高数02
高数导数和积分大全

高数导数和积分
汇报人:
目录
CONTENTS
01 添加目录标题
02 高数导数和积分概 述
03 高数导数的性质和 应用
04 高数积分的性质和 应用
05 高数导数和积分的 关系
06 高数导数和积分的 实际应用
添加章节标题
高数导数和积分概述
高数导数和积分的定义
高数导数:表示 函数在某一点的 切线斜率是函数 在某一点的变化 率
导数:描述函数在某一点附近的变化率是函数的局部性质。
积分:对一个函数在某个区间上的定积分或不定积分可以用来计算面积、体积等。
高数导数的性质和应用
导数的定义和性质
导数的定义:函数在某一点的导数描述了该函数在该点的切线斜率。
导数的几何意义:导数在几何上表示函数图像在该点的切线斜率。
导数的物理意义:在物理中导数可以描述物理量的变化率例如速度、加速度等。 导数的运算性质:导数具有一些基本的运算性质如加法、减法、乘法和除法的导 数规则。
导数与积分的综合应用示例
计算曲线下面积
求解变速直线运 中 的最优化问题
高数导数和积分的实际 应用
导数在经济学中的应用
导数用于研究经济 函数的单调性、极 值和最值
导数在边际分析和 弹性分析中的应用
导数在最优问题中 的应用如最优生产 、最优定价和最优 分配等
导数在预测经济趋 势和政策效果分析 中的应用
积分可以表示曲线下的面积 积分可以计算旋转体的体积 积分可以解决实际问题如物理、工程等领域 积分可以用于优化问题如最值、极值等
高数导数和积分的关系
导数与积分的关系
导数描述函数在 某一点的切线斜 率而积分描述函 数与坐标轴围成
的面积。
考研高数讲义新高等数学上册辅导讲义——第二章上课资料

第二章导数与微分第一节导数概念一、导数的定义 定义:若极限()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆存在,则称函数()y f x =在点0x 处可导,此极限值称为函数()y f x =在点0x 处的导数。
记为: ()0f x '、0x x y ='、0x x dy dx =、()0x x df x dx = (或极限()()lim 000x x f x f x x x →--存在也可)()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆单侧导数:左导数:()()lim 000x f x x f x x-∆→+∆-=∆()()lim 000x x f x f x x x -→--存在,则称左导数存在,记为:()0f x -'。
右导数:()()lim 000x f x x f x x+∆→+∆-=∆()()lim 000x x f x f x x x +→--存在,则称右导数存在,记为:()0f x +'。
【例1】(89一)已知()32f '=,则【例2】(87二)设()f x 在x a =处可导,则(A )()f a '. (B )()2f a '.(C )0. (D )()2f a '.【例3】(89二)设()()()()12f x x x x x n =+++,则()0f '= .(C)可导,但导数不连续. (D)可导,但导数连续.处的(A)左、右导数都存在. (B)左导数存在,但右导数不存在.(C)左导数不存在,但右导数存在.(D)左、右导数都不存在.【例7】(96二)设函数()f x在区间(,)-δδ内有定是()f x的(A)间断点. (B)连续而不可导的点. (C)可导的点,且()00f'=.(D)可导的点,且()00f'≠.【例8】(90三)设函数()f x 对任意的x 均满足等式()()1f x af x +=,且有()0f b '=,其中a 、b 为非零常数,则(A )()f x 在1x =处不可导.(B )()f x 在1x =处可导,且()1f a '=.(C )()f x 在1x =处可导,且()1f b '=.(D )()f x 在1x =处可导,()1f ab '=.二、导数的几何意义和物理意义导数的几何意义: 切线的斜率为:()()tan lim 00x x f x f x k x x →-==-α, ()()00f x f x x x --导数的物理意义:某变量对时间t 的变化率,常见的有速度和加速度。
《高数基础知识》课件

CHAPTER
空间解析几何
空间直角坐标系是描述空。
空间直角坐标系
在空间直角坐标系中,点的位置可以用三个坐标来表示,这三个坐标分别对应于三个坐标轴。
点的坐标表示
在空间解析几何中,向量可以用三个坐标来表示,这三个坐标分别对应于三个坐标轴上的分量。
平面与直线的交点
如果一条直线和一个平面相交,那么它们的交点可以用直线和平面的方程联立求解得到。
平面与平面的交线
如果两个平面相交,那么它们的交线可以用两个平面的方程联立求解得到。
06
CHAPTER
多项式函数与插值法
多项式的定义
多项式是数学中一个基本概念,由一个或多个项通过加法或减法组合而成。
多项式的根
总结词
详细描述
总结词
掌握极限的四则运算法则,理解极限运算的基本方法
详细描述
极限的四则运算法则包括加减乘除和复合运算,是研究函数极限行为的基础。极限运算的基本方法包括利用极限的四则运算法则、等价无穷小替换、洛必达法则等,这些方法可以帮助我们求解各种极限问题,并进一步研究函数的性质和变化规律。
03
CHAPTER
样条插值法的应用
THANKS
感谢您的观看。
详细描述
总结词
高数的发展历程
详细描述
高数的发展可以追溯到17世纪,随着微积分学的发展,高数逐渐形成并完善。在18世纪和19世纪,高数的发展取得了巨大的进步,许多数学家如欧拉、高斯等都为高数的发展做出了杰出的贡献。
总结词
高数在日常生活和科学中的应用
详细描述
高数在日常生活和科学中有着广泛的应用。例如,在物理学中,高数被用于描述和解决力学、电磁学、光学等领域的问题;在经济学中,高数被用于研究金融、投资、贸易等问题;在工程学中,高数被用于设计、分析、优化各种系统和结构。
上海财经大学英语高数课件02

d 3 y d d 2 f ( x) d 3 f ( x) 3 3 f ' ' ' ( x) y ' ' ' 3 ( ) D f ( x ) D x f ( x) 2 3 dx dx dx dx
up down return end
And we can define f' ' ' ' (x)=[f ' ' ' (x)] '. From now on instead of using f' ' ' ' (x) we use f(4)(x) to represent f ' ' ' ' (x). In general, we define f(n)(x)=[f(n-1)(x)] ', which is called the nth derivative of f(x). We also like to use the following notations, if y=f(x),
up
down
return
end
Corollary: If the differential of f(x) is df(x)= A(x) x,
then f(x) is differentiable and A(x)=f '(x).
