φ____;
x a (a 0)的解集为_________ .
结 论:
x a (a 0)的解集为____Φ_____; x a (a 0)的解集为____R_____; x a (a 0)的解集为_____Φ____;
12
或2x<
}. 5
2
2.原不等式等价于-10<x2+3x-8<10,即
x 2
x
2
3x 8>10, 3x 8<10

2.4含绝对值的不等式(教案)

2.4含绝对值的不等式(教案)

2.4含绝对值的不等式教学目标:1、了解含绝对值的不等式的解法;2、通过对含绝对值不等式|ax+b|<c(c>0)与|ax+b|>c(c>0)的学习,培养学生的数学思维能力。

教学重点:求解不等式|ax+b|<c(c>0)与|ax+b|>c(c>0);教学难点:“变量替换”思想的理解与运用;教学课时:1课时教学准备:多媒体课件教学过程:一、知识回顾1、我们知道,对任意实数x,有_x___(x>0)|x|= __0__(x=0)__-x__(x<0)2、|x|的几何意义是什么?其几何意义是:数轴上表示实数x的点到原点的距离。

3、| x | =2 的几何意义是什么?(数轴上表示与原点距离等于2的点)02-24、不等式 | x | < 2 的几何意义是什么?数轴上表示与原点距离小于2的点5、不等式 | x | >2 的几何意义是什么?数轴上表示与原点距离大于2的点不等式|x|<2的解集: (-2,2)不等式|x|>2的解集: (-∞,-2)∪ (2,+∞)|x|< a 的解集:?|x|> a 的解集:?二、新授一1、利用绝对值的几何意义得到一般结论:如果a>0,那么|x|< a 的解集:{x|-a<x<a}|x|> a 的解集:{x|x<-a 或x>a} 2、例题讲析 求下列不等式的解集(1)3|x|-1>0 (2)2 | x | ≤60 a -a 0 2-2 0 2-2解:(1)由不等式3|x|-1>0,得|x|>1/3,所以原不等式的解集为(-,-1/3)U (1/3,+)(2)由不等式2|x|≤6,得|x|≤3,所以,原不等式的解集为[-3,3]3、随堂练习解下列不等式:(1)|x|<5 (2)2|x|≥8(3)3|x|-1≤5 (4)2.6<|x|+1三、新授二1、问题:如何通过 |x| < a ( a> 0 ),求解不等式 |2x+1|< 3 ?变量替换又称换元法,它的基本思想是用新的变量(元)替换原来的变量(元),即用单一的字母表示一个代数式,从而使一些数学问题化难为易,化繁为简。

职高数学不等式测试题

职高数学不等式测试题

练习2.1 不等式的基本性质1、用符号“>”或“<”填空:(1)67 78 76π 78π (2)431 17 431- 17- (3),2a b a <+设则 2,1b a +- 1,1b a -- 1b +;(4),a b a <设则2 2,2b a - 2,31b a -- 31b -。

2、比较两式的大小:2211(0)x x x x ++->与 2.2区间习题 练习2.2.1 有限区间1、已知集合()[)2,7,1,9,A B A B =-=⋂=则2、已知集合[][)2,3,5,1,A B A B =-=-⋃=则3、已知全集[]()1,11,1I I A =--=,集合A=,则C练习2.2.2 无限区间1、 已知集合()[),6,2,+,A B A B =-∞=∞⋂=则2、不等式378x -<的解集是3、已知{A x x =≤,用区间可以表示A 为2.3一元二次不等式习题 练习2.3 一元二次不等式1、不等式2320x x -+>的解集是2、不等式2560x x +-≤的解集是3、不等式(1)(3)0x x --≤的解集是4、不等式2340x x -++≥的解集是 2.4含绝对值的不等式习题练习2.4.1 不等式x a x a <>或1、不等式2x ≤的解集为2、不等式235x -+<-的解集为3、不等式39x <的解集为练习2.4.2 不等式ax b c ax b c +<+>或1、不等式22x -<的解集为2、不等式30x ->的解集为3、不等式212x +≤的解集为4、不等式823x -≤的解集为参考答案:1、(1)<,<(2)<,>(3)<,<,<(4)<,>,>2、2211x x x ++>-参考答案:练习2.2.1 有限区间 1、[)1,7 2、 [)-5,3 3、 {}-1,1,练习2.2.2 无限区间参考答案:1、 [)2,6 2、 (),5-∞ 3、 (-∞ 练习2.3 一元二次不等式参考答案:1、()(),12,-∞⋃+∞2、[]6,1-3、[]1,34、41,3⎡⎤-⎢⎥⎣⎦2.4含绝对值的不等式习题参考答案:1、[][],22,-∞-⋃+∞2、()(),44,-∞-⋃+∞3、()3,3- 练习2.4.2 不等式ax b c ax b c +<+>或参考答案:1、()0,42、()(),33,-∞-⋃+∞3、31,22⎡⎤-⎢⎥⎣⎦ 4、511,22⎡⎤⎢⎥⎣⎦。