Proof: From the definition,
f (t ) f ( x) A( x)t B(t , x) f ' ( x) lim lim A( x). tx t 0 tx t
up down return end
中国石油大学高数(2-2)历年期末试题参考答案

中国石油大学高数(2-2)历年期末试题参考答案2007—2022学年第二学期高等数学(2-2)期末试卷(A)参考答案一、填空题:1~6小题,每小题4分,共24分.请将答案写在指定位置上.1.平面1:yz0与平面2:某y0的夹角为3.22z某y2.函数在点(1,2)处沿从点(1,2)到点(2,23)的方向的方向导数为2223.设f(某,y)是有界闭区域D:某ya上的连续函数,则当a0时,123.1a0a2limf(某,y)d某dyD222f(0,0).4.区域由圆锥面某yz及平面z1围成,则将三重积分f(某2y2)dv在柱面坐标系下化为三次积分为20ddrf(r)rdz.0r1123某t,yt,zt5.设为由曲线上相应于t从0到1的有向曲线弧,P,Q,R是定义在上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:Pd某QdyRdz(P14某9y222某Q14某9y223yR14某9y22)d.6.将函数f(某)某1(0某)展开成余弦级数为某1214(co某11co3某co5某)(0某)2235.二、单项选择题:7~12小题,每小题3分,共18分。
下列每题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在题后的括号内.(某,y)K(常数),则fy(某,y)(D)7.若zf(某,y)有连续的二阶偏导数,且f某yK2(A);(B)Ky;(C)Ky(某);(D)K某(y).28.设f(某)是连续的奇函数,g(某)是连续的偶函数,区域D{(某,y)0某1,下列结论正确的是(A).(A)某y某},则f(y)g(某)d某dy0;(B)f(某)g(y)d某dy0;DD(C)[f(某)g(y)]d某dy0;(D)[f(y)g(某)]d某dy0.DD19.已知空间三角形三顶点A(1,2,3),B(1,1,1),C(0,0,5),则ABC的面积为(A)(A)9723;(B);(C);(D).23972zd某dy在数值上等于(C).10.曲面积分22(A)流速场vzi穿过曲面Σ指定侧的流量;(B)密度为z的曲面片Σ的质量;22(C)向量场Fzk穿过曲面Σ指定侧的通量;(D)向量场Fzk沿Σ边界所做的功.11.若级数c(某2)nn1n在某4处是收敛的,则此级数在某1处(D)(A)发散;(B)条件收敛;(C)绝对收敛;(D)收敛性不能确定.(1)n112.级数的敛散性为(A)2pnn111(A)当p时,绝对收敛;(B)当p时,条件收敛;2211(C)当0p时,绝对收敛;(D)当0p时,发散.22三、解答题:13~20小题,共58分.请将解答过程写在题目下方空白处.解答应写出文字说明、证明过程或演算步骤.13.(本题满分6分)设某yze(某yz)确定zz(某,y),求全微分dz..y(1)(d某dydz),整理得dzd某d解:两边同取微分d某dydze(某yz)某2y2z23某014.(本题满分8分)求曲线在点(1,1,1)处的切线与法平面方程.2某3y5z40dy9dydzd某2某2y2z34(1,1,1)d某d某解:两边同时关于某求导,解得,723dy5dz0dzd某(1,1,1)d某d某491某1y1z1所以切向量为:T{1,,},切线方程为:;16161691法平面方程为:16(某1)9(y1)(z1)0,即16某9yz240.15.(本题满分8分)求幂级数(2n1)某n0n的和函数.n解:求得此幂级数的收敛域为(1,1),(2n1)某n0n12n某nn0某n0n,2n某n0n2某n某n1某n1,设A(某)nn某n1,则某01某某,A(某)d某n某d某某,(1某1);A(某)201某(1某)1某n1n1n12即2n某n2某A(某)n0nnn02某,2(1某)(2n1)某2n某n0某nn02某11某,(1某1).22(1某)1某(1某)216.(本题满分6分)计算I的有限部分.解:I(某yz)dS,其中为曲面yz5被柱面某y225所截下(某yz)dS(某5)dS某dS(关于yoz平面对称,被积函数某是某的奇函数)5dS05dS52某2y225d某dy52251252.17.(本题满分8分)计算积分IL2(2某24某y)d某(2某2y),d其y中L为曲线355(某)2(y)2上从点A(1,1)到B(2,4)沿逆时针方向的一段有向弧.222QP解:,积分与路径无关,选折线AC+CB为积分路径,4某某y某某,1某2某2,d某0其中C(2,1),AC:,CB:.y1,dy0yy,1y4I(2某24某y)d某(2某2y2)dyL(2某24某y)d某(2某2y2)dy(2某24某y)d某(2某2y2)dyACCB(2某4某)d某(8y2)dy1122418.(本题满分8分)计算I41.3yzdydzy(某2z2)dzd某某yd某dy,是由曲面4y某2z2与平面y0围成的有界闭区域的表面外侧.解:Pyz,Qy(某z),R某y,22PQR某2z2,由高斯公式,某yzIyzdydzy(某2z2)dzd某某yd某dy(某2z2)d某dydzzco2(利用柱面坐标变换某in,则:02,0r2,0y4r.)yy224r232drdrr2dy.0003某2y2z219.(本题满分8分)在第Ⅰ卦限内作椭球面2221的切平面,使切平面与三个坐标面所围abc成的四面体体积最小,求切点坐标.解:设切点坐标为(某0,y0,z0),则切平面的法向量为{2某02y02z0,2,2},2abc3某0y0z0某0某y0yz0z(某某)(yy)(zz)0221,,即000a2b2c2a2bc1a2b2c2则切平面与三个坐标面所围成的四面体体积为V,6某0y0z0切平面方程为某yz令L(某0,y0,z0,)ln某0lny0lnz0(0202021)abc12某0某a20012y020babcy0解方程组,得某0,y0,z0,33312z00z0c22y02z02某02212bcaabc,,).故切点坐标为(33320.(本题满分6分)设f(某),g(某)均在[a,b]上连续,试证明柯西不等式:222[f2(某)d某][g2(某)d某][f(某)g(某)d某]2.aaabbb证:设D:a某b,ayb.则[baf(某)d某][g2(某)d某]f2(某)g2(y)d某dy(D关于y某对称)f2(y)g2(某)d某dy 2abDD11[f2(某)g2(y)d某dyf2(y)g2(某)d某dy][f2(某)g2(y)f2(y)g2(某)]d某dy2D2DD1[2f(某)g(某)f(y)g(y)]d某dy[f(某)g(某)f(y)g(y)]d某dy2DDf(某)g(某)d某f(y)g(y)dy[f(某)g(某)d某]2.aaabbb2022—2022学年第二学期高等数学(2-2)期末试卷(A)参考答案一.选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1.设三向量a,b,c满足关系式abac,则(D).(A)必有a0;(B)必有bc0;(C)当a0时,必有bc;(D)必有a(bc)(为常数).2.直线某3y4z与平面4某2y2z3的关系是(A).273(A)平行,但直线不在平面上;(B)直线在平面上;(C)垂直相交;(D)相交但不垂直.45某y,(某,y)(0,0)223.二元函数f(某,y)在点(0,0)处(A)某y0,(某,y)(0,0)(A)不连续,偏导数存在(B)连续,偏导数不存在(C)连续,偏导数存在(D)不连续,偏导数不存在(某ay)d某ydy为某二元函数的全微分,则a(D).2(某y)(A)1;(B)0;(C)1;(D)2.4.已知5.设f(u)是连续函数,平面区域D:1某1,0y1某2.,则(A)(C)D(C).f(某2y2)d某dy10d某1某20f(某y)dy;(B)dy02211y20f(某2y2)d某;0df(r2)rdr;(D)df(r2)dr.000116.设a为常数,则级数an(1)(1co)(B).nn1(A)发散;(B)绝对收敛;(C)条件收敛;(D)收敛性与a的值有关.二.填空题(本题共6小题,每小题4分,满分24分).某2y2z2,向量n{1,1,1},点P0(1,2,3),1.设函数u(某,y,z)161218u3.则3nP02.若函数f(某,y)2某2a某某y22y在点(1,1)处取得极值,则常数a53.L为圆某y1的一周,则22.L(某2y2)d0.an12,级数an某2n1的收敛半径为4.设limnan1n2.25.设f(某)某21eydy,则某f(某)d某02111(e1).46.设f(某)是以2为周期的周期函数,它在区间(1,1]上的定义为f(某)则f(某)的以2为周期的傅里叶级数在某1处收敛于三.解答下列各题(本题共7小题,满分44分).1.(本小题6分)设f(u)是可微函数,zf(解题过程是:令u2,1某0某,0某13,3.2yzz),求某2y.某y某yyz1zzzf(u),某2y0.,则2f(u),某y某某某y2某y1某y222.(本小题6分)计算二重积分,其中d某dyD{某,y)某y1,某0}.221某yD某y某yy是奇函数,解题过程是:D关于某轴对称,被积函数关于d某dy0,221某2y21某yD52u2某f12某y(某2f11f12)(某2f21f22)某y2某f12某3yf11(2某y某2)f12f222.求函数z3某y线方向的方向导数.01某某T(1,2)解:曲线L:在点(1,2)处的切向量,T(1,2)2y某152某y在曲线y某21上点(1,2)处,沿着曲线在该点偏向某轴正向的切co12,co55zz|(1,2)(3y21)|(1,2)11,|(1,2)(6某y1)|(1,2)13某y 函数在点(1,2)沿T(1,2)方向的方向导数为zT|(1,2)11132375553.计算222其中(某y)d某dy,D{(某,y)某y4}.D202解2(某y)d某dyD某2y2422(某y)d某dy某2y242某yd某dydr3dr0=804.设立体由锥面z某2y2及半球面z11某2y2围成.已知上任一点某,y,z处的密度与该点到某oy平面的距离成正比(比例系数为K0),试求立体的质量.解:由题意知密度函数(某,y,z)k|z|02法1::040r2co质量M=(某,y,z)d某dydzk|z|d某dydzk20dd402co0rcor2indr7k.611D:某2y21,法2::2222某yz11某yM(某,y,z)d某dydzk|z|d某dydzk12220d10dr11r2rzrdz7k.6法3:M2k|z|d某dydzzzdzz(1(z1))dz017k.65.计算曲线积分I(某y)d某(y 某)dy22C,其中是曲线某y1沿逆时针方向一周.22某yC解:I(某y)d某(y某)dyQP()d某dy[1(1)]d某dy2.1某yC某2y21某2y212222某yzdydz某yd某dzz某d某dy,其中为球面某yz1的外侧.6.计算第二类曲面积分解:利用高斯公式,某yzdydz某yd某dz(z某2)d某dy(yz某某2)d某dydz2(yz某)d某dydz某d某dydz01222(某yz)d某dydz311244.ddrindr0030157.求幂级数1n某的和函数.n1n1解:幂级数的收敛半径R1,收敛域为[1,1)某0时,某1n1某n某S(某)某=0某d某0某nd某n1n1n1n1某01某d某某ln(1某)某ln(1某)1某0时,S(0)0,S(某)某0四.证明题(本题4分)某[1,0)(0,1)某0ey证明下列不等式成立:某d某dyDe,其中D{(某,y)|某2y21}.12eye某证明:因为积分区域关于直线y某对称,某d某dyyd某dyDeDeey1eye某某d某dy(d某dyyd某dy)某2DeDeDe1eye某1=(某y)d某dy2d某dy2Dee2五.应用题(本题8分)设有一小山,取它的底面所在平面为某oy坐标面,其底部所占的区域为D{(某,y):某2y2某y75},小山的高度函数为h(某,y)75某2y2某y.(1)设M(某0,y0)为区域D上一点,问h(某,y)在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为g(某0,y0),试写出g(某0,y0)的表达式。
高数(高等教育出版社)第一版,第二章习题详解参考

第二章习题解答参考习 题 2-11.设()=8f x x ,试按定义求(1)f '. 解 ()()()0011818(1)=limlim 8x x f x f x f x x∆→∆→+∆-+∆-'==∆∆. 2.设2()=f x ax bx c ++,其中,,a b c 为常数.按定义求()f x '. 解 ()()()0=limx f x x f x f x x∆→+∆-'∆()()()220limx a x x b x x c ax bx c x∆→+∆++∆+-++=∆()202lim 2x ax x a x b x ax b x∆→∆+∆+∆==+∆. 3.证明 (sin )=cos x x '. 证 设()sin f x x =,则()()()sin sin 2cos sin 22x x f x x f x x x x x ∆∆⎛⎫+∆-=+∆-=+ ⎪⎝⎭ ()()()002cos sin 22lim lim x x x x x f x x f x f x x x∆→∆→∆∆⎛⎫+ ⎪+∆-⎝⎭'==∆∆0sin2lim cos cos 22x xx x x x ∆→∆∆⎛⎫=+⋅= ⎪∆⎝⎭, 所以 (sin )=cos x x '.4.下列说法可否作为()f x 在0x 可导的定义 (1)000()()limh f x h f x h h→+--存在;解 不能.因为从极限式中不能判断()0f x 存在,也不能判断000()()limh f x h f x h→+-存在.例如()f x x =在0x =点不可导,但00(0)(0)limlim 0h h h h f h f h h h→→--+--==却存在.(2)000()()lim h f x h f x h +→+-和000()()lim h f x h f x h+→---存在且相等;解 可以.因为()0000()()lim h f x h f x f x h++→+-'=,()0000000()()()()lim lim h h f x h f x f x h f x f x h h+--→-→----'==--,根据导数存在的充要条件,可知()0f x '存在.5.求下列函数的导数:(1)5y x =; (2)y =; (3)y x =; (4)13log y x = ; (5)y =(6)lg y x =.解 (1)51455y x x -'==;(2)132212y x x --'⎛⎫'==-= ⎪⎝⎭(3)221577222277y x x x '⎛⎫'=== ⎪⎝⎭(4)111ln 3ln3y x x '==-; (5)25152326616y x x x +--''⎛⎫⎛⎫'==== ⎪ ⎪⎝⎭⎝⎭;(6)1ln10y x '=. 6.已知物体的运动规律为3s t =(米),求这物体在2t =(秒)时的速度. 解 因为3s t =,23dsv t dt==,所以2t =时,()223212v =⨯=. 7.如果()f x 为偶函数,且(0)f '存在,证明(0)=0f '.证 因为()()0(0)=lim x f x f f x∆→∆-'∆,而()f x 为偶函数,故()()f x f x -∆=∆,所以()()()()000(0)limlim (0)x x f x f f x f f f x x∆→∆→-∆--∆-''==-=-∆-∆, 所以(0)=0f '.8.抛物线2y x =在哪一点的切线平行于直线45y x =-在哪一点的切线垂直于直线2650x y -+=解 由2y x =,可得2y x '=,若切点为()200,x x ,则依题设024x =,即02x =时,切线平行于直线45y x =-;01213x ⋅=-,即032x =-时,切线垂直于直线2650x y -+=;所以抛物线2y x =在点()2,4的切线平行于直线45y x =-在点39,24⎛⎫- ⎪⎝⎭的切线垂直于直线2650x y -+=.9.在抛物线2y x =上取横坐标为11x =及23x =的两点,作过这两点的割线,问该抛物线上哪一点的切线平行于这条割线解 由题设可知2y x '=,所取的两点为()1,1,()3,9,连接两点的直线斜率为4k =,依题设,应有24x =,即2x =,所以所求点为()2,4.10.如果()y f x =在点()4,3处的切线过点()0,2,求()4f '. 解 依题设,曲线在点()4,3处的切线为()()344y f x '-=-,满足()()23404f '-=-,从而()144f '=.11.讨论下列函数在0x =处的连续性与可导性:(1)y = (2)21sin ,0,0,0.x x y xx ⎧≠⎪=⎨⎪=⎩ 解(1)因为()000x y →==,所以y =0x =点连续,而20031lim x x x →→==+∞,所以y =0x =点不可导;(2)因为()201lim sin 00x x y x →==,所以21sin ,0,0,0.x x y x x ⎧≠⎪=⎨⎪=⎩在0x =点连续, 又 2001sin1limlim sin 0x x x x x x x →→==,所以21sin ,0,0,0.x x y x x ⎧≠⎪=⎨⎪=⎩在0x =点可导. 12.设sin ,0()=,0x x f x ax b x <⎧⎨+≥⎩在0x =处可导,求,a b 的值.解 因为sin ,0()=,0x x f x ax b x <⎧⎨+≥⎩在0x =处可导,所以()0lim ()0x f x f →=,且()()00f f -+''=,又0lim ()0x f x -→=,0lim ()x f x b +→=,()0f b =,故0b =,()00f =, 从而()()()000sin 0lim lim 1x x f x f xf x x---→→-'===, ()()()0000lim lim x x f x f ax f a xx +++→→-'===,所以1a =. 13.已知2,0(),0x x f x x x ⎧≥=⎨-<⎩,求(0)f +',(0)f -'和(0)f '.解 因为2,0(),0x x f x x x ⎧≥=⎨-<⎩,所以()200()0(0)lim lim 0x x f x f x f x x +++→→-'===, ()00()0(0)lim lim 1x x f x f xf x x---→→--'===-,所以(0)f '不存在. 14.设函数33,0()=,0x x f x x x ⎧≥⎨-<⎩,求()f x '.解 当0x >时,2()3f x x '=,当0x <时,2()3f x x '=-,当0x =时,()()3000(0)limlim 0x x f x f x f xx +++→→-'===, ()()3000(0)lim lim 0x x f x f x f xx ---→→--'===,所以(0)0f '=,所以 223,0()=3,0x x f x x x ⎧≥'⎨-<⎩.15.设所给的函数可导,证明:(1)奇函数的导函数是偶函数;偶函数的导函数是奇函数; (2)周期函数的导函数仍是周期函数. 证 (1)设()f x 为奇函数,则()()f x f x -=-, 而()()()limh f x h f x f x h→+-'=,()()()()()0limlim h h f x h f x f x h f x f x h h→→-+----+'-== ()()0lim h f x h f x h →--=-()()()0lim h f x h f x f x h→--'==-,所以()f x '为偶函数;相似地,若()f x 为偶函数,则()()f x f x -=,于是()()()()()0limlim h h f x h f x f x h f x f x h h→→-+----'-== ()()()0limh f x h f x f x h→--'=-=--,所以()f x '为奇函数.