带有绝对值的不等式解法

带有绝对值的不等式解法

带有绝对值的不等式解法
带有绝对值的不等式通常需要根据绝对值的性质进行分类讨论,然后根据不同情况分别解出不等式。

以下是带有绝对值的不等式的一般解法步骤:
1. 首先,需要确定绝对值内的表达式的符号。

2. 根据表达式的符号,将不等式分成两种情况进行讨论。

3. 对于每种情况,将绝对值符号去掉,并解出不等式。

4. 最后,将两种情况下的解集合并起来,得到最终的解集。

以下是一些常见的带有绝对值的不等式的解法示例:
1. 绝对值不等式:|x|<a(其中a为正数)
当x\ge0时,|x|=x,则原不等式可化为x<a。

当x<0时,|x|=-x,则原不等式可化为-x<a,即x>-a。

因此,不等式的解集为-a<x<a。

2. 绝对值不等式:|x|>a(其中a为正数)
当x\ge0时,|x|=x,则原不等式可化为x>a。

当x<0时,|x|=-x,则原不等式可化为-x>a,即x<-a。

因此,不等式的解集为x<-a或x>a。

3. 绝对值不等式:|x-a|<b(其中a、b为常数)
当x\ge a时,|x-a|=x-a,则原不等式可化为x-a<b,即x<a+b。

当x<a时,|x-a|=a-x,则原不等式可化为a-x<b,即x>a-b。

因此,不等式的解集为a-b<x<a+b。

需要注意的是,对于带有绝对值的不等式,解集可能包含零值,也可能不包含零值,具体情况需要根据不等式的具体形式进行讨论。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、你是如何进行学习的?
3、你的学习效果如何?
三、作业
继续探索活动探究
(1)读书部分:教材章节2.4,学习与训练2.4;
(2)书面作业:教材习题2.4,学习与训练2.4训练题.
教师讲授
或提问成品板书Fra bibliotek个人操作
小组操作
集体操作
5分钟
(2)了解 或 的解法.
教学重点
(1)不等式 或 的解法.
(2)利用变量替换解不等式 或 .
教学难点
利用变量替换解不等式 或 .
教学方法
小组学习法、示范教学法、讲授、问题引导法等
教学反思
步骤
教学内容
教学
方法
教学
手段
学生
活动
时间
分配
明确目标
一、明确目标:
(1)理解含绝对值不等式 或 的解法;
(2)了解 或 的解法.
解下列各不等式:
(1) ;(2) ;
(3) ;(4)
启发诱导
重点讲解
个别指导
课件
板书
若干学生
板书
10分钟
展示评价
一、展示结果:
组别
展示得分
评价得分
总分
1
2
3
4
5
6
二、总结
不等式 或 ( )可以通过“变量替换”的方法求解.实际运算中,可以省略变量替换的书写过程.

自我反思目标检测
1、本次课采用了怎样的学习方法?

..
巩固知识典型例题
例2解不等式︱2x-1︱≤3
解由原不等式可得-3≤2x-1≤3,
于是-2≤2x4≤,
即-1≤x≤2,
所以原不等式的解集为 .
例3解不等式 .
解由原不等式得 或 ,整理,得
或 ,
所以原不等式的解集为
教师示范
或课件
演示
课件
板书
演示
学生模仿
25分钟
合作学习
*运用知识强化练习
教材练习2.4.2
平山县职业教育中心教案首页
编号授课教师:刘波丽授课时间:__月_____
课题
含绝对值的不等式
课时
1
授课班级
林12-1、林12-2
上课地点
教室
教学
目标
能力(技能)目标
知识目标
(1)通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力;
(2)通过数形结合的研究问题,培养学生的观察能力.
(1)理解含绝对值不等式 或 的解法;
二、引入
实际操作探索新知
如何通过 ( )求解不等式 ?
在不等式 中,设 ,则不等式 化为 ,其解集为
,即 .
利用不等式的性质,可以求出解集.
可以通过“变量替换”的方法求解不等式 或 ( ).
设问
展示、演示
启发
提问
讨论
展示
课件
小组讨论
代表发言
5分钟
操作示范
动脑思考明确新知
动脑思考感悟新知
不等式 或 ( )可以通过“变量替换”的方法求解.实际运算中,可以省略变量替换的书写过程.
相关文档
最新文档