(2)设()f x 为周期函数,则存在T ,使()()f x T f x +=,则()()()0limh f x T h f x T f x T h →++-+'+=()()()0lim h f x h f x f x h→+-'==, 所以()f x '也是以T 为周期的周期函数.16.设有一根细棒,取棒的一端作为原点,棒上任意点的坐标为x .于是分布在区间[0,]x 上细棒的质量m 是x 的函数()m m x =.应怎样确定细棒在点0x 处的线密度(对于均匀细棒来说,单位长度细棒的质量叫这细棒的线密度)解 设在0x 处的线密度为()0x ρ,给0x 以x ∆的增量, 则在区间00[,]x x x +∆上细棒的平均线密度为()()00m x x m x x+∆-∆,故()()()()00000limx m x x m x x m x xρ∆→+∆-'==∆.17.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a .证 由2xy a =可得2,0a y x x =≠,于是22,0a y x x '=-≠,若切点为200,a x x ⎛⎫ ⎪⎝⎭,则该点处的切线为()220200a a y x x x x -=--,它与两坐标轴的交点分别为()02,0x ,2020,a x ⎛⎫ ⎪⎝⎭,所以所求三角形的面积为220012222a S x a x =⨯⨯=. 18.设函数()f x 在0x =处可导,试讨论函数|()|f x 在0x =处的可导性. 解 因为函数()f x 在0x =处可导,所以()()0()0lim0x f x f f x→-'=存在, 而()()()0limx x f x f f x x=→-'=,故(1)若(0)0f =,由()()0()0lim 0x f x f f x →-'=可知:()()0f x f xα'=+,其中lim 0x α→=,从而()()0f x x f α'=+⎡⎤⎣⎦,此时()()()000limlim 0x x x x f xf x f xxαα=→→'+⎡⎤⎣⎦''==⋅+, 因此|()|f x 在0x =点的左导数为()0f '-,右导数为()0f ', 所以|()|f x 在0x =处可导的充要条件是()00f '=;(2)若(0)0f ≠,设(0)0f >,则()0lim ()00x f x f →=>,由保号性定理,0δ∃>,当()0,x U δ∈时,()0f x >, 此时有()()()()0()0()0limlim0x x x f x f f x f f x f xx=→→--''===,相似地, 若(0)0f <,则()0lim ()00x f x f →=<,由保号性定理,0δ∃>,当()0,x U δ∈时,()0f x <,此时有()()()()00()0()0limlim 0x x x f x f f x f f x f x x=→→---⎡⎤⎣⎦''===-; 总之,若()f x 在0x =处可导,则当(0)0f ≠时,|()|f x 在0x =处可导;当(0)0f =时,|()|f x 在0x =处可导的充要条件是()00f '=.习 题 2-21.求下列函数的导数: (1)3cos2y x =;(2)4sin(31)y t =-;(3)32e 4cos2x y x =+; (4)5(1)y x =+;(5)43e 1x y -=+; (6)y =(7)1ln y x x=; (8)23(1)(1)y x x x =++-;(9)3e sin xy x x =;(10)322ln 3ln x x y x x +=+.解(1)()()()()3sin 223sin 226sin 2y x x x x ''=⋅-=-⋅=-; (2)()4cos(31)3112cos(31)y t t t ''=-⋅-=-;(3)()()()()332e 34sin 226e 8sin 2x x y x x x x '''=+-=-; (4)()445(1)15(1)y x x x ''=++=+; (5)()443e 4012e x x y x --''=-+=-;(6)y '==(7)()()()()2221ln ln ln 1ln ln ln x x x x x x y x x x x x x +⋅'+'=-=-=-; (8)()()3222221(1)(1)3(1)(1)522y x x x x x x x x '=+-+++⋅-=-++; (9)()23323e sin e sin e cos e 3sin sin cos x x x x y x x x x x x x x x x x x '=++=++;(10)()()()()()2234222222333ln 2ln 294ln 323ln 3ln x x x x x x x x x x x xx x y x x x x ⎛⎫⎛⎫++-++ ⎪ ⎪-+-+⎝⎭⎝⎭'==++2.证明:(1)2(cot )csc x x '=-; (2) (csc )csc cot x x x '=- .证 (1)22cos sin sin cos cos (cot )csc sin sin x x x x x x x x x '-⋅-⋅⎛⎫'===- ⎪⎝⎭; (2)21cos 1cos (csc )csc cot sin sin sin sin x x x x x x x x x '⎛⎫'==-=-⋅=- ⎪⎝⎭. 3.证明:(1)(arccos )x '= (2)21(arccot )1x x '=-+. 证 (1)设arccos y x =,则其反函数为cos x y =,,22y ππ⎡⎤∈-⎢⎥⎣⎦,由于sin x y '=-,由反函数求导法则,()1arccos sin x y '=-== (2)设arccot y x =,则其反函数为cot x y =,()0,y π∈, 由于2csc x y '=-,由反函数求导法则,()222111arccos csc 1cot 1x y y x'=-=-=-++. 4.求下列函数在给定点处的导数:(1)2cos 3sin y x x =-,求π4x y ='; (2)2233x y x =+-,求(2)f '. 解 (1)因为2sin 3cos y x x '=--,所以π4ππ2sin3cos 442x y ='=--=-; (2)因为()()()22212223333x xy x x ⋅-'=-+=+--,所以()22222103332x y =⋅'=+=-.5.写出曲线122y x x=-与x 轴交点处的切线方程. 解 令0y =,得曲线122y x x =-与x 轴交点为1,02⎛⎫ ⎪⎝⎭和1,02⎛⎫- ⎪⎝⎭, 而2122y x '=+,所以142y ⎛⎫'±= ⎪⎝⎭, 所以所求切线有两条,方程分别为42y x =+,42y x =-.6.求下列函数的导数: (1)25(23)y x =+;(2)2sin (52)y x =-;(3)2321e xx y -++=;(4)2sin ()y x =; (5)2cos y x =;(6)y =(7)()arctan x y e =; (8)2(arccos )y x =; (9)lnsin y x =;(10)3log (1)a y x =+.解 (1)242245(23)(23)20(23)y x x x x ''=⋅+⋅+=+; (2)222cos(52)(52)4cos(52)y x x x x ''=-⋅-=--; (3)()()223212321e 32162e xx x x y x x x -++-++''=⋅-++=-+;(4)222cos()()2cos()y x x x x ''=⋅=;(5)()()2cos cos 2cos sin sin 2y x x x x x ''==-=-; (6)()22y a x ''=-==(7)()()221e e 1e 1e xxxx y ''==++; (8)2(arccos )(arccos )2(arccos )y x x x ⎛⎫''=== ⎝ (9)()1cos sin cot sin sin xy x x x x''===; (10)233313(1)(1)ln (1)ln x y x x a x a''=+=++.7.求下列函数的导数:(1)arccos(12)y x =-; (2)1arcsin y x=;(3)1ln 1ln xy x-=+;(4)ln (y x =;(5)sin cos n y x nx =⋅; (6)y =(7)e y =;(8)[]ln ln(ln )y x =;(9)y =(10)1arccot tan 22x y ⎛⎫= ⎪⎝⎭.解 (1)2)y x ''=-==;(2)211y x x '⎫⎫'==-=⎪⎪⎭⎭; (3)()()()()22111ln 1ln 21ln 1ln x x x x y x x x -+--'==-++; (4)y x ''=+==;(5)()()()1sin sin cos sin sin n n y n x x nx x nx nx -'''=⋅+-()1sin cos cos sin sin n n x x nx x nx -=⋅-()1sin cos 1n n x n x -=+⎡⎤⎣⎦;(6)1sin 21sin 2x y x '-⎛⎫'=⎪+⎝⎭()()()22cos 21sin 21sin 22cos 21sin 2x x x x x -+--=+2cos 21sin 2xx-=+()2cos 2cos 21sin 2x x x =-+;(7)(1ee1y x'''===+ (8)()()()1111ln (ln )ln ln (ln )ln (ln )ln ln ln (ln )y x x x x x x x x '''==⋅=; (9)y'====;(10)211tan 2211tan 22x y x '⎛⎫'=- ⎪⎝⎭⎛⎫+ ⎪⎝⎭2241sec 2224tan 2x x x '⎛⎫=- ⎪⎝⎭⎛⎫+ ⎪⎝⎭ 222sec 1213cos 4tan 22xx x =-=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭. 8.设1cos ,0()ln (1)cos ,0x x f x x x x x -<⎧=⎨+-≥⎩,求()f x '.解 当0x ≠时,sin ,0()1cos sin ,01x x f x x x x x x<⎧⎪'=⎨-+>⎪+⎩,当0x =时,20002sin sin1cos 022(0)lim limlim sin 022x x x x xx x f xxx ----→→→--'===⋅=,()()100ln 1cos 0(0)lim lim ln 1cos ln 10x x x x x x f x x e x +++→→+--⎡⎤'==+-=-=⎢⎥⎣⎦, 所以()00f '=,从而sin ,0()1cos sin ,01x x f x x x x x x <⎧⎪'=⎨-+≥⎪+⎩.9.求函数cos (sin )x y x =的导函数. 解法1 因为cos cos lnsin (sin )x x x y x e ==,所以()()cos cos lnsin cos cos ln sin sin sin ln sin cos sin x x x x y e x x x x x x x ⎛⎫''=⋅=-+ ⎪⎝⎭()2cos cos sin sin ln sin sin xx x x x x ⎛⎫=-+ ⎪⎝⎭.解法2 对数求导法,由cos (sin )x y x =,得ln cos ln (sin )y x x =, 两边同时对x 求导,得cos sin ln sin cos sin y x x x x y x'=-+, 所以()2cos cos sin sin ln sin sin xx y x x x x ⎛⎫'=-+ ⎪⎝⎭.10.设()sin f x x =,3()x x ϕ=,求[()]f x ϕ',[()]f x ϕ',{[()]}f x ϕ'.解 因为()sin f x x =,3()x x ϕ=,所以()cos f x x '=,2()3x x ϕ'=, 所以()()22[()]3sin 3f x f x x ϕ'==,[]()3[()]cos ()cos f x x x ϕϕ'==,()()()()33323{[()]}sin cos 3cos f x x x x x x ϕ''⎡⎤'===⎣⎦. 11.设()f x '存在,求下列函数的导数: (1)(cos )n f x ; (2)cos [()]n f x .解 (1)[]()11(cos )(cos )(cos )(cos )(cos )cos nn n f x nf x f x nf x f x x --''''⎡⎤==⎣⎦1sin (cos )(cos )n n xf x f x -'=-;(2){}{}{}()11cos [()]cos [()]cos[()]cos [()]sin[()]n n n f x n f x f x n f x f x f x --'''==-()1sin[()]cos [()]n n f x f x f x -'=-⋅⋅.12. 求曲线()22sin sin f x x x =+所有具有水平切线的点. 解 因为()2cos 2sin cos f x x x x '=+,令()0f x '=,得()cos 1sin 0x x +=,于是cos 0x =,或sin 1x =-, 推得 ,2x k k Z ππ=+∈,或32,2x k k Z ππ=+∈, 所以所求的点为2,32k ππ⎛⎫+ ⎪⎝⎭,32,12k ππ⎛⎫+- ⎪⎝⎭,其中k Z ∈. 习 题 2-31.求下列函数的二阶导数: (1)35e x y -= ;(2)e sin t y t -= ; (3)2sin ln y x x = ;(4)tan y x = ;(5)ln(y x = ; (6)2(1)arctan y x x =+ . 解 (1)353e x y -'=,359e x y -''=;(2)()e sin e cos e cos sin t t t y t t t t ---'=-+=- ,()()e cos sin e sin cos 2e cos t t t y t t t t t ---''=--+--=-;(3)()221sin 2sin cos ln sin ln sin 2xy x x x x x x x x'=+⋅=⋅+,()()22sin 22sin cos sin ln 2cos 2x x x x xy x x x x ⋅-''=+⋅+ ()()222sin 2sin 2cos 2ln x xx x x x=+⋅-;(4)2sec y x '=,22sec sec tan 2sec tan y x x x x x ''=⋅⋅=⋅;(5)1y ⎛⎫'=+= ⎝ ()3221422y x x -''=-+⋅=;(6)2arctan 1y x x '=+,22arctan 1x y x x ⎛⎫''=+ ⎪+⎝⎭. 2.3e x y x = ,求(5)(0)y . 解 设3u x =,x v e =,则23u x '=,6u x ''=,6u '''=,()0,4n u n =∀≥;(),nx v e n N +=∀∈, 代入莱布尼兹公式,得 ()()()()5445(5)510105y u v u v u v u v u v uv ''''''''''''=+++++2310610653x x x x e xe x e x e =⋅+⋅+⋅+,所以 (5)(0)60y =.3.22e x y x =,求(20)y . 解 设2u x =,2x v e =,则2u x '=,2u ''=,()0,3n u n =∀≥;()22,nn x v e n N +=∀∈,代入莱布尼兹公式,得 ()()20(20)200n k k k k yC u v -==∑()()()181920210202020C u v C u v C uv '''=++ 182119202202202019022222x x x e C x e C x e =⋅⋅+⋅+⋅()202229520x e x x =++.4.试从d 1d x y y='导出:(1)223d d ()x y y y ''=-';(2)3235d 3()d ()x y y y y y ''''''-='.解 因为d 1d x y y =',所以()()2232d 111d x d d dx y y y dy y dx y dy y y y ''''⎛⎫⎛⎫==⋅=-⋅=- ⎪ ⎪'''''⎝⎭⎝⎭, ()()3333d d x d y d y dx y dy dx dyy y ⎛⎫⎛⎫''''=-=-⋅ ⎪ ⎪ ⎪ ⎪''⎝⎭⎝⎭ ()()()()()32265331y y y y y y y y y y y '''''''''''''''-⋅-=-⋅='''. 5.证明:函数12e e x x y C C λλ-=+(12,,C C λ是常数)满足关系式20y y λ''-=. 解 因为12e e x x y C C λλ-=+,所以()1212e e e e x x x x y C C C C λλλλλλλλ--'=+-=-,2212e e x x y C C λλλλ-''=+, 所以()22221212e e e e 0x x x x y y C C C C λλλλλλλλ--''-=+-+=. 6. 求常数λ的值,使得函数x y e λ=满足方程560y y y '''+-=.解 因为x y e λ=,所以x y e λλ'=,2x y e λλ''=,代入方程560y y y '''+-=, 得()2560x e λλλ+-=,因为0,x e x R λ≠∀∈,所以2560λλ+-=, 解得16λ=-,21λ=.7. 设()()sin f x x a =+,()sin cos g x b x c x =+,求常数,b c 的值,使得()()00f g =,且()()00f g ''=.解 因为()()sin f x x a =+,()sin cos g x b x c x =+, 所以()()cos f x x a '=+,()cos sin g x b x c x '=-,所以由()()00f g =,()()00f g ''=,可得sin c a =,且cos b a =. 8.求下列函数的n 阶导数.(1)12121n n n n n y x a x a x a x a ---=+++++L (12,,n a a a L 是常数); (2)e x y x =; (3)2sin y x =; (4)2156y x x =-+.解 (1)()()12312112n n n n y nx n a x n a x a ----'=+-+-++L ,()()()()()23412211223n n n n y n n x n n a x n n a x a ----''=-+--+--++L ,根据幂函数的导数公式特点:每求导一次,幂函数降一次幂,故()!ny n =.(2)()e e e 1x x x y x x '=+=+,()()e 1e e 2x x x y x x ''=++=+,()()e 2e e 3x x x y x x '''=++=+,由此可见,每求一次导数,增加一个e x , 所以()()e n x y x n =+,n N +∀∈; (3)()()21cos 211sin cos 2222x y x x -===-, ()2sin cos sin 2cos 22y x x x x π⎛⎫'===-+ ⎪⎝⎭,()2cos 22cos 222y x x π⎛⎫''==-+⋅ ⎪⎝⎭,()222sin 22cos 232y x x π⎛⎫'''=-=-+⋅⎡⎤ ⎪⎣⎦⎝⎭, ()()4332cos 22cos 242y x x π⎛⎫=-=-+⋅⎡⎤ ⎪⎣⎦⎝⎭, 所以()12cos 22nn y x n π-⎛⎫=-+⋅ ⎪⎝⎭,n N +∀∈.(4)因为 21115632y x x x x ==--+--, 而()2133x x -'⎛⎫=-- ⎪-⎝⎭,()()()311233x x -''⎛⎫=--- ⎪-⎝⎭, ()()()()4112333x x -'''⎛⎫=---- ⎪-⎝⎭, 可见,()()()()()()1112333n n n x x --⎛⎫=----- ⎪-⎝⎭L ()()11!3n n n x --=--,同理,()()()()()()()()11112321!22n n nn n x n x x ----⎛⎫=-----=-- ⎪-⎝⎭L ,所以()()()()()()()1111111!321!32nn n nn n n y n x x n x x ----++⎛⎫⎡⎤=----=-- ⎪⎣⎦ ⎪--⎝⎭.习 题 2-41.求由下列方程所确定的隐函数的导数d d y x: (1)e 0xy x y +-=;(2)22320x y xy y -+=;(3)e ln sin 2xy y x x +=;(4= (0a >的常数).解 (1)将方程两边同时对x 求导,得1e 0xy dy dy y x dx dx ⎛⎫+-+= ⎪⎝⎭,变形得:e 11e xy xydy y dx x -=-;(2)将方程两边同时对x 求导,得22222230dy dy dy xy x y x y y dx dx dx ⎛⎫⎛⎫+-+⋅+= ⎪ ⎪⎝⎭⎝⎭,变形整理得:2224223dy xy y dx x xy y -+=-+; (3)将方程两边同时对x 求导,得 e ln 2cos 2xy dy dy y y x x x dx dx x ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,变形整理得:22cos 2e ln exyxy dy x x y xy dx x x x --=+;(4)将方程两边同时对x 求导,得0+=,变形整理得:()0dy x dx =>. 2.求曲线2520x y xy +-=在点(1,1)处的切线方程. 解 将方程两边同时对x 求导,得:42520dy dy x y y x dx dx ⎛⎫+-+= ⎪⎝⎭, 将1x =,1y =代入,解得:()1,10dydx=,所以曲线在点(1,1)处的切线方程为:1y =.3.已知sin cos()0y x x y -+=,求隐函数()y y x =在点π0,2⎛⎫⎪⎝⎭的导数值.解 将方程两边同时对x 求导,得:sin cos sin()10dy dy x y x x y dx dx ⎛⎫⎛⎫++++= ⎪ ⎪⎝⎭⎝⎭,将0x =,2y π=代入,解得:0,212dydxππ⎛⎫ ⎪⎝⎭=--.4.求下列方程所确定的隐函数的二阶导数22d d yx.(1)tan()y x y =+; (2)1e y y x =+;(3)ln y y x y =+; (4)arctan yx=. 解 (1)将方程两边同时对x 求导,得:2sec ()1dy dy x y dx dx ⎛⎫=++ ⎪⎝⎭, 解得2csc ()dyx y dx=-+, 再求导,得:()222csc()csc()cot 1d y dy x y x y x y dx dx ⎛⎫=-+-+++⎡⎤ ⎪⎣⎦⎝⎭, 将2csc ()dy x y dx=-+代入,整理得:()22322csc ()cot d y x y x y dx =-++;(2)将方程两边同时对x 求导,得:e e y ydy dyx dx dx=+, 解得:e 1e y y dy dx x =-,再求导,得:()()222e 1e e e e 1e yy y y y y dy dy x x dx dx d ydxx ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=-,将e 1e y y dy dx x =-代入,整理化简得:()()()()222332e 2e e 321e yyyy x y d y dx y x --==--; (3)将方程两边同时对x 求导,得:ln 1dy dy dyy dx dx dx+=+, 解得:1ln dy dx y =,再求导,得:()2221ln dyd yy dxdx y =-, 将1ln dy dx y =代入,整理化简得:()2321ln d y dx y y =-;(4)将方程两边同时对x 求导,得:2222221121dy dy x y x ydx dx x x y y x -+⋅=⋅+⎛⎫+ ⎪⎝⎭, 解得:dy x y dx x y +=-,再求导,得:()()()22211dy dy x y x y d y dx dx dx x y ⎛⎫⎛⎫+--+- ⎪ ⎪⎝⎭⎝⎭=-, 将dy x ydx x y +=-代入,整理化简得:()()222322x y d y dx x y +=-. 5.用对数求导法求下列函数的导数: (1)cos (sin )x y x =;(2)(tan 2)x y x =;(3)1xx y x ⎛⎫= ⎪+⎝⎭;(4)(2y x =-解 (1)两边取自然对数,得:ln cos ln(sin )y x x =, 两边同时对x 求导,得:()1cos sin ln sin cos sin dy xx x x y dx x=-+⋅, 整理化简得:()cos (sin )sin ln sin cos cot x dyx x x x x dx=-+⋅⎡⎤⎣⎦; (2)两边取自然对数,得:ln ln(tan 2)y x x =,两边同时对x 求导,得:()2sec 221ln(tan 2)tan 2x dyx x y dx x ⋅=+⋅, 整理化简得:4(tan 2)ln(tan 2)sin 4x dy x x x dx x ⎡⎤=+⎢⎥⎣⎦; (3)两边取自然对数,得:()ln ln ln ln 11x y x x x x x ⎛⎫==-+⎡⎤ ⎪⎣⎦+⎝⎭, 两边同时对x 求导,得:()111ln ln 11dy x x x y dx x x ⎛⎫=-++-⎡⎤ ⎪⎣⎦+⎝⎭整理化简得:1ln 111xdy x x dx x x x ⎛⎫⎡⎤=+ ⎪⎢⎥+++⎝⎭⎣⎦; (4)两边取自然对数,得:()111ln ln(21)ln ln(31)ln 1248y x x x x =-++++-,两边同时对x 求导,得:()121312124(31)81dy y dx x x x x =+++-+-,整理化简得:()2131(22124(31)81dy x dx x x x x ⎤=-+++⎢⎥-+-⎦6.求下列参数方程所确定的函数的导数d d yx: (1)cos sin sin cos x a bt b at y a bt b at =+⎧⎨=-⎩(,a b 为常数); (2)22221(1)1at x t a t y t ⎧=⎪⎪+⎨-⎪=⎪+⎩(a 为常数). 解 (1)因为()()sin cos dx ab bt ab at dt =-+,()()cos sin dyab bt ab at dt=+, 所以()()()()()()()()cos sin cos sin d d sin cos sin cos ab bt ab at bt at y x ab bt ab at bt at ++==-+-+; (2)因为()()()()22222221222111a t at t a t dx dt t t +-⋅-==++, ()()()22222221(1)2411at t a t t dy atdt t t -+--⋅-==++ 所以22d 22d 11y t tx t t =-=--. 7.求曲线2e 1(2)ettx t y t t --⎧=+⎪⎨=-⎪⎩在0t =处的切线方程与法线方程. 解 因为e e t t dx t dt --=-,()222e (2)e t t dy t t t dt--=---, 所以221dy t dx t +=-,02t dy dx==,又01,0t t xy====故所求切线为:()21y x =-,法线为:()112y x =--. 8.已知曲线2e 2e tx t mt n y p ⎧=++⎪⎨=-⎪⎩在0t =时过原点,且在该点处的切线与2350x y +-=平行,求常数,,m n p .解 因为2dx t m dt =+,e tdy p dt=,故e 2t dy p dx t m =+,由题设可知:00t xn ===,02e 0t yp ==-=,23t dy p dxm ===-, 所以所求常数为:0n =,2e p =,3e m =-. 注:此题的书后答案有误.9.求下列参数方程所确定的函数的二阶导数22d d yx:(1)231x t y t t⎧=-⎪⎨=-⎪⎩; (2)e cos e sin t t x t y t ⎧=⎨=⎩; (3)()2ln 1arctan x t y t t⎧=+⎪⎨=-⎪⎩; (4)()()()x f t y tf t f t '=⎧⎨'=-⎩(()f t ''存在且不为零).解 (1)因为2dx t dt =-,213dy t dt=-,所以21313222dy t t dx t t -==-+-, 于是 22223131313222224d y d t dt t t dx dt t dx t t ++⎛⎫=-+⋅==- ⎪-⎝⎭;(2)因为e cos e sin t t dx t t dt =-,e sin e cos t t dyt t dt=+, 所以e sin e cos sin cos e cos e sin cos sin t t t tdy t t t t dx t t t t++==--,于是 ()()()22222cos sin sin cos sin cos 1cos sin e cos e sin cos sin t tt t t t d y d t t dt dx dt t t dx t t t t -+++⎛⎫==⋅ ⎪--⎝⎭- ()32e cos sin tt t =-;(3)因为221dx t dt t =+,2111dy dt t =-+,所以22111221dy t t t dx t -+==+, 于是2222112241d y t t dx t t+==+; (4)因为()dx f t dt ''=,()()()()dy f t tf t f t tf t dt ''''''=+-=,所以dy t dx=,于是221()d y dx f t =''.10.将水注入深8米、上顶直径8米的正圆锥形容器中,注水速率为4吨/分钟.当水深为5米时,其表面上升的速率为多少解 如图所示,设在t 时刻容器中水面的高度为()h t (米),此时水面的半径为()r t (米),则依题意应有()()2143r t h t t π=,而()()84h t r t =, 所以()31412h t t π=,两边同时对时间t 求导, 可得()2144dh h t dt π=,当()5h t =时,可求得1625dh dt π=, 所以当水深为5米时,其表面上升的速率为16min 25m π. 11.汽车A 以50公里/小时的速度向西行驶,汽车B 以60公里/小时的速度向北行驶,两辆车都朝着两条路的交叉口行驶.当汽车A 距离交叉路口0.3公里,汽车B 距离交叉路口0.4公里时,两辆车以什么速率接近解 如图所示,设在t 时刻,汽车A 距离交叉路口()x t ,汽车B 距离交叉路口()y t ,则两车之间的直线距离为()()()22s t x t y t =+t 求导,可得()()()()22dx dy x t y t ds dt dt dtx t y t +=+50dx dt =,60dy dt =,故当()0.3x t =,()0.4y t =时,22780.30.4ds dt ==+,即当汽车A 距离交叉路口0.3公里,汽车B 距离交叉路口0.4公里时,两辆车以78/km h 的速率接近.12.一个路灯安装在15英尺高的柱子上,一个身高为6英尺的人从柱子下以5英尺/秒的速度沿直线走离柱子,当他距离柱子40英尺时,他身影的顶端以多快的速率移动解 如图所示,设在t 时刻,此人离灯柱的水平距离为()x t ,身影的顶端离灯柱的水平距离为()y t ,则依题意有:5dx dt =,()()()615y t x t y t -=,可见()()53y t x t =, 两边同时对时间t 求导,得52533dy dx dt dt ==, 所以他身影的顶端以25feet /3s 的速率移动,与他离灯柱的水平 距离无关,只与他的前进速度、身高、灯柱高有关.习 题 2-51.函数2y x =,求当1x =,而0.1x ∆=,0.01时,y ∆与d y 之差是多少 解 当1x =,0.1x ∆=时,21.110.21y ∆=-=,d 20.2y x x =∆=, 所以 0.01y dy ∆-=;当1x =,0.01x ∆=时,21.0110.0201y ∆=-=,d 20.02y x x =∆=, 所以 0.0001y dy ∆-=;2.求函数2y x x =+在3x =处,x ∆等于0.1,0.01时的增量与微分. 解 因为2y x x =+,所以()21dy x x =+∆,当3x =,0.1x ∆=时,223.1 3.1330.71y ∆=+--=,0.7dy =; 当3x =,0.01x ∆=时,223.01 3.01330.0701y ∆=+--=,0.07dy =.3.函数3y x x =-,求自变量x 由2变到1.99时在2x =处的微分. 解 因为3y x x =-,所以()231dy x x =-∆,当2x =,0.01x ∆=-时,()()23210.010.11dy =⨯-⨯-=-.4.求下列函数的微分(1)234123y x x x x =+-+;(2)2e x y x -=; (3)21xy x =- ; (4)22tan (1)y x =+; (5)ln cos 3x y = ;(6)e sin ax y bx =.解 (1)()23144dy x x x dx =+-+;(2)()()()2222222e e e e 2e 12x x x x x dy dx x d x dx x x dx x dx -----=+-=+-=-;(3)()()()()()()()222222222211121111x dx xd x x dx x x dx xdy dx x x x ------+===---;(4)2222222tan(1)tan(1)2tan(1)sec (1)(1)dy x d x x x d x =++=+++2224tan(1)sec (1)x x x dx =++;(5)()()ln cos ln cos 13ln 3ln cos 3ln 3cos cos x x dy d x d x x==⋅lncos 3ln 3tan x xdx =-⋅;(6)()()()()()()e sin e cos e sin cos ax ax ax dy d ax bx bx d bx a bx b bx dx =+=+⎡⎤⎣⎦. 5.将适当的函数填入下列括号内,使等式成立: (1)d()sin d t t ω=; (2)2d()sec 3d x x =; (3)d()x =;(4)22d d()xx a =+; (5)2d()e d x x x =;(6)ln d()d xx x=. 解 (1)()1cos t ωω-; (2)()1tan 33x ; (3; (4)1arctan x a a ; (5)21e 2x ; (6)21ln 2x .6.某扩音器的插头为圆柱形,其截面半径r 为0.15厘米,长度L 为4厘米,为了提高它的导电性能,要在圆柱的侧面镀一层厚度为0.001厘米的铜,问每个插头约需要多少克纯铜(铜的密度为8.9克/立方厘米, 3.1416π≈)解 因为圆柱形的扩音器插头的体积为2V r L π=,侧面镀层的体积约为2V dV rL r π∆≈=∆,当0.15r =,0.001r ∆=,4L =时,32 3.14160.1540.001 3.7699210V -∆≈⨯⨯⨯⨯≈⨯, 故所需铜的重量约为33.76992108.90.03355m -≈⨯⨯≈克.7.设有一凸透镜,镜面是半径为R 的球面,镜面的口径为2h ,若h 比R 小得多,试证明透镜的厚度22h D R≈.解 如下图所示,镜面半径R 、镜面口径2h 、透镜厚度D 之间有关系:()222h R D R +-=,化简得:2220h RD D -+=,得:22222441R R h h D R R --==--若h 比R 小得多,则2222112h h R R-≈-,故222221122h h h D R R R R R R R⎛⎫=--≈--= ⎪⎝⎭.8.利用微分求下列函数值的近似值(1)cos59o ;(2)tan 46o ;(3)lg11; (4) 1.01e ;(526;(63996解 (1)()00cos59cos 601cos cos sin 318033180πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-≈-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭o130.51512180π⎫=-≈⎪⎝⎭; (2)()002tan 46tan 451tan tan sec 418044180πππππ⎛⎫⎛⎫⎛⎫=+=+≈+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭o 12 1.0349180π=+⨯≈;(3)()1lg11lg 101lg101 1.043410ln10=+≈+⨯≈;(4) 1.0110.010.01 2.7455e e e e +=≈+⨯≈; (526251251 5.1225=+≈=; (6()233331996100041000100049.98673-=-≈⨯⨯-≈.9.当||x 较小时,证明下列近似公式: (1)sin x x ≈;(2)(1)1x x αα+≈+;(3)ln(1)x x +≈.解 (1)设()sin f x x =,则()cos f x x '=,当||x 较小时,()sin sin0cos0f x x x x =≈+⋅=,所以sin x x ≈;(2)设()(1)f x x α=+,则()1(1)f x x αα-'=+图2-11当||x 较小时,()()()(1)111f x x f f x x αα'=+≈+=+,所以(1)1x x αα+≈+;(3)设()ln(1)f x x =+,则()11f x x'=+, 当||x 较小时,()()()ln(1)11f x x f f x x '=+≈+=,所以ln(1)x x +≈.习 题 2-61.一飞机在离地面2000米的高度,以200公里/小时的速度飞临某目标之上空,以便进行航空摄影.试求飞机飞至该目标上方时摄影机转动的速度.解 如右图示意,A 为摄影目标,B 为其正上方的点,设t 时刻飞机离B 点的水平距离为()x t ,摄影机镜头C 与A 点连线与飞机的水平飞行方向成θ夹角,则()cot 2000x t θ=,()()20000003600x t x t =-,两边同时对时间t求导,可得()211csc 200036dx t d dt dt θθ-==-,即21sin 36d dt θθ=,当飞机飞至该目标上方时,2πθ=, 代入解得:()13605/362d rad s dt θππ=⨯=. 2.一架飞机着陆的路径如图2-11所示,并且满足下列条件: (ⅰ)降落点为原点,飞机开始降落时水平距离为l ,飞行高度为h .(ⅱ)在整个降落过程中,飞行员必须使飞机保持恒定的水平速度v .(ⅲ)垂直方向的加速度的绝对值不能超过常数k (必须比重力加速度小很多).(1) 求一个三次多项式()32P x ax bx cx d =+++,通过在开始降落和着陆的点对()P x 和()P x '施加一定的条件限制,使它满足条件(ⅰ);(2) 根据条件(ⅱ)和(ⅲ),试证明:226hv k l≤;(3) 假设一条航线不允许飞机的垂直加速度超过2860k =哩小时.如果 一架飞机的飞行高度为35000呎,速度为300哩小时,飞机应从距离飞机场多远处开始降落(4) 画出满足问题(3)中条件的航线图.解 假设从飞机开始着陆时计时,飞行时间为t ,飞机位置为(),x y . (1)如要满足条件(ⅰ),应有0t =时,,x l y h ==,0t dy dt==;t T =(T 为着陆时刻)时,0x y ==,0t Tdydt==,因为()32y P x ax bx cx d ==+++,于是()()232dy dx dxP x ax bx c dt dt dt'==++, 所以应有 32h al bl cl d =+++,2320al bl c ++=,0d =,0c =, 解得3223,,0h h a b c d l l =-===,所以()323223h h P x x x l l=-+; (2)由条件(ⅱ)和(ⅲ)可知:dxv dt =,22d y k dt ≤,由()323223h h y P x x x l l==-+,可得:23266dy h h dx x x dt l l dt ⎛⎫=-+ ⎪⎝⎭, 222223232212666d y h h dx h h d xx x x dt ll dt l l dt ⎛⎫⎛⎫⎛⎫=-++-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以[]0,x l ∀∈,应有232126hh x v k ll ⎛⎫-+≤ ⎪⎝⎭, 故226hv k l ≤;(3)当2860k =哩,0.62135000350000.305 6.62921000h ==⨯⨯≈呎哩,300v =哩小时,由226hv k l ≤,可解得64.52l ≥≈(哩),即飞机应从距离飞机场约64.52哩的水平距离处开始降落.(4)满足条件(3)的航线为()3232322350003350000.260625.223264.5264.52P x x x x x ⨯⨯=-+≈-+(呎)(注:式中x 的单位哩,图略).本章复习题A1、填空题(1)()f x 在点0x 可导是()f x 在点0x 连续的_____条件,()f x 在点0x 连续是()f x 在点0x 可导的______条件.解 因为()f x 在点0x 可导,则()f x 在点0x 连续,故第一个空应填“充分”,第二个空应填“必要”.(2)()f x 在点0x 可导是()f x 在点0x 可微的______条件. 解 应填“充分必要”. (3)若假定0()f x '存在,则000()()limh f x h f x h h→+--=______.解 因为()()00000000()()()()limlim h h f x h f x f x f x h f x h f x h h h→→+-+--+--= ()()00000()()lim h f x h f x f x h f x h h →+---⎡⎤=+⎢⎥-⎣⎦()02f x '=, 所以应填“()02f x '”.(4)若()(1)(2)f x x x x =++,则(0)_______f '=.解 因为()(1)(2)(2)(1)f x x x x x x x '=++++++,故(0)2f '=,应填“2”.(5)曲线231x t y t⎧=+⎨=⎩在2t =处的切线方程为________. 解 因为23322t t y dy t t dx x t '===',所以2t =时,23t dy dx ==,5x =,8y =,切线方程为()835y x -=-,即370x y --=,所以应填“370x y --=”.2、选择题(1)()f x 在点0x 的左导数0()f x -'及右导数0()f x +'都存在且相等是()f x 在点0x 可导的( ).A .充分条件B .充分必要条件C .必要条件D .既非充分条件也非必要条件 解 选B .(2)设101()n n n f x a x a x a -=+++L ,则()(0)n f =( ).A .n aB .0aC .0!n aD .0 解 选C .因为()0()!n f x n a =.(3)设函数()y f x =二阶可导,(ln )y f x =,则22d d yx等于( ).A .1(ln )f x x 'B .21[(ln )(ln )]f x f x x '''- C .21[(ln )(ln )]xf x f x x '''- D .21(ln )f x x' 解 选B .因为1(ln )(ln )f x y f x x x'''=⋅=, 则221(ln )(ln )(ln )(ln )f x x f x f x f x x y x x '''⋅⋅-'''-''==. (4)若函数()y f x =有01()2f x '=,则当0x ∆→时,该函数在0x x =处的微分d y 是( ).A .与x ∆等价的无穷小B .与x ∆同阶的无穷小C .比x ∆低阶的无穷小D .比x ∆高阶的无穷小 解 选B .因为()0012x x dyy x x x ='=∆=∆,所以001lim 2x x x dy x =∆→=∆.(5)已知方程222x y R +=确定了函数()y y x =,则22d d yx 等于( ).A .xy- B .23R y C .33R y - D .23R y -解 选D .由222x y R +=可得220x y y '+⋅=,。
2高数选修(导数)

(∆x → 0) ,其中 A 为与 ∆x 无关的常数,
( A = f ′( x0 ) )
函数 f ( x ) 在某点可导 ⇔ 函数 f ( x ) 在某点可微 ⇒ 函数 f ( x ) 在该点连续 但连续不一定可导也不一定可微。 4.奇偶函数与周期函数的导数性质 若 f ( x ) 在某区间上可导且为奇函数,则 f ′( x ) 为该区间上的偶函数; 若 f ( x ) 在某区间上可导且为偶函数,则 f ′( x ) 为该区间上的奇函数; 若 f ( x ) 在某区间上可导且以 T 为周期, f ′( x ) 在该区间上也是以 T 为周期的 则 周期函数。
(2) (sin( ax + b)) ( n ) = a n sin ax + b +
1 (5) ax + b
d 2 y dy′ dt 1 = = 2 dx dx dt −2t sin t 2
18
章节 重点 难点
(续)
日期
三.分段函数及高阶导数求导法 1.按定义求连接点处的导数或左右导数 例 1. (92 研)设 f ( x) = 3 x 3 + x 2 | x | ,则使 f ( n ) (0) 存在的最高阶数 n 为: () A.0
x + b
nπ 2 nπ (3) (cos( ax + b)) ( n ) = a n cos ax + b + 2 (4) (( ax + b) β ) ( n ) = a n β ( β − 1) ⋯ ( β − n + 1)( ax + b) β − n
高数课件28无穷级数

条件收敛性:无穷级数条件收敛,当且仅当其通项的极限不为0,但存在某 个常数使得其绝对值小于该常数 发散性:无穷级数发散,当且仅当其通项的极限不为0,且不存在某个常数 使得其绝对值小于该常数
收敛性:无穷级数是否收敛,取决于其通项的极限是否为0 绝对收敛性:无穷级数是否绝对收敛,取决于其通项的绝对值的极限是否为0 条件收敛性:无穷级数是否条件收敛,取决于其通项的极限是否为0,且其绝对值的极限不为0 发散性:无穷级数是否发散,取决于其通项的极限是否为0,且其绝对值的极限不为0
洛朗级数:将函数展开为 无穷级数形式
幂级数:将函数展开为无 穷级数形式
拉格朗日级数:将函数展 开为无穷级数形式
敛性
收敛域的求法: 利用比值审敛 法、根式审敛 法等方法求解
收敛域的应用: 在数学分析、 函数论、微积 分等领域有广
泛应用
收敛域的性质: 收敛域是闭集, 且具有连续性、 单调性等性质
泰勒级数:将函数展开为 无穷级数形式
傅里叶级数:将周期函数 展开为无穷级数形式
拉普拉斯变换:将函数展 开为无穷级数形式
无穷级数的和是一个函数,其 值域为全体实数
级数表示:将无穷级数表示为a_1 + a_2 + a_3 + ...的形式 通项表示:将无穷级数表示为a_n = f(n)的形式,其中f(n)是n的函数 收敛半径表示:将无穷级数表示为a_n = f(n)/r^n的形式,其中r是收敛半径 幂级数表示:将无穷级数表示为a_n = f(n)x^n的形式,其中x是幂级数的变量
信号处理:用于滤波器设计、信号分析等 控制系统:用于控制系统的设计和优化 电子工程:用于电路分析、电磁场分析等 机械工程:用于机械系统的动力学分析、振动分析等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数(上册)期末复习要点
第一章:1、极限(夹逼准则)
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式也可以是微分公式
第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式曲率半径
第四章、第五章:积分
不定积分:1、两类换元法(变dx/变前面)
2、分部积分法(注意加C)(最好都自己推导一遍,好记)
定积分:1、定义2、反常积分
第六章:定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长
第七章:向量问题不会有很难
1、方向余弦
2、向量积
3、空间直线(两直线的夹角、线面夹角、求直线方程)3、空间平面
4、空间旋转面(柱面)
高数解题技巧。
(高等数学、考研数学通用)
高数解题的四种思维定势
●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f (x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。